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Abstract 
In this article, we provide an order-form of the First and the Second Fundamental Theorem of As-
set Pricing both in the one-period market model for a finite and infinite state-space and in the case 
of multi-period model for a finite state-space and a finite time-horizon. The space of the financial 
positions is supposed to be a Banach lattice. We also prove relevant results in the case where the 
space of the financial positions is not ordered by a lattice cone. 
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1. Some Remarks on Previous Work about the Fundamental Asset Pricing 
Theorems 

The First Fundamental Theorem of Asset Pricing states that the absence of arbitrage for a stochastic process X  
is equivalent to the existence of an equivalent martingale measure for X . It was shown in [1] that for a locally 
bounded d -valued semi-martingale X  the condition of No Free Lunch with Vanishing Risk is equivalent 
to the existence of an equivalent local martingale measure for the process X . It was proved in [2] that the local 
boundedness assumption on X  may be dropped under the notion of equivalent σ -martingale measure. The 
work [3], also discussed in [4], is still essential in this topic and actually this work’s results rely on what Kreps 
established as the viable market model consisted by an incomplete market and a linear price system on it. In the 
present work we are going to resolve the so-called Strictly Positive Extension Property from the financial aspect. 
The presence of heavy-tails in continuous time models and the possible change of frame from pL  spaces to 
Orlicz spaces in order to fit the modelling requirements, oblige us to search for more general versions of the two 
FTAPs, mostly relied on the geometry of these spaces. Recently, in [5], a Fundamental Theorem of Asset Pric-
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ing and a Super-Replication Theorem in a model-independent framework are both proposed. But these theorems 
are proved in the setting of finite, discrete time and a market consisting of a risky asset S , as well as options 
written on this risky asset, too. Notions like the one of the strictly positive projection or that of the filtration are 
alike the ones met in [6]. A difference between our notion of strictly positive projection and the equivalent no-
tion in [6] is that ours is weaker. That’s because if 0x >  implies 0Px > , this implies 0 0Px x= ⇒ = , 
because if 0x > , it would be 0Px > . An important difference between the article of Troitsky and ours is that 
we extend the framework of Definitions so as to include cases of non-discrete time spaces. Another one is that 
we apply these notions in order to provide a new version of the two FTAP, while in [6] an important ordered 
-space theory of martingales in Banach lattices is developed. Finally, markets subspaces are taken to be sublat-
tices because of the fact that we may include layers of call and put options written on an initial market space, as 
we remarked in [7]. The present paper is organized as follows: First, we provide some useful notions and defini-
tions and examples for them, as well. Next, we prove the Order Form of the FTAP in the Banach-lattice case and 
in the next sections we provide the analog of these results in the finite-models case. We also explain the applica-
tion of our results on the Black-Scholes-Merton model. We also compare them to the Example developed in [4]. 
The case of non-lattice cones is examined in the last section of the paper, in relation with the classes of reflexive 
and strongly reflexive cones, mentioned in [8]. The role of the existence of an unconditional basic sequence in a 
Banach space is also quoted in this section independently from the results provided in [8], as an important con-
dition for the extraction of results concerning FTAP. This condition is not irrelevant to ([9], Th. 1.1), about Lin-
delöf Properties of weak topology, but here it mainly concerns the construction of a Strictly Positive Projection 
Operator. On the other side, in the paper [10] ideals of ( )0L µ  are used in order to deduce an FTAP-like result 
([10], Lem. 1), while our results refer to sublattices. 

2. Useful Notions and Preliminaries 
We consider two periods of time (0 and 1) and a non-empty set of states of the world Ω  which is supposed to 
be an infinite set. The true state ω∈Ω  that the investors face is contained in some A∈ , where   is some 
σ-algebra of subsets of Ω which gives the information about the states that may occur at time-period 1. A finan-
cial position is a  -measurable random variable :x Ω→  . This random variable is the profile of this posi-
tion at time-period 1. We suppose that the probability of any state of the world to occur is given by a probability 
measure [ ]: 0,1µ → . The financial positions are supposed to lie in some subspace E  of ( )0 , ,L µΩ  , 
being a Banach lattice. 

Definition 1 An incomplete market in E  is some sublattice M  of E . A complete market in E  is some 
sublattice M  of E , such that M E= . 

It is well-known that we define the positive cone F+  of a subspace F  of an ordered vector space to be the 
set F F E+ += ∩ , where +E  denotes the positive cone of E . 

Definition 2 A positive projection :P E F→  is a projection, which maps each element of E  to some ele- 
ment of its subspace F , such that ( )P E F+ +⊆ . A positive projection is called strictly positive, if ( ) ,P x F+∈  
( ) 0 , 0P x x E x+= ⇔ ∈ = . 
We also recall the notion of random field. 
Definition 3 A random field is a map :X E×Ω→  where E  is a Bananch lattice,,   is a topological 

space and ( )tX Eω ∈ , for any t∈ . Such a random field X  is called associated to the pair ( ), E . 
We also may provide the notion of the filtration in the frame of random fields: 
Definition 4 A filtration associated to the pair ( ), E  is a net of projections ( )a a A

P
∈

, where :a aP E E→ , 
where aE  is a sublattice of E and if , a b ab a P P P= . A is a directed set, by some binary relation  , called 
direction. 

Definition 5 A binary relation   on A is called direction on A, if it is reflexive and transitive on A, while 
for any ,a b A∈  there is a c A∈ , such that ,c a b . 

Definition 6 If ab  and ab ≠ , this is denoted by Abaab ∈,, . 

Definition 7 A filtration ( )a a A
P

∈
 is called strictly positive if ( ) 0, 0,aP x x E x a A+= ∈ ⇔ = ∈ . 

We also give the definition of the adapted random field under this frame. 
Definition 8 A random field :X A E×Ω→ , where A ⊆   is called adapted to the filtration ( )a a A

P
∈

, 
being associated to the pair ( ), E  if a aX E∈  for any a A∈ , where A is a directed subset of   by some 
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binary relation  , which is reflexive, transitive and every pair has an upper bound. 
Definition 9 A random field :X A E×Ω→ , where ⊆A , has the Martingale Property if it is adapted to 

a filtration ( )a a A
P

∈
, being associated to the pair ( ), E , while ,a b aP X X b a=  . 

