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Abstract 
Cryptocurrencies have become increasingly popular in recent years at-
tracting the attention of the media, academia, investors, speculators, regu-
lators, and governments worldwide. This paper focuses on modelling the 
volatility dynamics of eight most popular cryptocurrencies in terms of 
their market capitalization for the period starting from 7th August 2015 to 
1st August 2018. In particular, we consider the following cryptocurrencies; 
Bitcoin, Ethereum, Litecoin, Ripple, Moreno, Dash, Stellar and NEM. The 
GARCH-type models assuming different distributions for the innovations 
term are fitted to cryptocurrencies data and their adequacy is evaluated us-
ing diagnostic tests. The selected optimal GARCH-type models are then used 
to simulate out-of-sample volatility forecasts which are in turn utilized to es-
timate the one-day-ahead VaR forecasts. The empirical results demonstrate 
that the optimal in-sample GARCH-type specifications vary from the selected 
out-of-sample VaR forecasts models for all cryptocurrencies. Whilst the em-
pirical results do not guarantee a straightforward preference among 
GARCH-type models, the asymmetric GARCH models with long memory 
property and heavy-tailed innovations distributions overall perform better for 
all cryptocurrencies. 
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1. Introduction 

The cryptocurrency market has experienced exponential growth in recent years 
within a short period of its existence. Cryptocurrencies have become increasing-
ly popular attracting wide coverage from the media and drawing the attention of 
academia, investors, speculators, regulators, and governments worldwide. A 
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cryptocurrency is a digital asset initially designed to work as a medium of ex-
change using cryptography [1]. Since the invention of Bitcoin in January 2009, 
approximately over 1600 other cryptocurrencies have been developed and ex-
isted at some point. 

For the period from January 2017 to December 2017, the market capitalization 
of the cryptocurrency market increased exponentially. The cryptocurrency mar-
ket crossed the $100 billion market capitalization for the first time in June 2017, 
following months of consistent growth [2]. Bitcoin’s price jumped from about 
998 to 19,497 US dollars reaching its all-time high price of 19,891 US dollars on 
17th December 2017 on the Bitfinex exchange1. The remarkably exponential 
growth was also noticible for other cryptocurrencies like Ripple, Ethereum, Li-
tecoin, Moreno, Dash, Stellar and others during this period. According to 
CoinMarketCap [3], the total value of all cryptocurrencies hit the all-time high 
market capitalization in January 2018 of approximately $830 billion. 

The cryptocurrency market also experienced its fair share of ups and downs in 
the year 2018 with events like exchange hacks, market surges and major devel-
opments on networks. The hacking of Japan’s largest cryptocurrency OTC mar-
ket on 26th of January 2018 and the subsequent loss of 530 million US dollars 
worth of the NEM is the largest ever event of cryptocurrency theft in the history 
of cryptocurrency markets. The price of Bitcoin lost about 65 percent of its price 
in a month reaching about 6000 US dollars between January 26, 2018 and Feb-
ruary 6, 2018. In March 2018, Coinbase launched the Coinbase Index Fund 
which tracks the overall performance of the digital assets listed by Coinbase 
weighted by market capitalization. Late in March 2018, social media giants Fa-
cebook, Twitter and search engine Google banned all advertisements related to 
cryptocurrencies and for initial coin offerings (ICO) and token sales. By the end 
of the first quarter of 2018, the cryptocurrencies’ market lost about 342 billion 
US dollars [3]. In other developments, Bitflyer2 a cryptocurrency exchange be-
came the first regulated exchange in Japan, US and Europe in June 2018. 

By September 2018, cryptocurrencies collapsed 80% of their market capitali-
zation from their highest point in January 2018. This cryptocurrency crash (also 
known as the Bitcoin Crash) is the worst in the history of cryptocurrencies. By 
November 15, 2018, Bitcoin’s market capitalization recorded less than 100 bil-
lion dollars for the first time since October 2017. Bitcoin being the world’s most 
widely traded cryptocurrency reflects mounting investor uncertainty over the 
future of digital currencies. As of 22 December 2018, there were 2067 cryptocur-
rencies with market value and actively traded in 16,055 cryptocurrency markets 
and OTC trading desks across the world that are listed on coinmarketcap3. The 
market capitalization of all the cryptocurrencies stands at $128 billions accord-
ing to figures from CoinMarketcap.com. The top ten cryptocurrencies represent 
approximately 85% of the total market value, with Bitcoin dominating with 

 

 

1https://www.bitfinex.com 
2http://www.bitflyer.com/ 
3http://www.coinmarketcap.com/ 
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about 53% of the market capitalization. Bitcoin is currently the largest block-
chain network, followed by Ripple, Ethereum and Bitcoin cash respectively [3]. 

The rest of the paper is structured as follows: Section 2 reviews the cryptocur-
rency literature. Section 3 presents the GARCH modelling framework including 
the Maximum Likelihood (ML) estimation of the models with the selected inno-
vations distribution assumptions, VaR estimation and backtesting procedures. 
Section 4 presents data and some preliminary summary descriptive statistics. 
Section 5 provides estimation results and empirical results of the VaR backtest-
ing tests and Section 6 concludes the paper. 

2. Literature Review 

Cryptocurrencies are generally characterized by high volatility dynamics and ex-
tremely erratic price jumps. The cryptocurrency markets still remains a potential 
source of financial instability and the impact of the unprecedented growth of 
cryptocurrencies to the financial markets still remains uncertain. Unlike the 
financial securities like stocks and commodities with regulators and convention-
al currencies with central banks, cryptocurrencies are completely decentralized 
and also lack any formal regulation of their markets. There is also limited un-
derstanding of the cryptocurrencies as investments assets. Governments and fi-
nancial market regulatory bodies are particularly concerned about the lack of a 
formal regulatory framework to regulate the creation of new cryptocurrencies, as 
well as trading mechanisms in the cryptocurrency markets. 

Empirical evidence suggests that cryptocurrencies share most of the stylized 
facts with financial time series, such as stocks and currencies returns. For ex-
ample, just like stock prices, cryptocurrency prices also exhibit; time-varying 
volatility, volatility clustering, asymmetric response to the sign of historical 
observations of the volatility process (i.e. leverage effects), heavy-tailed distri-
butions and long memory. Cryptocurrencies are also known to be highly vola-
tile and exhibit extreme price jumps compared to traditional financial securi-
ties like currencies and are leptokurtic. Osterrieder and Lorenz [4] suggests 
that Bitcoin returns not only exhibit higher volatility than conventional fiat 
currencies but also non-normal and heavy-tailed characteristics. Another im-
portant feature of cryptocurrencies is that as opposed to sovereign currencies in 
a one-money economy there are several types of such cryptocurrencies available 
in the market. 

Over the last few years, there has been increased interest in Bitcoin and other 
cryptocurrencies generally. With the ever increasing interest in cryptocurrencies 
and their importance in the financial world, there is need for a comprehensive 
analysis to study volatility dynamics and out-of-sample forecasting behaviour of 
the cryptocurrencies. However, despite the growing interest, acceptance and in-
tegration of cryptocurrencies to the global financial markets, there is limited re-
search on modelling cryptocurrencies’ volatility dynamics. Most of the previous 
studies have mostly focussed on the Bitcoin market (see e.g. [5]-[14]). 
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However, there have also been several studies on modelling volatility dynam-
ics of the cryptocurrency market recently, for instance, Dyhrberg [15] estimated 
the volatility of the Bitcoin, Gold and the US Dollar using the GARCH and 
asymmetric EGARCH models and concludes that they have similarities and re-
spond the same way to variables in the GARCH model, arguing that it can be 
used for hedging. Katsiampa [16] analyzed the Bitcoin volatility using a range of 
GARCH-type models assuming normally distributed errors and concludes that 
AR (1)-CGARCH (1, 1) is the best model to estimate Bitcoin returns volatility. 
Charles and Darn [17] replicate the study of Katsiampa considering the presence 
of extreme observations and using jump-filtered returns and the AR 
(1)-GARCH (1, 1) model is selected as the optimal model. Pichl and Kaizoji [18] 
study the time-varying realized volatility of Bitcoin and conclude that it is sig-
nificantly bigger compared to that of fiat currencies. Bariviera [19] investigate 
the time-varying volatility the behaviour of long memory on Bitcoin returns us-
ing the Hurst exponent analysis. Urquhart and Zhang [20] model a range of 
GARCH volatility models and analysis the hedging ability of the crypto-coin 
against other currencies. In terms of different innovations distributions, Liu and 
Tsyvinski [21] compare the performance of the normal reciprocal inverse Gaus-
sian (NRIG) with the normal distribution and the Student’s t error distributions 
under the GARCH framework and concludes that the GARCH-type model with 
Student’s, t distributed innovations outperform the new heavy-tailed distribu-
tion in modelling the Bitcoin returns. Chu et al. [22] estimated the volatility of 
seven cryptocurrencies using GARCH-type models with different innovations 
distributions and conclude that the IGARCH (1, 1) model is the most appropri-
ate in estimating Bitcoin volatility. 

Unfortunately, the majority of recent studies have focused entirely on the Bit-
coin behaviour or a few other cryptocurrencies and specifically on the in-sample 
modelling framework. Trucios [23] estimated the one step-ahead-ahead volatility 
forecast using several GARCH-type models and also estimate Value-at-Risk 
taking into consideration the presence of outliers. Naimy and Hayek [24] com-
pare the one-step-ahead volatility forecasting ability of the GARCH, the EWMA, 
and the EGARCH models with normal, Student’s t and generalized error distri-
butions. The forecasted volatility is compared with the realized volatility using 
the mean absolute error (MAE), mean absolute percentage error (MAPE) and 
the root mean square error (RMSE) and concludes that the EGARCH model 
performs best amongst the models considered. Peng et al. [25] compare the vo-
latility forecast estimated by GARCH, EGARCH and GJRGARCH models as-
suming symmetric and asymmetric Gaussian and Student-t errors against the 
Support Vector Regression GARCH model and they concluded that the later re-
sults in more accurate forecasts. Moreover, most of out-of-sample comparisons 
focusing on the time-varying volatility dynamics of the cryptocurrency market 
available in the literature are restrictive since they only consider few models 
leaving out several GARCH-type models, and several innovations distributions. 
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This paper focusses on analyzing conditional volatility dynamics over eight 
most popular cryptocurrencies, i.e. Bitcoin, Ethereum, Litecoin, Ripple, Moreno, 
Dash, Stellar and NEM by market capitalization. The aim is to determine the 
most appropriate GARCH-type model as well as the best fitting distribution to 
model the volatility of the major cryptocurrencies returns. This study contri-
butes and extends existing literature on modelling cryptocurrencies volatility 
dynamics by employing a wider range of GARCH-type models, nine different 
innovations term distributions and a longer time period to try and fill a gap in 
the literature. First, a comprehensive in-sample volatility modelling is imple-
mented and their goodness of fit is checked in terms of information selection 
criteria. The most appropriate GARCH-type models are used to estimate the 
out-of-sample Value at Risk (VaR) forecasts. The conditional and unconditional 
coverage tests are used to backtest the accuracy of VaR forecasts. Finally, a com-
prehensive out-of-sample comparison is implemented to investigate the effects 
of long memory in the volatility process as well as the asymmetric responses to 
historical values of the return series to forecast volatility. 

3. Methodology 

This section illustrates the theoretical GARCH modelling framework. First, we 
outline the alternative Generalized Autoregressive Conditionally Heteroscedastic 
(GARCH)-type specifications that are used to model time-varying volatility in 
cryptocurrencies return series and also provide an overview of the set of innova-
tions distributions. Secondly, the selection criteria that will be used to determine 
the most appropriate GARCH-type specifications are also described. Finally, we 
describe the estimation of one-day-ahead Value-at-Risk (VaR) forecasts and 
backtesting procedures. 

3.1. The GARCH Models 

The GARCH-type models are commonly employed in modelling conditional 
volatility often present in financial time series. Let tP  denote the price of an 
asset (i.e. cryptocurrency exchange rates) at time t, ( )1lnt t tr P P−=  is the con-
tinuously compounded return series, for 1, ,t n=  . The return series of interest, 

tr , can be decomposed as follows;  

,t t tr µ ε= +  

,t t tzε σ=                            (1) 

where ( )1|t t tE r Fµ −=  is the conditional mean given the information set 1tF − , 

{ }tε  are the return innovations, ( ) ( )22
1 1Var | |t t t t t tr F E r Fσ µ− −

 = = −   is the 

conditional variance of the process { }tε  and { }tz  are independent and iden-
tically distributed (i.i.d.) innovations with zero mean and unit variance. 

The conditional variance equation for standard GARCH (1, 1) model intro-
duced by Bollerslev [26] is given by  
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2 2 2
1 1,t t tσ ω αε βσ− −= + +                      (2) 

where 0ω > , 0α ≥  and 0β ≥  are unknown parameters. The restrictions on 
parameters ensure that the conditional variance is always positive. The necessary 
and sufficient condition for 2 to be uniquely stationary is 1α β+ <  and the 
unconditional variance is given by ( )( )1ω α β− + , thus higher order moments 
exist. If the GARCH model is correctly specified it will converge to this long 
term variance as the forecast horizon is increased. 

In this paper, twelve GARCH-type specifications are employed in modelling the 
volatility behaviour of cryptocurrencies, namely: SGARCH, IGARCH, EGARCH, 
GJR-GARCH, TGARCH, APARCH, CSGARCH, AVGARCH, NGARCH, 
NAGARCH, FGARCH, and FIGARCH models. All the GARCH-type models im-
plemented follow the same specification in Equation (1); however, in each case, 
the models are distinguished by the evolution of the volatility process 2

tσ  over 
time. The GARCH extensions involve different specifications for the conditional 
variance component. For brevity we consider only the first order lags in all 
GARCH models, i.e. 1p q= = , since empirical evidence suggests that higher 
order models rarely performed better than the lower order models in the 
out-of-sample analysis [27]. The conditional variance equations for all the 
GARCH-type specifications implemented are summarized in Table 1. The ne-
cessary conditions for stationarity (weak or strong) for most GARCH-type mod-
els are well documented in the literature. 

Additionally, for all GARCH-type models, the innovation term { }tz  follow 
one of the nine distributions; Normal distribution, Skew-Normal distribution, 
(Skew)-Student’s t distribution, (Skew)-GED, (Skew)-Student (GH), Normal 
Inverse Gaussian (NIG), Generalized Hyperbolic (GH) and the Johnson’s repa-
rametrized SU (JSU) distribution; see Ghalanos [28] for details of the distribu-
tions and GARCH-type models considered in this paper. These distributions are 
selected to account for skewness, excess kurtosis and heavy-tailedness in finan-
cial return series. However, it is important to note that assuming a parametric 
distribution for the return innovations may lead to mis-specification errors 
which can compromise the estimate and forecast of volatility. 

The parameters of all GARCH-type models are generally estimated using the 
Quasi-maximum likelihood estimation (QMLE) method. The Quasi-maximum 
likelihood estimator (QMLE) is preferred since, according to Bollerslev and 
Wooldridge [29], it is generally consistent, has a normal limiting distribution 
and provides asymptotic standard errors that are valid under non-normality. 
The selection of the optimal GARCH model is based on three information crite-
ria: Akaike information criterion (AIC), Bayesian information criterion (BIC) 
and Hannan-Quinn information criterion (HQIC). The model with the lowest 
AIC, BIC and HQIC score is assumed to be the most appropriate model with the 
best fit. The purpose of selecting these optimal GARCH-type models is to fore-
cast the one-day-ahead conditional variance (volatility) that is used to estimate 
VaR forecasts. 
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Table 1. The conditional variance of GARCH-type models. 