Definition 10 A random field EAX →Ω×: , where ⊆A , has the Strictly Positive Martingale Property  
if it is adapted to a filtration ( )a a A

P
∈

, being associated to the pair ( ), E , it has the Martingale Property, 

while the filtration ( )a a A
P

∈
 is consisted by strictly positive projections. 

We give some examples for the previously mentioned notions. 
Example 11 If   is a sub-algebra of the σ -algebra   of Ω, then since ( ), ,pL µΩ   is a sublattice of 
( ), , ,1pL pµΩ ≤ < ∞ , then ( ), ,pL µΩ   is an incomplete market of financial positions in ( ), , ,pL µΩ   

1 p≤ < ∞ . 
Example 12 The subspace of partially linear functions M in the space [ ]0,1C  is a complete market in [ ]0,1C , 

due to the Stone-Weierstrass Theorem. We notice that the partially linear functions defined on [ ]0,1  is actually  
the sublattice generated by the bi-set of functions { }1 2,φ φ , where ( ) [ ]1 1, 0,1t tφ = ∈ , ( ) [ ]2 , 0,1t t tφ = ∈ . We  
notice that in this case, the span of this bi-set is a lattice-subspace of [ ]0,1C  (see also [11]). 

Example 13 A finite-dimensional sublattice M  of [ ]0,1C  is an incomplete market in [ ]0,1C . As a lattice- 
subspace, it actually has a positive basis with nodes ([11], Pr. 2.2), hence the equivalent positive projection 

[ ]: 0,1MP C M→  is defined as follows: 

( )( ) ( )
( ) ( ) [ ]

1
, 0,1 ,

n
i

M i
i i

x t
P x t b t t

b t=

= ∈∑  

where dimn M=  and [ ]1 2, , , 0,1nt t t ∈  are the nodes of the positive basis of M . 
Example 14 A sequence of sublattices ( )n n

M
∈

 of [ ]0,1C  characterized by increasing non-terminal parts 
of the sequence 

{ } [ ]1 2 1, , , , , 0,1 ,n nt t t t + ⊆   

which has different terms in the sense ,n mt t n m≠ ≠  is a filtration of [ ]0,1C , since 1t  is the node for the one- 
dimensional subspace 1M , { }1 2,t t  is the set of nodes of the positive basis of 2M  and so on. 

Example 15 An increasing net of sub-σ -algebras ( )a a A∈
  of Ω, being a non-empty set, where A is a non- 

empty directed set, induces as it is well-known the existence of a filtration in ( )1 , ,L µΩ  , where ( ), ,µΩ   is 
supposed to be a probability space associated to the measurable space ( ),Ω  . The relevant net of sublattices 
is: 

( )( )1 , , .
a A

L µ
∈

Ω   

A may denote a set of cardinals, where if we start from a certain cardinal number a , then the cardinality of 
σ -algebra a  as a class of objects is at most equal to a2  and it is surely greater than 1a + . 

Example 16 The filtration of the Example 14 is not strictly positive. This holds because if we pick a sublattice 
1nM  whose positive basis’ nodes is the set: 

{ } [ ]
11 2, , , 0,1 .nt t t ⊆  

If ( ) 10, 1, 2, ,ix t i n= =  , this does not imply 0x =  if 0x ≥ . For example, ( ) ( )1 2
1 0n

i ix t t t== Π − ≥ , but 
( ) 10, 1, 2, ,ix t i n= =  . 
Example 17 If E  is a Banach lattice with order continuous norm and B  is a projection band, namely 

dE B B= ⊕ , then B  is norm-closed. The projection :BP E B→  is strictly positive since it is positive and 
( ) 0,BP x x E+= ∈ , implies that since 1 2x x x= + , where 1x B∈  and 2

dx B∈ , 1 0x = . 2 0 0x ∧ =  and 02 ≥x , 
hence 2 0x =  and finally x = 0. The same situation is valid for Kantorovich-Banach spaces (or else KB-spaces), 
in which dE E E∗∗ = ⊕ . Such examples of spaces are reflexive Banach lattices like ( ), , ,1pL pµΩ < < ∞  
and AL -spaces. 

Example 18 Let us consider a Banach lattice E  which has a Schauder basis: 

{ }1 2, , , , , ,ne e e n∈    
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which is moreover a positive basis. Also, suppose that: 

[ ]1 2, , , , ,n n nM P E e e e n= = ∈   

are finite-dimensional sublattices of E . Then, 

( )n n
P

∈
 

is a filtration, because ,n m nP P P m n= ≤  and 0 0,nP x x x E+= ⇔ = ∈ , since { }1 2, , , ne e e  is a positive basis 
of nM  itself. This is the case for 1

0 , , ,1pE c p= < < ∞  . 

3. Order Versions for the Fundamental Theorems of Asset Pricing 
In the proof of the two next Theorems we use the following: 

Lemma 19 A positive projection MEP →: , where E  is a Banach lattice and M  is a positive sublattice 
of it, is a continuous operator. 

Proof: Obvious, because every positive operator from a Banach lattice into to a locally solid Riesz space, is 
continuous. 

Theorem 20 (Order 1st Fundamental Theorem of Asset Pricing) Let E  be a Banach lattice and M  be a 
sublattice of E . If M  admits a strictly positive projection, then every strictly positive and continuous func- 
tional :f M →  , admits a strictly positive, continuous extension on E . Also, if E  is a Banach lattice and 
M  is a sublattice of E  such that every strictly positive and continuous functional :f M →  , admits a 
strictly positive, continuous extension on E , then M  admits a strictly positive projection. 

Proof: The adjoint operator of the strictly positive projection :P E M→  is an injection. Hence 
( ) :P f E∗ →   is a continuous, strictly positive functional of E . This is due to the duality: 

( ) ( ), , , .x P f P x f x E∗ = ∈  

For the proof of the opposite, we have the following: We define the projection :MP E M→  as follows. 
( ) ( ), , 0,M MP x x x M P x x M= ∈ = ∉ . MP  is a positive operator from a Banach lattice into a locally solid Riesz 

space. Hence it is continuous. By duality for some f  strictly positive, continuous functional f  of M , 

( ) ( ), , , .M Mx P f P x f x E∗ = ∈  

Hence if we suppose that there is some { }0 \ 0x E+∈  such that ( ) ( )( )0 0 1Mg x P f x∗= = , while ( )0 0MP x = . 
But this leads to a contradiction. 