Model Conditional variance equation Proposed by 

IGARCH ( )2 2 2
1 11t t tσ ω αε α σ− −= + + −  Engle and Bollerslev [30] 

EGARCH ( ) ( )( ) ( )2 2 2
1 1 1 1ln lnt t t t tEσ ω αε γ ε ε β σ− − − −= + + − +  Nelson [31] 

GJR ( )2 2 2 2
1 1 1 10t t t t tIσ ω αε γ ε ε βσ− − − −= + + < +  Glosten et al. [32] 

APARCH ( )1 1 1t t t t

δδ δσ ω α ε γε βσ− − −= + − +  Ding et al. [33] 

CSGARCH ( ) ( )2 2 2
1 1 1 1t t t t t tq r q qσ α β σ− − − −= + + + +   

 2 2
1 1 1t t t tq qω ρ φε σ− − −= + + −  Engle and Lee [34] 

TGARCH ( )1 1 1 1 1t t t t tσ ω ασ ε η ε βσ− − − −= + − +  Zakoian [35] 

AVGARCH ( )( )1 1 2 1 1 2 1t t t t tσ ω ασ ε η η ε η βσ− − − −= + − − − +  Schwert and Seguin [36] 

NGARCH ( )1 1 1t t t t

δδ δ δσ ω ασ ε βσ− − −= + +  Higgins and Bera [37] 

NAGARCH ( )22 2 2
1 1 2 1t t t tσ ω ασ ε η βσ− − −= + − +  Engle and Ng [38] 

FGARCH ( )( )1 2 1 1 2 1t t t t t

δδ δ δσ ω ασ ε η η ε η βσ− − −= + − − − +  Hentschel et al. [39] 

FIGARCH ( )( ) ( )2
01 1d

t tL L Lφ ε α β ν− = + −    Baillie et al. [40] 

3.2. VaR Forecast Using GARCH Models 

Value-at-Risk (or VaR) is a standard risk measure that is commonly used in risk 
management which summarizes the downside risk into a single value. It is de-
fined as the maximum loss expected due to a change in the investment position 
with a given probability over a specific period of time. The VaR forecast for the 
GARCH-type models relies on the one-day-ahead conditional variance forecast, 

2
1tσ +  of the volatility model. To this extent, one-step ahead forecasts of the con-

ditional variance of returns is recursively obtained as:  

( )2 2
1 1ˆ | ,t t tE Fσ σ+ +=                         (3) 

where tF  is the information set at time t, and 2
tσ  is defined as in Table 2. 

The rolling-fixed-window estimation procedure is used to evaluate the 
out-of-sample performance of the GARCH-type models. In each window, the 
parameters of the GARCH-type models are estimated and then used to deter-
mine the one-step-ahead forecasts of the conditional mean, conditional variance 
and standardized residuals. 

For each GARCH-type model, under the assumption of different innovations 
term distribution the one-day-ahead VaR forecast at %α  confidence level is 
obtained as:  

 ( ) ( )1
1 1 1ˆ ˆVaR t t tFα µ α σ−
+ + += +                  (4) 

where ( )1F α−  is the α-quantile of the cumulative distribution function of the 
innovations distribution. All the twelve GARCH-type models proposed in the 
previous section are used calculate the econometric VaR assuming the nine in-
novations distributions for all the cryptocurrencies. 
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Table 2. Descriptive statistics and statistical tests for daily cryptocurrencies returns for the entire sample period starting from 7th 
August 2015 to 1st August 2018. 

 Bitcoin Ethereum Monero Litecoin Dash Ripple Stellar NEM 

Nobs 1090.000 1090.000 1090.000 1090.000 1090.000 1090.000 1090.000 1090.000 

Min −0.202077 −1.373989 −0.291734 −0.391050 −0.243432 −0.601706 −0.333422 −0.430828 

Max 0.223513 0.403457 0.567670 0.518452 0.383096 1.010963 0.704038 1.068486 

Mean 0.003053 0.004617 0.004699 0.002739 0.003789 0.003665 0.004314 0.006469 

Std.Dev 0.040218 0.080835 0.072959 0.058599 0.059552 0.077085 0.086585 0.094524 

Skewness −0.160668 −4.207377 1.023870 1.351149 0.875008 3.091153 2.083472 2.179137 

Kurtosis 4.568298 78.519090 7.087234 13.339778 5.097968 38.634223 14.509124 19.372076 

JB 958.2979 284,299.01 2484.144 8450.867 1326.721 69,798.432 10,394.084 17,981.302 

p−value (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

Skewness Test statistic 

Statistic −3.756248 −98.22221 23.90249 31.54289 20.42727 72.16369 48.63914 50.87247 

p-value (0.00009) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

ADF Test statistics 

Statistic −2.7535 −9.2397 −9.6014 −9.36 −8.8872 −8.343 −8.827 −9.2518 

P-value (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

Ljung-Box Test statistics at various lags 

Q(5) 3.9483 17.086 14.409 4.0676 7.5975 28.37 18.857 22.819 

p-value (0.5569) (0.004339) (0.01321) (0.5397) (0.1799) (0.00001) (0.002044) (0.000366) 

Q(10) 9.4171 23.716 34.91 24.166 16.638 46.097 29.805 29.725 

p-value (0.493) (0.008391) (0.0001294) (0.007172) (0.08277) (1.377e-06) (0.0009219) (0.0009501) 

Q(15) 11.065 27.348 37.383 31.254 21.286 51.782 32.263 29.725 

p-value (0.748) (0.02602) (0.001112) (0.008123) (0.128) (6.138e-06) (0.005928) (0.0009501) 

Q(20) 24.583 43.69 43.322 37.097 38.457 67.26 39.917 45.247 

p-value (0.2178) (0.001655) (0.001853) (0.01139) (0.007783) (5.069e-07) (0.005118) (0.001022) 

ARCH-LM Test statistics at various lags 

LM (5) 76.774 252.35 43.329 40.299 42.939 109.96 189.39 29.864 

p-value (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.00002) 

LM (10) 85.385 144.71 107.36 67.757 67.394 120.83 191.84 32.942 

p-value (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.00028) 

LM(20) 106.63 123.8 124.14 81.364 78.707 123.99 197.94 33.56 

p-value (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.02926) 

3.3. Testing the Accuracy of VaR Forecasts 

The accuracy of the volatility models in predicting VaR is assessed using statis-
tical backtesting methods. The starting point is normally to compare the 
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out-of-sample VaR forecasts with the actual realized returns in the next time pe-
riod and this is summarized in terms of a hit ratio. { }tI  is a sequence of viola-
tions, where it takes the value one if the ex-post loss exceeds the VaR predicted 
at time 1t +  and the value zero otherwise. Mathematically, the hit function 
which is also referred to as the indicator function is defined as:  

( ) ( )
( )

1 1|

1 1|

1 if VaR
0 if VaR

t t t
t

t t t

r
I

r
α

α
α

+ +

+ +

 <=  ≥
                (5) 

where { }1 2, , , Nr r r  is the sequence of daily return, α  is the quantile level of 
coverage defined by its confidence level. 

For a VaR model to be accurate in its predictions, then the average hit ratio or 
the failure rate over the full sample should be equal α  for the ( )1 α− th quan-
tile VaR (i.e., for 97.5% VaR, 2.5%α = ). As expected, the closer the hit ratio is 
to the expected value ( )1 α− , the better the forecasts of the risk model. If the hit 
ratio is greater than the expectation, then the model underestimates the risk; 
with a hit ratio smaller than ( )1 α− , the model overestimates risk. In this study, 
two accuracy measure tests: Kupiec [41] unconditional coverage test and Chris-
toffersen [42] conditional coverage test are used to perform the back-testing of 
the GARCH model for the correct number of exceedances. The unconditional 
coverage test checks whether the violation ratio or failure rate, during the se-
lected time interval, are in accordance with the chosen confidence level. This 
implies that the probability of realizing a VaR violation should be equal to 

100%α × . On the other hand, conditional coverage tests examine whether the 
hits are serially independent of each other over time. 

3.3.1. Unconditional Coverage Test 
Kupiec [41] proposed the unconditional coverage test which is a likelihood ratio 
test for testing the model accuracy. Let 1

T
ttN I

=
= ∑  be the number of observed 

exceedances over a sample period of length, T, i.e., the number of days when 
realized loss exceeds the VaR forecast. The number of exceedances follows a bi-
nomial distribution where the expected failure rate is p̂ N T= . Under the Null 
hypothesis, the probability of failure for each trial ( p̂ ) should be equals to (p). 
The appropriate likelihood ratio statistic is:  

( )
uc

1
LR 2ln

1

T NN

N T N

p p

N N
T T

−

−

 
 − = −
    −    
    

               (6) 

The Kupiec’s unconditional coverage test has a chi-square distribution, 
asymptotically, with one degree of freedom. The test can be employed to test 
whether the sample point estimate is statistically consistent with the VaR mod-
el’s prescribed confidence level. This can reject a model that either overestimates 
or underestimates the true but unobservable VaR, however, it cannot scrutinize 
whether the exceptions are randomly distributed. 
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3.3.2. Conditional Coverage Test 
According to Christoffersen [42], it is important that the VaR violations should 
be spread out over time such that an adequate risk model would not yield VaR 
violation clusters. In order for the VaR forecast model to be accurate, the hit se-
quence has to satisfy the two properties of correct failure rate and independence 
of exceptions. This implies that both the independence and unconditional cov-
erage tests based on the evaluation of interval forecasts must be simultaneously 
considered when comparing GARCH-type models for VaR forecasting. Chris-
toffersen [42] thus proposed a conditional coverage test (LRcc) to jointly test the 
correct unconditional coverage and serial independence. The LRcc test is a joint 
test of these two properties and the corresponding test statistic is the sum of the 
individual test statistics for the properties; i.e., cc uc indLR LR LR= +  when con-
ditioned on the first observation. The LRind test denotes the likelihood ratio sta-
tistic that tests whether exceptions are independent, and the LRuc is defined in 
the previous subsection. Thus, under the null hypothesis of the expected propor-
tion of exceptions equals p and the failure process is independent, the appropri-
ate likelihood ratio test statistic is expressed as follows:  

( )
( ) ( )00 1001 11

cc
01 01 11 11

1
LR 2ln

ˆ ˆ ˆ ˆ1 1

T NN

n nn n

p p

π π π π

− −
 = −
 − − 

            (7) 

where ijn  denotes the number of observations with value i followed by value j 
( ), 0,1i j = , { }1|ij t tP I j T iπ −= = =  ( ), 0,1i j = , ( )01 01 00 01ˆ n n nπ = + , and 

( )11 11 10 11ˆ n n nπ = + . The Christoffersen’s conditional coverage test has an 
asymptotically chi-square distribution, with two degrees of freedom. 