Corollary 21 If E  is a Banach lattice which has the Strictly Positive Martingale Property with respect to 
some filtration ( )a a A

P
∈

, where A  is a directed set. If Aa∈  such that a aP E M= , then every strictly positive 
and continuous functional : af M →  , admits a strictly positive, continuous extension on E . 

Corollary 22 Let E  be a Banach lattice of financial positions and M  be an incomplete market, such that 
( ),M f  is a market model. If M  admits a strictly positive projection, then for every price system :f M →  , 
the market model ( ),M f  is viable. 

The existence of a strictly positive projection may be replaced by the Strictly Positive Martingale Property 
with respect to some filtration in the statement of the above Theorem. The term viable is the one established in 
the seminal work of D.M. Kreps (see [3], p. 18-19). 

Theorem 23 (Order 2nd Fundamental Theorem of Asset Pricing) Let E  be a Banach lattice and M  be a 
dense sublattice of E . If M  admits a strictly positive projection, then every strictly positive and continuous 
functional :f M →  , admits a unique strictly positive, continuous extension on E . Also, let E  be a 
Banach lattice and M  be a sublattice of E such that M admits a strictly positive projection. Moreover, every 
strictly positive and continuous functional :f M →  , admits a unique strictly positive, continuous extension 
on E . Then M  is dense in E . 

Proof: Since M is a dense sublattice of E, the adjoint (linear by the duality ( ) ( ), , ,x P f P x f x E∗ = ∈ )  

operator :P M E∗ ∗ ∗→  of the strictly positive projection MEP →:  is a surjection. Hence for any g E∗ ∗∈ ,  

there is some h M∗ ∗∈ , such that ( )g
g P h ∗
∗ ∗ ∗= , or else by duality relations: 
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( ) ( ), , , , .
g g

x P h x g P x h x E∗ ∗
∗ ∗ ∗ ∗= = ∈  

For the converse, we have that for any g E∗ ∗∈ , there is some h M∗ ∗∈ , such that ( )g
g P h ∗
∗ ∗ ∗= , or else by 

duality relations: 

( ) ( ), , , , .
g g

x P h x g P x h x E∗ ∗
∗ ∗ ∗ ∗= = ∈  

where MEP →:  is a strictly positive projection. This implies that :P M E∗ ∗ ∗→  is a surjection, which is 
equivalent to the fact that M  is dense in E . 

Corollary 24 If E  is a Banach lattice which has the Strictly Positive Martingale Property with respect to 
some filtration ( )a a A

P
∈

, where A is a directed set. If 0a  is an element of A  such that 
0 0a aP E M=  is a dense 

sublattice of E , then every strictly positive and continuous functional 
0

: af M →  , admits a unique strictly 
positive, continuous extension on E . 

Corollary 25 Let E  be a Banach lattice of financial positions and M  be a complete market, such that 
( ),M f  is a market model. If M  admits a strictly positive projection, then for every price system :f M →  , 
the market model ( ),M f  is viable. 

The term viable is the one established in the seminal work of D.M. Kreps (see [3], pp. 18-19). 
We may notice that our Theorem does not make any reference to the No -Free Lunch Condition, but it simply 

extends the No-Arbitrage Property all over the space E . Theorem 23 is the analog of the usual 2nd FTAP, 
which implies that the (local) Equivalent Martingale Measures’ set of a complete market is a singleton, while 
under this class of market spaces the uniqueness of the (strictly positive) extension of a price system all over the 
space of financial positions is achieved under no presence of the No-Free Lunch Condition, too. 

Let us see some Examples which confirm the connection of the above Theorems to well-known models of 
Mathematical Finance. 

Example 26 Let ( ), ,µΩ   be a probability space endowed with an m -dimensional Brownian motion 
( )( ) [ ]0,t T

B B t
∈

=  ( )m∈ , where 0T > . Denote by ( ) [ ]0,t t T∈
=   the filtration that this Brownian motion  

generates, i.e., ( ) [ ]( ), 0,t B u u tσ= ∈ . We assume a financial market consisting of 1+n  assets whose prices  

are modelled by an  -adapted, ( )1n + -dimensional Itô process ( )( ) [ ]0,t T
X X t

∈
=  ( )n∈  of the form 

( ) ( ) ( )( )0 , , nX X X⋅ = ⋅ ⋅  where: 

( ) ( ) ( )0 0d d ,X t r t X t t=  

( ) ( ) ( ) ( )d , d , d ,i i t i tX t m t X t t X B tσ= +  

( )0 0 1, . .,X a eµ= −  

( )0 , . .,i iX a eθ µ= −  

where ( )iσ ⋅  is the i -th row ( )1,2, ,i n=   of the n m× -matrix process ( )σ ⋅ . The process ( )0X ⋅  repre- 
sents the price of a riskless asset (where ( )r ⋅  is the interest rate process which is supposed to have bounded 
values), while the i -th component ( )iX ⋅ , of the process ( )X ⋅ , represents the evolution of the price of the i
-th asset (stock). The price of the riskless asset may be used as numeraire. Suppose that ( )2 , ,TW L µ∈ Ω  . If 
( ) [ ]0,t t T
Z

∈
 is a stochastic exponential, then as it is well-known, the following relation holds: 

( ) ( )1 , , , . .,Q t T t
t

W Z W Q a e t T
Z µ µ= <    

where Q  is the probability measure defined on T  as follows: ( ) d ,T TA
Q A Z Aµ= ∈∫  , according to the  

Girsanov-Cameron-Martin Theorem. Taking mean values over µ  we have: 

( ) ( )1 ,T T t
t

WZ Z W
Zµ µ µ

 
=  

 
     
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which in terms of evaluation maps’ values is interpreted as follows: 

( )( ) 1,1 , .T T t
t

XZ Z X
Zµ=    

The equivalent Riesz pairs are: 

( ) ( ) ( ) ( )2 2 2 2, , , , , , , , , , , ,t t T TL L L Lµ µ µ µΩ Ω Ω Ω      

where the strictly positive projection ( ) ( )1 1: , , , ,T tP L Lµ µΩ → Ω   is ( ) ( )tP W Wµ=   , the strictly pos-
itive linear functional ( )2: , ,tf L µΩ →   is ( ) 1,

t

f W W
Z

=  and its strictly positive extension 
( ) ( )2: , ,TP f L µ∗ Ω →   is ( )( ) ,1P f W W∗ = . This Example gives also a Hilbert space taste, due to the 

presence of 2L -spaces, see also [12]. 
Example 27 

( ) ( )1 , , , . ., ,Q t T t
t

X Z X Q a e t T
Z µ µ= <    

holds for the unique possible change of measure Q , if the market is complete for example in the Black-Scholes 
model and this arises indeprendently from the unique solution of the market-price-of-risk equation. 

Finally, we may revisit the Example constructed in [4], in order to quote it. 
Example 28 The actual form of the elements of the subspace M of ∞

  is described by the following strictly 
positive projection: 

( ) ( )1 2 3 4 1 2 1 2 3 4 3 4: , , , , , , , , , , , , , .P M x x x x x x x x x x x x
∞
→     

M  is a sublattice of ∞
  under the usual component-wise ordering. Also, 1

2n
n

π
∈

 =  
 



, while according to  

Theorem 3, a strictly positive extension of π  all over ∞
  exists, through duality relation ( ) ( )( ) ,f x P xπ=  

x ∞∈ . 

4. The Finite-State, One Period-Model Case 
We will show how the above Theorems 3, 23 are applied in finite -state space models. 

Let us consider the two-date market model in which the number of states of the world is denotes by S , while 
the time-periods are denoted by 0 and 1, respectively. We also consider an incomplete market of primitive assets 
whose time-period −1 payoffs are the positive, linearly independent vectors 1 1 2 2, , , J Jy x y x y x= = =  of S

 , 
whose span is denoted by X . We suppose that X  contains the riskless asset 1 , while J S< , which implies  
standard incompleteness. We also assume a time-period 0 , no-arbitrage price ( )1 2, , , Jq q q q=   for the pri-  

mitive assets. As it is well-known from ([7], p. 4), ( )1F X  is identified to the sublattice ( )S X  of S
  

generated by X . We also remind of the following Projection Basis Theorem for sublattices of S
 , which 

arises from both ([13], Th. 3.7), ([14], Th. 9). 
Theorem 29 Let X  be a J -dimensional subspace of S

  with J S<  generated by the positive elements 
1 2, , , Jy y y  in which the riskless bond 1 is a marketed asset ( )1 X∈ . Suppose that the range ( )R β  of the 

basic function β  of the elements 1 2, , , Jy y y  is the finite set { }1 2, , ,P P Pµ  of the simplex 1J −∆  of J
  

(note that Jµ ≥ ). Suppose that the first J  vectors of this set are linearly independent. If we suppose that the 
vectors , 1, 2, ,J iy i Jµ+ = −  are such that ( ) ( ) ,J i J iy s y s s I+ += ∈  and ( ) 0, ,J i J iy s s I+ += ∉  where  
( ) ( ) ( ) ( )1 2 Jy s y s y s y s= + + +  where Ω∈s  and ( ){ }, 1, 2, ,J i J iI s s P i Jβ µ+ += ∈Ω = = −  (which are  

the vectors indicated by ([13], Th. 3.7), then, 
1) ( ) 1 2, , ,J JS X X y y yµ+ + = ⊕   . 

2) 2 , 1, 2, , .i ib y i J J µ= = + +   
3) If , 1, 2, ,i i ib b b i J′= + =

  with ib X∈  and 1 2, , ,i J Jb y y yµ+ +′  ∈    then the vectors ib
~  defined by: 
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( ) ( )
T T1

1 2 1 2, , , , , ,J Jb b b A y y y−= ⋅  

   

where A  is the JJ ×  matrix whose columns are the vectors , 1, 2, ,iP i J=   are a basis of X  called pro-
jection basis. This basis has the property: The J  first coordinates of an element Xx∈  in the positive basis 
of ( )S X  coincide with the coordinates of the expansion of x  in the basis { }, 1, 2, ,ib i J=

 . 
Also, according to what is mentioned in [7] about the completion of an incomplete market X  by options and 

by following the notation we introduced, 1 2 1J Jy y y y y yµ+= + + + + + +  , where ( )1dimF Xµ =  and 
{ }1 2, , ,y y yµ  is a maximal set of linearly independent, positive vectors of ( )1F X . Due to ([7], Th. 21), 

1, ,Jy yµ+   are portfolios of call and put options written on elements of X , especially since X∈1 . 
The dimension equation which holds in the case of the no-arbitrage price q , is: 

1,W W S⊥⊕ = +  

where W  denotes the subspace of 1S+
  generated by the columns of the payoff matrix ( ),W q X  of the 

primitive securities, while W ⊥  denotes the orthogonal subspace of it. Due to the characterization of the ab- 
sence of arbitrage in the primitive asset market (see [15], Th. 9.2), there is at least one 1Sπ +

++∈  such that 
( ), 0W q Xπ ⋅ =  where 0 J∈ . This implies that { }0W ⊥ ≠  in this case, while 1q Xπ= ⋅  if by X  we 

also denote the JS ×  matrix whose columns are the vectors 1 2, , , Jx x x . The last relation arises from  

( ), 0W q Xπ ⋅ =  if we suppose that ( )0 1ˆ,π π π= . Then 0 1ˆq Xπ π= ⋅  and if we denote 1 1
0

1 π̂ π
π

= , we obtain  

the last relation. As it is implied in [7] ( )1F X  is determined by the positive basis { }1 2, , ,b b bµ  of it. 
We also have the following: 
Theorem 30 Any Sπ +∈  such that 1q Xπ= ⋅  implies a no-arbitrage price ( )1q µπ ∈  for which the price  
( )( ) ( )1 1q qπ λ π λ= ⋅  of the portfolio µλ ∈  or else the price of the asset 1 i ii yµ λ

=∑  lying in the completion  
( )1F X  to be equal to the price of the same asset under Jq∈  if 1 i ii y Xµ λ

=
∈∑ , where , 1, 2, ,iy i µ=   are 

the vectors indicated by the Projection Basis Theorem. 
Proof: Consider the vector ( ) ( )T

1 1 1 2, , ,q D b b bµπ π= ⋅ ⋅  . The above vector satisfies the following equali-
ties: 