4. Data and Descriptive Statistics 

The sample data used in this empirical study was extracted from  
http://www.investing.com/. Specifically, the data consists of the daily closing 
prices of cryptocurrencies starting from 7th August 2015 until the 1st August 
2018. The full sample data yields a total of 1091 daily observations, including 
weekends since trading in cryptocurrencies is not restricted to business days or 
the trading hours of stock exchanges. A starts date of 7th August 2015 was pur-
posely chosen so that we can analyze eight of the top fifteen cryptocurrencies, 
ranked according to their market capitalization, as of 7th August 2018 (see [3]) 
for the latest rankings of cryptocurrencies by market capitalization. A total of 
eight cryptocurrencies are selected to be part of our sample data: Bitcoin (BTC), 
Ethereum (ETH), Ripple (XRP), Stellar (XLM), Litecoin (LTC), Monero (XMR), 
Dash (DASH) and NEM. The eight are the most popular cryptocurrencies in 
terms of their market capitalization representing about 85% of total market ca-
pitalization as of 7th August 2018 (CoinMarketCap 2018). However, due to the 
non-availability of data, several cryptocurrencies were omitted from our sam-
ple sets such as Bitcoin Cash, EOS, Cardano, IOTA, TRON, LISK, and NEO. 
On the other hand, Tether (USDT) was also eliminated since it did not con-
form to the stylized characteristics of financial time series data. The daily pric-
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es of the crypto currencies are transformed into continuously compounded returns; 
( )1logt t tr P P−= , where tP  is the daily closing cryptocurrency price at time t. 

Figure 1 presents time series plots of daily prices for the eight cryptocurren-
cies. All cryptocurrencies illustrate instances of high price volatility and the 
highest extreme price jumps is recorded in January 2018. The returns plots of 
the nine cryptocurrencies are also presented in Figure 2. The returns are cha-
racterized by patterns of time-varying volatility clustering where periods of high 
(low) volatility are followed by periods of high (low) volatility. The time-varying 
behaviour of cryptocurrencies returns suggests the presence of stylized characte-
ristics normally exhibited by financial time series data. 

The summary descriptive statistics and statistical tests results for the daily re-
turns of each cryptocurrency are presented in Table 2. The statistics include the 
maximum, minimum, mean, standard deviation, skewness, kurtosis, Jarque-Bera 
statistics, Ljung-Box statistics for raw and squared returns. During the sample 
period, the average return for all cryptocurrencies is positive and relatively close 
to zero indicating that future prices tend to increase with time. The sample 
standard deviations indicate high volatility for all cryptocurrencies returns. The 
excess kurtosis values reported indicate that all cryptocurrencies are heavy tailed 

 

 
Figure 1. Daily closing prices of cryptocurrencies (period from August 7, 2015 to August 
1, 2018). 
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Figure 2. Returns plot between August 7, 2015 and January 1, 2019 of nine 
cryptocurrencies. 

 
and exhibit leptokurtic behaviour beyond that of the normal distribution, with 
the most peaked being those of Ethereum and Ripple. Moreover, only Bitcoin 
and Ethereum are negatively skewed while other cryptocurrencies are positively 
skewed. Additionally, the Jarque-Bera statistic confirms that all cryptocurrencies 
are not normally distributed. The Augmented Dickey Fuller (ADF) test results 
reject unit root hypothesis for all cryptocurrencies series, implying that the series 
are assumed to be stationary. Ljung-Box (Q) statistic for raw returns series reject 
the null hypothesis that all correlation coefficients up to lag 20 are equal to zero 
in the majority of cases, except for Bitcoin. Therefore we conclude that some 
return series present some linear dependence. The significant serial correlations 
reported in the squared returns imply that there is non-linear dependence in the 
return series. Finally, the ARCH-LM test rejects the no ARCH effect hypothesis, 
thus indicating the presence of volatility clustering, long memory and a 
GARCH-type specification should be considered in the modelling of cryptocur-
rencies.  

5. Empirical Results and Analysis 

In this study, twelve GARCH-type models: the SGARCH, IGARCH, EGARCH, 
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GJR-GARCH, TGARCH, APARCH, CSGARCH, AVGARCH, NGARCH, 
NAGARCH, FGARCH, and FIGARCH models are utilized to model the condi-
tional volatility and estimate one-step-ahead VaR forecast of the eight crypto-
currencies. Further, two backtesting measures: the conditional and uncondition-
al coverage tests are used to evaluate the out-of-sample VaR forecasts perfor-
mance of the twelve GARCH models. Prior to implementing the comparative 
performance of VaR forecast for the above twelve GARCH models, the fitting of 
the implemented twelve models is explored via the empirical results of the pa-
rameter estimates for the competing models.  

5.1. Parameter Estimates for Fitted GARCH Models 

First, the best fitting ARMA models for the mean components are selected via 
the information criteria: the Akaike Information Criterion (AIC). The ARMA (p, 
q) specification for Bitcoin, Ethereum, Monero, Litecoin, and Dash are assumed 
to be equal to zero, based on the BIC. This indicates that even the AR (1) model 
is not necessary since there is no significant degree of serial autocorrelation in 
cryptocurrencies returns. The most appropriate models for Stellar and NEM are 
MA (1) and MA (2) respectively, while AR (1) is selected for Ripple. For brevity 
in modelling and forecasting the cryptocurrencies volatility, we assume that 
mean component is not significant for all the cryptocurrencies return series. 

The distribution of the innovations term is also an important component in 
modelling a GARCH process. For purposes of selecting the most appropriate 
innovations distribution for all cryptocurrencies, the GARCH (1, 1) model is uti-
lized. The information criteria and log-likelihood results for the fitted GARCH 
(1, 1) model assuming the nine different innovations distributions are reported 
in Table 3. Based on the empirical results, we note that the use of skewed and 
heavy-tailed innovations distributions are justified, as they give better results 
based on the log-likelihood, AIC and BIC information criteria compared to oth-
er innovations distributions like the normal, skewed normal and normal inverse 
Gaussian (NIG) distributions for all cryptocurrencies returns data. Particularly, 
the generalized error distribution (GED) has the highest log-likelihood value, as 
well as the lowest AIC and BIC values respectively among the innovation distri-
butions for Bitcoin and Ethereum. The Johnson’s SU distribution is selected for 
the Litecoin, Dash, Stellar and NEM cryptocurrencies, while the Student-t dis-
tribution and the skewed generalized error distributions are selected for Moreno 
and Ripple cryptocurrencies respectively. 

The most appropriate GARCH-type model is selected from the different spe-
cifications (GARCH, IGARCH, EGARCH, GJRGARCH, APARCH, TGARCH, 
NGARCH, NAGARCH, AVGARCH, FIGARCH and HGARCH) fitted to the 
eight cryptocurrencies with their respective best fitting innovations distribution. 
Table 4 presents the results for three information criteria: Akaike (AIC) and 
Schwartz (BIC) and Hannan-Quinn (HQC) for the fitted GARCH-type models. 
The IGARCH (1, 1) is selected as the most appropriate model for Bitcoin, Mo-
reno and Dash with GED, Student-t and JSU innovations distributions respec-
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tively while CSGARCH (1, 1) model selected for Ethereum and Stellar with GED 
and JSU innovations distributions. The FIGARCH (1, 1) model is selected for 
Ripple and NEM with SGED and JSU innovations distributions. Finally, 
TGARCH (1, 1) model with JSU innovations distribution is selected for Litecoin.  