T
T T

1 1 1
1 1

1 2 2
1 21

1
1

.
J

J

q
y y

y
y y

y

y y
yµ µ
µ

π
π

π
ππ

π
π

+

+

 
⋅     ⋅     ⋅     ⋅= ⋅ =

     
     ⋅        ⋅ 

 



 

The definition of the vector ( )1q π  allows us to prove that it is a no-arbitrage price in the subspace generated 
by the vectors 1 2, , ,y y yµ  which is the completion by options ( )1F X  of X . If for a portfolio µλ ∈  the 
payoff 1 i ii yµ λ

=∑  lies in the positive cone S
+  except { }0 , then: 

( )( ) ( ) ( ) ( )1 1 1 11 1 0i i i ii iq q y yµ µπ λ π λ λ π π λ
= =

= ⋅ = ⋅ = ⋅ >∑ ∑ , 

because 1
Sπ ++∈ . Also, from the Projection Basis Theorem 29, if 1 i ii y Xµ λ

=
∈∑ , this means that:  

1 1
J

i i i ii iy yµ λ λ
= =

=∑ ∑ . 

Hence ( )( )1 11
J

i iiq yπ λ λπ
=

= ⋅∑  in this case, which is equal to the valuation of the portfolio ( )1 2, , , Jλ λ λ   
of the primitive assets under q . We remind that µ

  is the space of the financial positions, since ( )1F X  is 
actually equal to this space according to ([7], Pr. 6). 

Theorem 31 (First Order Finite Fundamental Theorem of Asset Pricing) For any subspace  
[ ]1 2span , , , JX x x x=   of S

+ , where ( )1dimF Xµ =  and 1 X∈  and ix  1,2, ,i J=   are linearly inde- 
pendent, every strictly positive linear functional of X  has a strictly positive extension on ( )1F X µ=  . 
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Proof: Every strictly positive functional :f X →   defines a no -arbitrage price ( )q f  on X  as follows: 
( ) ( ) , 1, 2, ,i iq f f x i J= =  . According to Theorem 30, 1p  for some 1

Sπ ++∈  such that 1q Xπ= ⋅  is a 
strictly positive extension of f on µ

 , where ( ) ( ) ( )1 1 , supp , 1,2, ,jp i i i b jπ µ= ∈ =  , where ( )supp jb  is 
the support of the vector jb  of the positive basis of ( )1F X , see ([7], Th. 6). 

Proposition 32 If we suppose that the vectors of the date-1 payoffs of the primitive assets 1 2, , , Jx x x  are 
linearly independent and X∈1 , then ( )1

SF X =  , where [ ]1 2span , , , JX x x x=  , except a set of vectors 
1 2, , , Jx x x  of Lebesgue measure zero in ( )JS

 . 
Proof: In the last part of [7], a brief proof was given about the fact that resolving markets have the property 
( )1

SF X =  . It is also well-known that resolving matrices are in general position, namely the complement of 
the set of them is a null-set in the vector space of the matrices S J× , whose entries are real numbers. Hence the 
super-set of all the S J× -matrices (markets), such that [ ]1 21 span , , , JX x x x∈ =   where 1 2, , , Jx x x  are li-
nearly independent and they have the property that ( )1

SF X =   are also in general position. 
Theorem 33 (Second Order Finite Fundamental Theorem of Asset Pricing) For almost any subspace 

[ ]1 2span , , , JX x x x=   of S
+ , where ( )1dimS F X=  and X∈1  and ix  1,2, ,i J=   are linearly inde- 

pendent, every strictly positive linear functional of X  has a unique strictly positive extension on ( )1
SF X =  . 

Proof: Every strictly positive functional :f X →   defines a no-arbitrage price ( )q f  on X  as follows: 
( ) ( ) , 1, 2, ,i iq f f x i J= =  . According to Theorem 30, ( ) 1q f Xπ= ⋅  for a unique 1

Sπ ++∈ . 

5. The Finite Multi-Period Model Case 
Let us see what happens in the multi-period framework. We consider the event -tree model as it is presented in 
[15], according to which there is a finite time -horizon { }0,1,2, ,T=  , a family of partitions F of Ω  such 
that { } { }{ }0 , , 1, 2, ,TF F Sω ω= Ω = =   and 1+tF  is thinner than tF  for any 0,1, , 1t T= −  in the sense  
that for any 11 ++ ∈ tt Fσ , there is a tt F∈σ  such that tt σσ ⊆+1 . Then the set ( ){ }, ,tt F tξ σ σ= = ∈ ∈   is  

the event-tree corresponding to the family of partitions  . Every event-tree   is a model of information re- 
vealing along the time-periods of  . We also consider J  assets (financial contracts) whose payoff vectors are 

1 2, , , JV V V ∈ 

  and if we denote by n  the physical number which is equal to the cardinality of the nodes 
of the event-tree  , these are actually vectors of n

 . We also suppose that the price vectors of the assets are 
1 2, , , Jq q q , where ( ) 0jq ξ =  if , 1, 2, ,T j Jξ ∈ =   and the set T  denotes the set of nodes of the 

event-tree corresponding to the time-period T . If we suppose that these price vectors do not provide arbitrage 
opportunities in the market of the assets 1, 2, ,j J=  , then since the market is incomplete there is at least one 
node-price vector nπ ++∈  such that ( ), 0W q Vπ ⋅ = , where ( ),W q V  is the payoff matrix of this market as 
it is indicated in ([15], Ch. 4). In order to simplify things, we may suppose that ( )0 1π ξ = , where ( )0 0,ξ = Ω . 
We also suppose that one of the assets of the market is riskless, or else that for any ξ ∈  which corresponds 
to the same time-period, its payoff is the same. Also, this asset’s initial price ( )0q ξ  is equal to 1. The submatrix 

( ) ( )V qξ ξ+ + +   for any ξ −∈  is the ( )b Jξ × -matrix whose rows are the vectors ( ) ( )V qξ ξ′ ′+  of J
 , 

indicating the payoffs and the ex-payoff price of the J primitive securities at the node ξ ξ +′∈ . The cardinality 
of ,ξ ξ+ −∈  is denoted by ( )b ξ . 