 
Table 3. The AIC, BIC and LLF values for GARCH (1, 1) model for the entire sample period assuming nine different innovations 
term distributions. 

Error 
Distn 

Norm 
Skewed 
Norm 

Student t 
Skewed 

Student t 
ged sged nig ghyp jsu 

BitCoin 

AIC −3.9038 −3.9076 −4.1193 −4.1189 −4.1373 −4.1380 −4.1395 −4.1412 −4.1316 

BIC −3.8763 −3.8755 −4.0872 −4.0823 −4.1052 −4.1013 −4.1029 −4.1000 −4.0950 

LLF 2133.59 2136.63 2252.02 2252.80 2261.81 2263.19 2264.04 2265.95 2259.75 

Ethereum 

AIC −2.4230 −2.4596 −2.8341 −2.8377 −2.8346 −2.8348 −2.8304 −2.8302 −2.8381 

BIC −2.3955 −2.4275 −2.8020 −2.8010 −2.8025 −2.7982 −2.7938 −2.7889 −2.8014 

LLF 1326.51 1347.48 1551.58 1554.53 1551.87 1552.99 1550.57 1551.43 1554.76 

Monero 

AIC −2.5109 −2.5304 −2.7169 −2.7191 −2.7029 −2.7089 −2.7176 −2.7166 −2.7192 

BIC −2.4834 −2.4984 −2.6848 −2.6824 −2.6708 −2.6723 −2.6809 −2.6754 −2.6825 

LLF 1374.42 1386.09 1487.69 1489.89 1480.09 1484.36 1489.07 1489.54 1489.96 

Litecoin 

AIC −3.0858 −2.3136 −3.7286 −3.7305 −3.7298 −3.7300 −3.7429 −3.7410 −3.7460 

BIC −3.0583 −2.2815 −3.6965 −3.6939 −3.6977 −3.6934 −3.7062 −3.6998 −3.7094 

LLF 1687.77 1267.89 2039.09 2041.13 2039.75 2040.88 2047.87 2047.84 2049.59 

Dash 

AIC −2.9812 −3.0190 −3.1359 −3.1458 −3.1210 −3.1347 −3.1464 −3.1466 −3.1474 

BIC −2.9537 −2.9869 −3.1039 −3.1091 −3.0889 −3.0981 −3.1098 −3.1054 −3.1107 

LLF 1630.75 1652.36 1716.08 1722.45 1707.92 1716.41 1722.79 1723.89 1723.32 

Ripple 

AIC −2.9755 −3.0230 −3.4227 −3.4264 −3.4151 −3.4278 −3.4317 −3.4370 - 

BIC −2.9480 −2.9909 −3.3907 −3.3897 −3.3831 −3.4278 −3.3950 −3.3958 - 

LLF 1627.67 1654.51 1872.39 1875.37 1868.25 1876.17 1878.27 1882.18 - 

Stellar 

AIC −2.4069 −2.4698 −2.7620 −2.7724 −2.7429 −2.7526 −2.7778 −2.7775 −2.7784 

BIC −2.3794 −2.4378 −2.7300 −2.7357 −2.7109 −2.7159 −2.7412 −2.7362 −2.77417 

LLF 1317.78 1353.06 1512.31 1518.94 1501.90 1508.15 1521.92 1522.71 1522.22 

NEM 

AIC −2.1393 −2.1532 −2.3528 −2.3573 −2.3390 −2.3443 −2.3562 −2.3568 −2.3583 

BIC −2.1118 −2.1212 −2.3208 −2.3206 −2.3069 −2.3076 −2.3195 −2.3156 −2.3217 

LLF 1171.94 1180.52 1289.30 1292.71 1281.74 1285.62 1292.12 1293.48 1293.29 
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Table 4. The information criteria values for GARCH-type models fitted over for the sample period with selected innovations 
distributions. 

 
GARCH 

(1, 1) 
EGARCH 

(1, 1) 

GJR- 
GARCH 

(1, 1) 

CSGARCH 
(1, 1) 

APARCH 
(1, 1) 

IGARCH 
(1, 1) 

TGARCH 
(1, 1) 

AVGARCH 
(1, 1) 

NGARCH 
(1, 1) 

NAGARCH 
(1, 1) 

FIGARCH 
(1, 1) 

ALL- 
GARCH 

(1, 1) 

BitCoin 

AIC −4.1379 −4.1480 −4.1415 −4.1360 −4.1458 −4.1399 −4.1465 −4.1471 −4.1433 −4.1422 −4.1417 −4.1454 

BIC −4.1104 −4.1159 −4.1095 −4.0994 −4.1092 −4.1170 −4.1144 −4.1105 −4.1112 −4.1102 −4.1096 −4.1042 

HQC −4.1275 −4.1358 −4.1294 −4.1222 −4.1319 −4.1313 −4.1344 −4.1333 −4.1312 −4.1301 −4.1295 −4.1298 

Ethereum 

AIC −2.8299 −2.8337 −2.8283 −2.8618 −2.8306 −2.8315 −2.8172 −2.8154 −2.8324 −2.8289 −2.8312 −2.8300 

BIC −2.8024 −2.8016 −2.7962 −2.8252 −2.7940 −2.8086 −2.7852 −2.7787 −2.8003 −2.7968 −2.7992 −2.7888 

HQC −2.8195 −2.8215 −2.8161 −2.8480 −2.8168 −2.8228 −2.8051 −2.8015 −2.8202 −2.8167 −2.8191 −2.8144 

Monero 

AIC −2.7141 −2.7122 −2.7150 −2.7105 −2.7132 −2.7158 −2.7082 −2.7172 −2.7124 −2.7191 −2.7137 −2.7176 

BIC −2.6866 −2.6802 −2.6829 −2.6738 −2.6765 −2.6929 −2.6761 −2.6805 −2.6803 −2.6871 −2.6816 −2.6764 

HQC −2.7037 −2.7001 −2.7029 −2.6966 −2.6993 −2.7071 −2.6961 −2.7033 −2.7002 −2.7070 −2.7015 −2.7020 

Litecoin 

AIC −3.7133 −3.7321 −3.7241 −3.7289 −3.7421 −3.7155 −3.7438 −3.7427 −3.7374 −3.7170 −3.7270 −3.7413 

BIC −3.6859 −3.7001 −3.6920 −3.6923 −3.7054 −3.6926 −3.7117 −3.7060 −3.7053 −3.6849 −3.6949 −3.7001 

HQC −3.7029 −3.7200 −3.7120 −3.7151 −3.7282 −3.7069 −3.7317 −3.7288 −3.7253 −3.7048 −3.7149 −3.7257 

Dash 

AIC −3.1483 −3.1495 −3.1476 −3.1553 −3.1463 −3.1493 −3.1456 −3.1437 −3.1477 −3.1484 −3.1567 −3.1450 

BIC −3.1209 −3.1174 −3.1155 −3.1186 −3.1097 −3.1264 −3.1135 −3.1071 −3.1156 −3.1164 −3.1246 −3.1037 

HQC −3.1379 −3.1374 −3.1355 −3.1414 −3.1325 −3.1406 −3.1334 −3.1299 −3.1356 −3.1363 −3.1445 −3.1294 

Ripple 

AIC −3.4161 −3.4223 −3.4131 −3.4007 - −3.4145 −1.3035 −1.2016 −3.4390 −3.4273 −3.4629 −3.4298 

BIC −3.3794 −3.3811 −3.3719 −3.3549 - −3.3824 −1.2623 −1.1558 −3.3978 −3.3861 −3.4217 −3.3794 

HQC −3.4022 −3.4067 −3.3975 −3.3834 - −3.4024 −1.2879 −1.1843 −3.4234 −3.4117 −3.4473 −3.4107 

Stellar 

AIC −2.7801 −2.7847 −2.7784 −2.8172 −2.7864 −2.7820 −2.7881 −2.7883 −2.7858 −2.7813 −2.8104 −2.7864 

BIC −2.7480 −2.7480 −2.7417 −2.7759 −2.7452 −2.7545 −2.7515 −2.7470 −2.7492 −2.7447 −2.7737 −2.7406 

HQC −2.7679 −2.7708 −2.7645 −2.8016 −2.7708 −2.7716 −2.7743 −2.7727 −2.7719 −2.7675 −2.7965 −2.7691 

NEM 

AIC −2.3583 −2.3686 −2.3566 −2.3694 −2.3718 −2.3587 −2.3708 −2.3700 −2.3702 −2.3578 −2.3716 −2.3717 

BIC −2.3217 −2.3274 −2.3154 −2.3236 −2.3260 −2.3266 −2.3296 −2.3242 −2.3289 −2.3166 −2.3304 −2.3213 

HQC −2.3445 −2.3530 −2.3410 −2.3520 −2.3545 −2.3466 −2.3552 −2.3526 −2.3546 −2.3422 −2.3560 −2.3527 
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The parameter estimates for the most appropriate GARCH-type model se-
lected for each cryptocurrencies together with the specifications tests of residual 
autocorrelation and conditional heteroscedasticity are given in Table 5. The 
empirical results indicate that the estimated parameters are significant in most 
cases for all cryptocurrencies. The specification tests carried out after estimation 
failed to capture serial correlation and there are no ARCH effects remaining in 
the residuals, suggesting that selected GARCH-type models are adequate for the 
data. The ARCH-LM test applied to residuals indicates that no ARCH effects are 
present in the residuals. Ljung-Box test indicates that neither the non-linear de-
pendence nor the long memory dependence is present in residual series at 95% 
confidence level. The Jarque-Bera statistic also indicates that residuals are not 
normally distributed.  

 
Table 5. Parameter estimation results for selected optimal GARCH-type models. 

 Bitcoin Ethereum Monero Litecoin Dash Ripple Stellar NEM 

α 0.001958 0.001771 0.001546 0.001203 0.002788 0:001548 0:000520 0.001481 

 (0.024787) (0.041057) (0.378756) (0.104764) (0.050867) (0.011039) (0.676378) (0.438475) 

ω 0.000013 0.000220 0.000397 0.000580 0.000101 0.000031 0.000000 0.000153 

 (0.00028) (0.03340) (0.004456) (0.048486) (0.026018) (0.221990) (0.361084) (0.150275) 

α1 0.145588 0.035488 0.260066 0.209287 0.171916 0.226872 0.26754 0.374642 

 (0.00000) (0.00000) (0.00000) (0.000002) (0.000050) (0.001339) (0.000001) (0.042643) 

β1 0.854412 0.944190 0.739934 0.868738 0.828084 0.103973 0.484999 0.896461 

 (NA) (0.00000) (NA) (0.00000) (NA) (0.000066) (0.000002) (0.00000) 

γ - - - −0.312124 -    

    (0.011762)     

d - - - - - 0.302758  1.000000 

      (0.00000)  (0.002696) 

δ - 0.999516     0.999936  

  (0.00000)     (0.00000)  

φ - 0.271006 - - -  0.023251  

  (0.000014)     (0.00000)  

α1 + β1 1 0.979678 1 1.078025 1 0.33079326 0.752539 1.645745 

Skew 0.969862 1.092519 1.091389 0.116474 0.372318 1.116250 0.316974 0.176591 

 (0.00000) (0.00000) (0.00000) (0.012925) (0.000334) (0.00000) (0.000023) (0.023133) 

Shape 0.923403 0.992872 3.336433 0.928236 1.391832 0.807481 1.172223 1.237510 

 (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) 

ARCH-LM test for heteroscedasticity 

Statistic 2.376 2.463 3.5232 0.16112 0.40051 0.19493 0.39728 0.7637 

 (0.6381) (0.6201) (0.4206) (0.9982) (0.9865) (0.9972) (0.9867) (0.9487) 
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5.2. Backtesting Results for GARCH Models 

The accuracy of the different fitted GARCH-type models considered in the study 
is assessed by using exceedances percentages at 95%, 97.5%, and 99% confidence 
levels. The exceedances involve counting the number of actual realized returns 
that exceed the VaR forecast, and comparing this number with the hypothetical-
ly expected number of exceedances for a given probability. Obviously, the closer 
the observed number of exceedances is to the hypothetically expected number, 
the more preferable the GARCH model is for estimating accurate forecasts. 

Table 6 presents results of exceedances percentages obtained from fitted 
GARCH-type models at different levels of significance in estimating 
one-day-ahead VaR forecasts. Generally, we observe that the violation rates are 
exceptionally high at 95% and 97.5% levels compared to the 99% level. All the 
GARCH models produce a violation rate above the expected exceedances rates at 
all levels of significance for all the cryptocurrencies. Based on the proximity of the 
actual violation ratio to the expected violation ratio, different GARCH-type mod-
els give the best fit for different cryptocurrencies at different levels. Specifically, at 
95% VaR level, among all of the GARCH type models used for forecasting, the 
APARCH (1, 1) model gives the best fit for Bitcoin and Ethereum; the 
NAGARCH (1, 1) model gives the best fit for Moreno; NGARCH (1, 1) model 
gives the best fit for Litecoin and Stellar; CSGARCH (1, 1) model gives the best fit 
for Dash and NEM; the IGARCH (1, 1) model gives the best fit for Ripple. 

For the 99% VaR forecasts, the violation rates are all relatively close to the ex-
pected exceedances rates for most of the GARCH-type models and all crypto-
currencies. Some of the GARCH-models selected at 95% level still perform well 
at 99% level. The APARCH (1, 1) model still gives the best fit for Bitcoin and 
Ethereum; EGARCH (1, 1) model for Moreno; CSGARCH (1, 1) for Dash. Lite-
coin, Stellar and also Bitcoin have several best fitting models including; GARCH 
(1, 1), CSGARCH (1, 1), AVGARCH (1, 1), APARCH (1, 1) and TGARCH (1, 1). 
Finally, EGARCH (1, 1) and CSGARCH (1, 1) give the best fit for NEM and 
GARCH (1, 1) and GJR (1, 1) for Ripple. 

We also decided to backtest the GARCH-type model analyzed, since every 
model has a different distribution of residuals. The forecasting and backtesting 
procedure is implemented using a fixed-rolling-window scheme. This approach 
allows us to perform a rolling estimation and forecasting of the GARCH-type 
model, returning the VaR at specified levels of significance. Notably, it generates 
the distributional forecast parameters necessary to compute any required meas-
ure on the forecast density. The parameters of the fitted GARCH-type models 
are estimated over a window of length 700 observations and are used to predict 
the conditional variance process for the following day. Each time the window is 
shifted forward, the daily returns of the following day are added, the oldest daily 
returns are dropped from the observation window and the parameters are 
re-estimated over the new period in order to compute the next set of forecasts. 
This procedure is iterated until the end of the dataset for a total of 300 one-step 
ahead forecasts. 
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Table 6. Violation ratios for VaR estimation of the cryptocurrencies data. 

Model 
GARCH 

(1, 1) 
EGARCH 

(1, 1) 
GJR-GARC

H (1, 1) 
CS-GARC

H (1, 1) 
APARCH 

(1, 1) 
IGARCH 

(1, 1) 
TGARCH 

(1, 1) 

AV- 
GARCH 

(1, 1) 

NGARCH 
(1, 1) 

NA-GARC
H (1, 1) 

ALL-GAR
CH (1, 1) 