The market of the securities is complete or as it is usually said the securities’ markets are dynamically 
complete, if every contingent claim ( )( ),c c ξ ξ += ∈  can be replicated by a portfolio ( )( ), ,z z ξ ξ −= ∈  
( ) Jz ξ ∈ . In order to understand the next, we remind of the following, 
Definition 34 The forward -start call option written on a contingent claim ( )( ),c c ξ ξ += ∈  with exercise- 

price a  at the node ξ −∈  given that ( ) ( )1b Xξ ξ∈ , is equal to: 

( ) ( )( )1 .bc a ξξ
+

+ −  

Definition 35 The forward -start put option written on a contingent claim ( )( ),c c ξ ξ += ∈  with exercise- 
price a  at the node ξ −∈  given that ( ) ( )1b Xξ ξ∈ , is equal to: 

( ) ( )( )1 .ba cξ ξ
+

+−  

As a reference for these options we append to ([16], Par. 9.2). 
The market is (dynamically) complete if and only if it is one-period complete for any non-terminal node 
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ξ −∈ , namely if ( ) ( ) ( )rank V q bξ ξ ξ+ + + =  . Otherwise it is called incomplete. For any nπ ++∈  such 
that ( ), 0W q Vπ ⋅ = , and moreover there is a non-terminal node ξ −∈  such that for the corresponding sub-  
matrix ( ) ( )V qξ ξ+ + +   of ( ),W q V , ( ) ( ) ( )rank <V q bξ ξ ξ+ + +   holds, we may add forward-start op-  

tions of the form ( )( ) ( )( )1 , 1b bx a a xξ ξ

+ +
− − , where ( ) ( )spanx V qξ ξ+ + ∈ +   to make it complete. In the  

same way we may talk about the completion by options of the span ( ) ( ) ( )spanX V qξ ξ ξ+ + = +   with re-  

spect to the asset ( )1b ξ  which may be denoted by 
( )

( )( )1b
F X

ξ
ξ  for any ξ −∈ . ( )1b ξ  is the vector of the  

Euclidean space ( )b ξ
  such that ( ) ( )1 1, ,b ξ ξ ξ ξ ξ+ −′ ′= ∈ ∈ . In a way similar to [7], the dimension of the  

completion 
( )

( )( )1b
F X

ξ
ξ  is denoted by ( )µ ξ . It is obvious that we may reach a complete market if and only  

if ( ) ( )bµ ξ ξ=  for any ξ −∈ . A question which also arises in this case is how the new assets introduced in  
a submarket ( )1 1,X ξ ξ −∈  with ( ) ( ) ( )1 1 1rank V q bξ ξ ξ+ + + <   in order to reach ( )1µ ξ  are priced. The 
answer is given in the next Theorem, being equivalent to Theorem 29. 

Theorem 36 For any submarket ( )1 1,X ξ ξ −∈  with ( ) ( ) ( )1 1 1rank V q bξ ξ ξ+ + + <   and any nπ ++∈   
where ( ), 0W q Vπ ⋅ = , where ( )1 2, , , Jq q q q=   is a no-arbitrage price vector for the assets 1,2, ,i J=  .  

( )( ) ( )1
1q µ ξπ ξ ∈  is a price vector which assigns the price ( )( )1q π ξ λ⋅  to the portfolio ( )1µ ξλ ∈ . Specifi-  

cally, the price of the asset ( )1
1 i ii yµ ξ λ
=∑  lying in the completion 

( )
( )( )

1
1 1b

F X
ξ

ξ  is equal to the price of the  

same asset under Jq∈  if ( ) ( )1
11 i ii y Xµ ξ λ ξ

=
∈∑ , where ( )1, 1, 2, ,iy i µ ξ=   are the vectors indicated by the 

Projection Basis Theorem. 
Proof: Consider the vector ( )( ) ( ) ( )( )1

T

1 1 1 2, , ,q D b b bµ ξπ ξ π ξ += ⋅ ⋅  , where ( ) ( )1
1

b ξπ ξ +
++∈ . The above vec-

tor satisfies the following equalities: 

( )
( )

( ) ( )

( )
( )

( )
( )
( )

( ) ( )

1
1

1

T
T 1

T
1 1 1

1 1

21 2
1 1 2

1
1

.

J

J

q
y y y

yy
y

yy
y

µ ξ
µ ξ

µ ξ

ξ
π ξ

π ξ
π ξ

π ξ π ξ

π ξ
π ξ

+
+

+
+

+ +
+

+
+

 
 ⋅    ⋅       ⋅    = ⋅ = ⋅           ⋅     ⋅  







 

The definition of the vector ( )( )1q π ξ  allows us to prove that it is a no-arbitrage price in the subspace gen-
erated by the vectors ( )11 2, , ,y y yµ ξ  which is the completion by options 

( )
( )( )

11 1b
F X

ξ
ξ ,  

( ) ( ) ( )1 1 1spanX V qξ ξ ξ+ + = +  . 

If for a portfolio ( )1µ ξλ ∈  the payoff ( )1
1 i ii yµ ξ λ
=∑  lies in the positive cone ( )1b ξ

+  except { }0 , then:  

( )( ) ( ) ( )( ) ( ) ( )( )1 1
1 1 1 11 1 0i i i ii iq y yµ ξ µ ξπ ξ λ λ π ξ π ξ λ+ +

= =
⋅ = ⋅ = ⋅ >∑ ∑ , 

because ( ) ( )1
1

b ξπ ξ +
++∈ . Also, from the Projection Basis Theorem, if ( ) ( )1

11 i ii y Xµ ξ λ ξ
=

∈∑ , this means that  
( )1
1 1

J
i i i ii iy yµ ξ λ λ

= =
=∑ ∑ . Hence ( )( )1 11

J
i iiq yπ ξ λ λπ

=
⋅ = ⋅∑  in this case, which is equal to the valuation of the  

portfolio ( )1 2, , , Jλ λ λ  of the primitive assets under ( )1q ξ . This concludes the proof. 
Theorem 37 (First Order Event-Tree Fundamental Theorem of Asset Pricing). For any submarket 
( )1 1,X ξ ξ −∈  with ( ) ( ) ( )1 1 1rank V q bξ ξ ξ+ + + <   and any nπ ++∈  with ( ), 0W q Vπ ⋅ = , every strictly  

positive linear functional of ( )1 1,X ξ ξ −∈  has a strictly positive extension on 
( )

( )( ) ( )1

11 1b
F X

ξ

µ ξξ =  . 