95% level of significance 

Bitcoin 8.0% 6.7% 7.3% 7.7% 6.3% 8.0% 6.7% 7.3% 6.3% 7.3% 7.0% 

Ethereum 7.7% 7.0% 7.3% 8.7% 7.0% 7.3% 7.0% 7.7% 7.3% 7.3% 8.0% 

Monero 9.0% 9.3% 9.0% 9.3% 9.3% 9.0% 9.0% 9.0% 9.0% 8.7% -- 

Litecoin 10.3% 7.3% 10.0% 9.0% 7.7% 10.3% 8.0% 7.0% 4.7% 10.0% 7.0% 

Dash 8.0% 8.0% 7.3% 7.0% 7.3% 8.0% 8.0% 8.0% 7.7% -- 8.3% 

Ripple 7.0% 6.0% 7.3% 6.7% 6.7% 5.3% 28% 28% 6.0% 6.7% 8.3% 

Stellar 7.0% 7.0% 7.3% -- 6.0% 7.0% 6.7% 6.7% 5.7% 7.3% 6.0% 

NEM 9.0% 9.0% 8.7% 8.0% 9.3% 8.7% 9.3% 9.0% 9.0% 9.0% 10.0% 

97.5% level of significance 

Bitcoin 3.3% 2.7% 4.0% 4.0% 2.7% 3.3% 2.3% 2.7% 2.0% 4.7% 2.7% 

Ethereum 4.0% 3.7% 4.0% 4.3% 3.7% 4.0% 3.3% 3.7% 3.3% 4.0% 3.3% 

Monero 5.3% 5.3% 5.3% 5.3% 5.7% 5.3% 5.0% 6.0% 5.3% 5.0% -- 

Litecoin 3.7% 2.7% 4.7% 3.7% 1.7% 3.7% 3.0% 2.3% 0.7% 6.7% 3.0% 

Dash 5.3% 4.3% 5.3% 5.0% 5.7% 5.3% 4.7% 6.0% 5.7% -- 6.3% 

Ripple 3.3% 3.3% 3.3% 3.3% 3.0% 2.3% 24.3% 24.7% 2.7% 3.0% 4.0% 

Stellar 3.3% 3.0% 3.3% -- 2.7% 3.3% 2.7% 2.3% 2.7% 4.3% 2.3% 

NEM 4.3% 3.7% 4.3% 3.3% 3.7% 3.3% 3.7% 4.0% 3.0% 4.3% 4.7% 

99% level of significance 

Bitcoin 1.3% 1.0% 1.3% 1.0% 1.0% 1.3% 1.0% 1.0% 1.0% 1.7% 1.0% 

Ethereum 1.7% 1.7% 1.7% 1.7% 1.3% 1.7% 1.3% 1.7% 1.7% 1.7% 1.7% 

Monero 1.3% 1.0% 1.3% 1.3% 1.3% 1.3% 0.7% 2.0% 1.3% 1.7% -- 

Litecoin 1.0% 0.7% 1.7% 1.0% 1.0% 1.0% 1.0% 1.0% 0.3% 2.7% 1.7% 

Dash 1.7% 2.0% 1.7% 1.3% 2.7% 1.7% 2.0% 2.7% 3.3% -- 4.0% 

Ripple 1.0% 0.7% 1.0% 0.7% 0.7% 0.3% 19% 19% 0.7% 1.0% 1.3% 

Stellar 2.0% 1.3% 2.0% -- 1.3% 2.0% 1.7% 1.3% 1.7% 2.3% 1.3% 

NEM 1.7% 1.0% 1.7% 1.0% 1.3% 1.7% 0.7% 1.7% 1.7% 1.7% 2.0% 

 
The Kupiec’s unconditional and Christoffersen’s conditional coverage Val-

ue-at-Risk exceedances tests are utilized to assess the VaR forecast performance 
of the twelve GARCH-type models: the SGARCH, IGARCH, EGARCH, 
GJR-GARCH, TGARCH, APARCH, CSGARCH, AVGARCH, NGARCH, 
NAGARCH, FGARCH, and the FIGARCH models at 95%, 97.5%, and 99% con-
fidence levels. In principle, the GARCH-type model with the higher number of 
passes among the two back-testing procedures bear a better performance than 
the GARCH-type model with the less number that passes. The most appropriate 
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GARCH-type model according to conditional and unconditional coverage tests 
is defined as the one with the highest p-value amongst all the fitted models for 
all cryptocurrencies. 

Table 7 presents the results of the Kupiec unconditional (LRuc) test and 
Christoffersen conditional (LRcc) test for twelve GARCH-type models fitted to 
the cryptocurrencies under 95%, 97.5%, and 99% confidence level. p-values of 
the unconditional coverage and coverage tests are presented in parentheses. Be-
sides the hypothetical expected percentage of exceedances for the 5%, 2.5%, and 
1% level of significance, the percentage of actual exceedances is presented for se-
lected quantiles associated with the distribution. In addition, regarding a speci-
fied GARCH-type model, the total number of times that a cryptocurrency pass 
the LRuc and LRcc types of back-testing are counted respectively at different levels  
 

Table 7. The out-of-sample VaR forecasts performance based on Kupiec and Christoffersen accuracy tests. 

α  
GARCH 

(1, 1) 
EGARCH 

(1, 1) 
GJR-GARCH 

(1, 1) 
CS-GARCH 

(1, 1) 
APARCH 

(1, 1) 
IGARCH 

(1, 1) 
TGARCH 

(1, 1) 
AV-GARCH 

(1, 1) 
NGARCH 

(1, 1) 
NAGARCH 

(1, 1) 
ALL-GARCH 

(1, 1) 

Bitcoin             

1% LRUC 0.305 0.000 0.305 0.000 0.000 0.305 0.000 0.000 0.000 1.122 0.000 

 p-value (0.581) (1.000) (0.581) (1.000) (1.000) (0.581) (1.000) (1.000) (1.000) (0.290) (1.000) 

 LRCC 0.413 0.061 0.413 0.061 0.061 0.413 0.061 0.061 0.061 1.292 0.061 

 p-value (0.813) (0.970) (0.813) (0.970) (0.970) (0.813) (0.970) (0.970) (0.970) (0.524) (0.970) 

2.5% LRUC 0.775 0.033 2.350 2.350 0.033 0.775 0.035 0.033 0.330 4.622 0.289 

 p-value (0.379) (0.855) (0.125) (0.125) (0.855) (0.379) (0.852) (0.855) (0.566) (0.032) (0.591) 

 LRCC 1.467 0.473 3.353 3.353 0.473 1.467 0.371 0.473 0.576 4.796 0.848 

 p-value (0.480) (0.789) (0.187) (0.187) (0.789) (0.480) (0.831) (0.789) (0.750) (0.091) (0.654) 

5% LRUC 4.847 1.596 3.025 3.889 1.039 4.847 1.596 3.025 1.039 3.025 2.259 

 p-value (0.028) (0.207) (0.082) (0.049) (0.308) (0.028) (0.207) (0.082) (0.308) (0.082) (0.133) 

 LRCC 5.583 1.702 3.1169 3.951 1.082 5.583 1.666 3.169 3.479 3.169 2.406 

 p-value (0.061) (0.427) (0.205) (0.139) (0.582) (0.061) (0.435) (0.205) (0.176) (0.205) (0.300) 

Ethereum             

1 LRUC 1.122 1.122 1.122 1.122 0.305 1.122 0.305 1.122 1.122 1.122 1.122 

 p-value (0.290) (0.290) (0.290) (0.290) (0.581) (0.290) (0.581) (0.290) (0.290) (0.290) (0.290) 

 LRCC 1.292 1.292 1.292 1.292 0.413 1.292 0.413 1.292 1.292 1.292 1.292 

 p-value (0.524) (0.524) (0.524) (0.524) (0.813) (0.524) (0.813) (0.524) (0.524) (0.524) (0.524) 

2.5% LRUC 2.350 1.468 2.350 3.405 1.468 2.350 0.775 1.468 0.775 2.350 0.775 

 p-value (0.125) (0.226) (0.125) (0.065) (0.226) (0.125) (0.379) (0.226) (0.379) (0.125) (0.379) 

 LRCC 3.353 2.308 3.358 4.588 2.308 3.353 1.467 2.308 1.467 3.358 1.467 

 p-value (0.187) (0.315) (0.187) (0.101) (0.315) (0.187) (0.480) (0.315) (0.480) (0.187) (0.480) 

5% LRUC 3.889 2.259 3.015 7.033 2.259 3.025 2.259 3.889 3.025 3.025 4.847 

 p-value (0.049) (0.133) (0.082) (0.008) (0.133) (0.082) (0.133) (0.049) (0.082) (0.082) (0.028) 

 LRCC 4.747 3.723 4.163 7.300 3.723 4.163 3.723 4.884 4.163 4.163 5.583 

 p-value (0.093) (0.155) (0.125) (0.026) (0.155) (0.125) (0.155) (0.087) (0.125) (0.125) (0.061) 
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Monero             

1% LRUC 0.305 0.000 0.305 0.305 0.305 0.305 0.382 2.348 0.305 1.122 - 

 p-value (0.581) (1.000) (0.581) (0.581) (0.581) (0.581) (0.537) (0.125) (0.581) (0.290) - 

 LRCC 0.413 0.061 0.413 0.413 0.413 0.413 0.408 2.594 0.413 1.292 - 

 p-value (-813) (0.970) (0.813) (0.813) (0.813) (0.813) (0.815) (0.273) (0.813) (0.524) - 

2.5% LRUC 7.495 7.495 7.495 7.495 9.134 7.495 5.988 10.898 7.495 5.988 - 

 p-value (0.006) (0.006) (0.006) (0.006) (0.003) (0.006) (0.014) (0.001) (0.006) (0.014) - 

 LRCC 7.521 7.521 7.521 7.521 9.136 7.521 7.524 10.906 7.521 6.071 - 

 p-value (0.023) (0.023) (0.023) (0.023) (0.010) (0.023) (0.023) (0.004) (0.023) (0.048) - 