Proof: If ( ) ( )1 1:f Xξ ξ →   is a strictly positive functional of ( )1 1,X ξ ξ −∈ , then this implies a no-arbi- 
trage price ( )1

J
fq ξ ∈  and since q  is given, ( ) ( )1 1fq qξ ξ= . The extension of ( )1f ξ  is ( )1 1p ξ  for  

some ( )1
1

b ξπ ++∈  such that ( ) ( ) ( ) ( )1 1 1 1 1 1fq Xπ ξ ξ π ξ ξ+= ⋅  is a strictly positive extension of f on ( )1µ ξ
 , where  
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( ) ( ) ( ) ( )1 1 1, supp , 1,2, ,jp k k k b kπ µ ξ′ ′ ′ ′= ∈ =  , where ( )supp jb  is the support of the vector jb  of the po-  
sitive basis of 

( )
( )( )

11 1b
F X

ξ
ξ , see ([7], Th. 6). 

Theorem 38 (Second Order Finite Fundamental Theorem of Asset Pricing) If the market is complete, then for 
any submarket ( )1 1,X ξ ξ −∈ , every strictly positive linear functional of ( )1 1,X ξ ξ −∈  has a unique strictly  
positive extension on 

( )
( )( ) ( )1

11 1b

bF X
ξ

ξξ =  . 

Proof: Since the market is complete, ( ) ( ) ( )1 1 1 1,V q bξ ξ ξ ξ+ + − + = ∈    and there is a unique nπ ++∈  with 
( ), 0W q Vπ ⋅ = , If ( ) ( )1 1:f Xξ ξ →   is a strictly positive functional of ( )1 1,X ξ ξ −∈ , then this implies  

a no-arbitrage price ( )1
J

fq ξ ∈  and since q  is given, ( ) ( )1 1fq qξ ξ= . The unique extension of ( )1f ξ  is  

( )1 1p ξ  for some ( )1
1

b ξπ ++∈  such that ( ) ( ) ( ) ( )1 1 1 1 1 1fq Xπ ξ ξ π ξ ξ+= ⋅  is a strictly positive extension of f   

on ( )1b ξ
 , where ( ) ( ) ( ) ( )1 1 1, supp , 1,2, ,jp k k k b k bπ ξ′ ′ ′ ′= ∈ =  , where ( )supp jb  is the support of the vec-  

tor jb  of the positive basis of 
( )

( )( )
11 1b

F X
ξ

ξ , see ([7], Th. 6), since 1π  is unique. 

6. General Cones Revisited 
Let us consider a Banach space E  of financial positions, partially ordered by a closed cone C , which is not a 
lattice cone. Such a cone is for example a Bishop-Phepls cone, see ([17], pp. 126-127), which is well-based and 
it has also interior points, hence it is not a lattice cone, according to ([17], Th. 4.4.4). Of course, the set of strict-
ly positive functionals of such a cone has not to be empty. This is the reason due to which the Lindelöf Property 
mentioned in [9] about the weak topology ( ),X Yσ  defined on a dual system ,X Y  is important. Of course, 
there are cones which do not admit continuous strictly positive functionals. Such a cone is the positive cone of 
an ( ) ,1p pΓ < < ∞  space, where Γ  is uncountable. 

Also, in this section, the definition of (in)completeness are altered. 
Definition 39 If M is a infinite-dimensional subspace of E ordered by the cone C, a market is an infinite- 

dimensional subspace of E , such that M C C= − . 
Definition 40 A market is incomplete if M E≠ , while it is complete if M E= . 
Then, the following versions of the Second and the First Fundamental Theorem of Asset Pricing are deduced, 

respectively. 
Theorem 41 Let E  be a Banach space with an unconditional basis. Then a non-lattice one exists, which 

makes E  a complete market and every strictly positive functional of this cone admits a unique strictly positive 
extension. 

Proof: As it is well-known from ([18], Th. 4.2.22), the cone of the unconditional basis ( )n n
x

∈
 

{ }1 , 0n n nnK x E x a x a∞

=
= ∈ = ≥∑  makes X a Banach lattice under an equivalent norm. According to ([8], Th.  

5.7) there is a strongly reflexive cone (see [8], Def. 5.1) C in E+, such that E C C= − . Also, since the 
one-dimensional-subspace projections ,nP n∈  are continuous, according to ([18], Cor. 4.2.26), the operator  

1

1
2 nnnP P∞

=
= ∑  is a continuous projection from E ordered by +E  (which is also the cone of the positive basis) 

to CC −  being ordered by C . Also, we notice that P  is strictly positive in the sense that 0 0Px x= ⇔ = , 
whenever x E+∈ . Hence, P  may be taken as a strictly positive projection, and consequently we may repeat 
the proof of Theorem 23. 

Theorem 42 Let E be a Banach space with an unconditional basic sequence. Then, for the incomplete market 
Y  arising from the basic sequence, there exists a non-lattice cone C , such that Y C C= −  and strictly posi- 
tive functional of this cone admits a strictly positive extension on E . 

Proof: According to ([8], Cor. 5.8) there is a strongly reflexive cone (see [8], Def. 5.1) C  in +E , such that 
Y C C= − , while for any uncoditional basic sequence it is well-known that (see [18], Th. 4.2.22) its cone +Y  
makes Y  a Banach lattice (under an equivalent norm). Also, since the one-dimensional-subspace projec-  

tions ,nP n∈  are continuous, according to ([18], Cor. 4.2.26) the operator 1

1
2 nnnP P∞

=
= ∑  is a continuous  

projection from E  ordered by +E  (which is also the cone of the positive basis) to CC −  being ordered by 
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C . Also, we notice that P is strictly positive in the sense that 0 0Px x= ⇔ = , whenever +∈Ex . Hence, P  
may be taken as a strictly positive projection, and consequently we may repeat the proof of Theorem 3. 

In the proof of ([8], Th. 5.7) the strongly reflexive cone’s construction relies exactly on the existence of an 
unconditional basis for the Banach space E. Then we may understand that the crucial point for the above Theo-
rems is the existence of a basic sequence for the Banach space E. We may remind the seminal work by Bessa-
ga-Pelczynski [19] essentials on this topic. 
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Appendix 
In this Section, we give some essential notions and results from the theory of partially ordered linear spaces 
which are used in this paper. For these notions and definitions, see ([17], Ch. 1, Ch. 2, Ch. 3). Let E  be a 
(normed) linear space. A set EC ⊆  satisfying C C C+ ⊆  and CC ⊆λ  for any λ +∈  is called wedge. A 
wedge for which { }( ) 0C C∩ − =  is called cone. A pair ( ),E ≥  where E  is a linear space and ≥  is a bi-
nary relation on E  satisfying the following properties: 

1) x x≥  for any x E∈  (reflexive); 
2) If x y≥  and zy ≥  then zx ≥ , where Ezyx ∈,,  (transitive); 
3) If yx ≥  then yx λλ ≥  for any λ +∈  and zyzx +≥+  for any Ez∈ , where Eyx ∈,  (compati-

ble with the linear structure of E ), is called partially ordered linear space. The binary relation ≥  in this case 
is a partial ordering on E . The set { }0P x E x= ∈ ≥  is called (positive) wedge of the partial ordering ≥  of 
E . Given a wedge C  in E , the binary relation C≥  defined as follows: 

,Cx y x y C≥ ⇔ − ∈  

is a partial ordering on E , called partial ordering induced by C  on E . If the partial ordering ≥  of the 
space E  is antisymmetric, namely if yx ≥  and xy ≥  implies x y= , where Eyx ∈, , then P  is a cone. 

E′  denotes the linear space of all linear functionals of E , called algebraic dual while *E  is the norm dual 
of E , in case where E  is a normed linear space. 

Suppose that C  is a wedge of E . A functional Ef ′∈  is called positive functional of C  if ( ) 0f x ≥  
for any Cx∈ . Ef ′∈  is a strictly positive functional of C  if ( ) 0f x >  for any { }\ 0x C∈ . A linear 
functional Ef ′∈  where E  is a normed linear space, is called uniformly monotonic functional of C  if there 
is some real number 0a >  such that ( )f x a x≥  for any Cx∈ . In case where a uniformly monotonic func-  
tional of C exists, C is a cone. ( ){ }0 0 for any C f E f x x C∗= ∈ ≥ ∈  is the dual wedge of C  in E∗ . Also,  

by 00C  we denote the subset ( )00C  of **E . It can be easily proved that if C is a closed wedge of a reflexive 
space, then 00C C= . If C  is a wedge of E∗ , then the set ( ){ }0 ˆ 0 for any C x E x f f C= ∈ ≥ ∈  is the dual 
wedge of C  in E , where :̂ E E∗∗→  denotes the natural embedding map from E  to the second dual space 
E∗∗  of E . Note that if for two wedges CK ,  of E , CK ⊆  holds, then 00 KC ⊆ . 

If C is a cone, then a set CB ⊆  is called base of C if for any { }\ 0x C∈  there exists a unique 0>xλ  
such that Bxx ∈λ . The set ( ){ }1fB x C f x= ∈ =  where f  is a strictly positive functional of C is the base 
of C  defined by f . fB  is bounded if and only if f  is uniformly monotonic. If B  is a bounded base of 
C  such that 0 B∉  then C  is called well-based. If C  is well-based, then a bounded base of C defined by a 
g E∗∈  exists. If E C C= −  then the wedge C  is called generating, while if E C C= −  it is called almost 
generating. If C is generating, then 0C  is a cone of E* in case where E is a normed linear space. Also, f E∗∈  
is a uniformly monotonic functional of C if and only if 0intf C∈ , where 0intC  denotes the norm-interior of  

0C . If E  is partially ordered by C, then any set of the form [ ] { }, C Cf x y r E y r x∈ = ∈ ≥ ≥  where Cyx ∈,   

is called order-interval of E. If E is partially ordered by C  and for some Ee∈ , [ ]1 ,nE ne ne∞
== ∪ −  holds, 

then e  is called order-unit of E. If E is a normed linear space, then if every interior point of C is an order-unit 
of E. If E is moreover a Banach space and C  is closed, then every order-unit of E is an interior point of C. The 
partially ordered vector space E is a vector lattice if for any Eyx ∈, , the supremum and the infimum of { },x y  
with respect to the partial ordering defined by P exist in E. In this case { }sup ,x y  and { }inf ,x y  are denoted 
by x y∨ , x y∧  respectively. If so, { }osup ,x x x= −  is the absolute value of x  and if E is also a normed 
space such that x x=  for any Ex∈ , then E is called normed lattice. If a normed lattice is a Banach space, 
then it is called Banach lattice. A Banach lattice E whose norm has the property , ,x y x y x y E++ = + ∈  is 
called AL-space. A set S in a vector lattice E is called solid if y x≤  and Sx∈  implies Sy∈ . A solid 
vector subspace of a vector lattice is called ideal. An ideal I  is a sublattice of E, i.e., a subspace of E such that 

,x y I x y I∨ ∈ ∧ ∈  if Iyx ∈,  respectively. A net { }a a A
x

∈
 in a vector lattice E is order convergent to x  if  

there is a net { }a a A
y

∈
 in E with 0ay ↓ , such that a ax x y− ≤  for each a A∈ . This convergence is denoted  

by o
ax x→ . A set D  in E is order closed if { }a a A

x D
∈

⊆  and o
ax x→ , implies Dx∈ . If D  is also 

an ideal, then D  is called band. A Banach lattice has order continuous norm, if for any net { }a a A
x E

∈
⊆  with 

0↓ax , 0ax ↓  holds. A Banach lattice E which is a band in its second dual (in the sense of norm topology) 
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is called Kantorovich-Banach space. If S is a subset of a vector lattice E, then its disjoint complement is the set 
{ }:  for any dS x E x y y S= ∈ ∧ ∈ . If for a vector lattice E a band B satisfies the property dE B B= ⊕ , then B 

is called projection band. Finally, if E is a partially ordered Banach space whose positive cone is +E , if E has a  

Schauder basis ( )n n
e

∈
, this basis is called positive basis if and only if { }1 0,n n nnE x e nλ λ∞

+ =
= = ≥ ∈∑  . For  

linear lattices and positive bases see in ([20], Ch. 8), and [11], respectively. 
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