5% LRUC 8.253 9.555 8.253 9.555 9.555 8.253 8.253 8.253 8.253 7.033 - 

 p-value (0.004) (0.002) (0.004) (0.002) (0.002) (0.004) (0.004) (0.004) (0.004) (0.008)  

 LRCC 9.397 10.949 9.397 10.949 10.949 9.397 9.397 9.397 9.397 7.949 - 

 p-value (0.009) (0.004) (0.009) (0.004) (0.004) (0.009) (0.009) (0.009) (0.009) (0.019) - 

Litecoin             

1% LRUC 0.000 0.382 1.122 0.000 0.000 0.000 0.000 0.000 1.816 5.778 1.122 

 p-value (1.000) (0.537) (0.290) (1.000) (1.000) (1.000) (1.000) (1.000) (0.178) (0.016) (0.290) 

 LRCC 0.061 0.408 1.292 0.061 0.061 0.061 0.061 0.061 0.1.823 7.456 4.660 

 p-value (0.970) (0.815) (0.524) (0.970) (0.970) (0.970) (0.970) (0.970) (0.402) (0.024) (0.099) 

2.5% LRUC 1.468 0.033 4.622 1.468 0.967 1.468 0.289 0.035 5.816 14.775 0.289 

 p-value (.226) (0.855) (0.032) (0.226) (0.566) (0.315) (0.591) (0.852) (0.016) (0.000) (0.591) 

5% LRUC 13.924 3.025 13.393 8.253 3.889 13.924 4.847 2.259 0.072 12.393 2.259 

 p-value (0.000) (0.082) (0.000) (0.004) (0.049) (0.000) (0.028) (0.000) (0.789) (0.000) (0.133) 

 LRCC 14.565 4.163 12.856 8.353 4.747 14.565 5.469 3.723 0.246 12.765 5.898 

 p-value (0.001) (0.125) (0.002) (0.015) (0.093) (0.001) (0.065) (0.155) (0.884) (0.002) (0.052) 

Dash             

1% LRUC 1.122 2.348 1.122 0.305 5.778 1.122 2.348 5.778 10.246 - 15.547 

 p-value (0.290) (0.125) (0.290) (0.581) (0.016) (0.290) (0.125) (0.016) (0.001) - (0.000) 

 LRCC 1.292 2.594 1.292 0.386 7.456 1.292 2.594 6.218 11.201 - 16.019 

 p-value (0.525) (0,273) (0.524) (0.824) (0.024) (0.524) (0.273) (0.045) (0.004) - (0.000) 

2.5% LRUC 7.495 3.405 7.495 5.988 9.134 7.495 4.622 10.88 9.134 - 12.781 

 p-value (0.006) (0.065) (0.006) (0.014) (0.003) (0.006) (0.032) (0.001) (0.003) - (0.000) 

 LRCC 7.546 3.490 7.546 6.113 9.144 7.546 4.857 10.899 9.44 - 12.802 

 p-value (0.023) (0.150) (0.023) (0.047) (0.010) (0.023) (0.088) (0.004) (0.010) - (0.002) 

5% LRUC 4.847 4.847 3.025 2.259 3.025 4.847 4.847 4.847 3.889 - 5.896 

 p-value (0.028) (0.028) (0.082) (0.133) (0.082) (0.028) (0.028) (0.028) (0.049) - (0.015) 

 LRCC 4.862 4.862 3.169 2.406 3.276 4.862 4.862 4.862 3.951 - 5.896 

 p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) - (0.052) 
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Ripple             

1% LRUC 0.000 0.382 0.000 0.382 0.382 1.816 238.14 238.14 0.382 0.000 0.305 

 p-value (1.000) (0.537) (1.000) (0.537) (0.537) (0.178) (0.000) (0.000) (0.537) (1.000) (0.581) 

 LRCC 0.061 0.408 0.061 0.408 0.408 1.823 238.16 238.16 0.408 0.061 0.413 

 p-value (0.970) (0.815) (0.970) (0.815) (0.402) (0.000) (0.000) (0.815) (0.970) (0.813)  

2.5% LRUC 0.775 0.775 0.775 0.775 0.289 0.035 217.14 222.21 0.033 0.289 2.350 

 p-value (0.379) (0.379) (0.379) (0.379) (0.591) (0.852) (0.000) (0.000) (0.855) (0.591) (0.125) 

 LRCC 1.467 1.467 1.467 1.467 0.848 0.371 217.71 223.03 0.473 0.848 2.822 

 p-value (0.480) (0.480) (0.480) (0.480) (0.654) (0.831) (0.000) (0.000) (0.789) (0.654) (0.244) 

5 LRUC 2.259 0.595 3.025 1.596 1.596 0.069 169.67 169.67 0.595 1.596 5.896 

 p-value (0.133) (0.440) (0.082) (0.207) (0.207) (0.793) (0.000) (0.000) (0.440) (0.207) (0.015) 

 LRCC 2.455 2.903 3.338 4.465 4.465 1.879 169.71 169.71 2.903 4.465 6.709 

 p-value (0.293) (0.234) (0.188) (0.107) (0.107) (0.391) (0.000) (0.000) (0.234) (0.107) (0.035) 

Stellar             

1% LRUC 2.348 0.305 2.348 - 0.305 2.348 1.122 0.305 1.122 3.916 0.305 

 p-value (0.125) (0.581) (0.125) - (0.581) (0.125) (0.290) (0.581) (0.290) (0.048) (0.581) 

 LRCC 2.594 0.413 2.594 - 0.413 2.594 1.292 0.413 1.292 4.252 0.413 

 p-value (0.273) (0.813) (0.273) - (0.813) (0.273) (0.524) (0.813) (0.524) (0.119) (0.813) 

2.5% LRUC 0.775 0.289 0.775 - 0.033 0.775 0.033 0.035 0.033 3.405 0.035 

 p-value (0.379) (0.591) (0.379) - (0.855) (0.379) (0.855) (0.852) (0.855) (0.065) (0.852) 

 LRCC 1.467 0.848 1.467 - 0.473 1.467 0.473 0.371 0.473 4.588 0.371 

 p-value (0.480) (0.654) (0.480) - (0.789) (0.480) (0.789) (0.831) (0.789) (0.101) (0.831) 

5% LRUC 2.259 2.259 3.205 - 0.595 2.259 1.596 1.596 0.270 3.025 0.595 

 p-value (0.133) (0.133) (0.082) - (0.440) (0.133) (0.207) (0.207) (0.604) (0.082) (0.440) 

 LRCC 2.455 2.455 3.338 - 2.903 2.455 4.465 1.702 2.321 3.123 0.603 

 p-value (0.293) (0.293) (0.188) - (0.234) (0.293) (0.107) (0.427) (0.313) (0.210) (0.740) 

NEM             

1% LRUC 0.000 1.122 0.000 0.305 1.122 0.382 1.122 1.122 1.122 1.122 2.348 

 p-value (1.000) (0.290) (1.000) (0.581) (0.290) (0.537) (0.290) (0.290) (0.290) (0.290) (0.125) 

 LRCC 0.06 1.292 0.061 0.413 1.292 0.408 1.292 1.292 1.292 1.292 2.594 

 p-value (0.970) (0.524) (0.970) (0.813) (0.524) (0.815) (0.524) (0.524) (0.524) (0.524) (0.273) 

2.5% LRUC 3.405 1.468 3.405 0.775 1.468 0.775 1.468 2.350 0.289 3.405 4.622 

 p-value (0.065) (0.226) (0.065) (0.379) (0.226) (0.379) (0.226) (0.125) (0.591) (0.065) (0.032) 

 LRCC 4.588 2.308 4.588 1.467 2.308 1.467 2.308 3.353 0.848 4.588 5.998 

 p-value (0.101) (0.315) (0.101) (0.480) (0.315) (0.480) (0.315) (0.187) (0.654) (0.101) (0.050) 

5% LRUC 8.253 8.253 7.033 4.847 9.555 7.033 9.555 8.253 8.253 8.253 12.393 

 p-value (0.004) (0.004) (0.008) (0.028) (0.002) (0.008) (0.002) (0.004) (0.004) (0.004) (0.000) 

 LRCC 8.353 8.353 7.070 5.382 9.748 7.070 9.748 8.353 8.353 8.353 12.293 

 p-value (0.015) (0.015) (0.029) (0.068) (0.008) (0.029) (0.008) (0.015) (0.015) (0.015) (0.002) 
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of significance. For example, regarding the first cryptocurrency (Bitcoin) in Ta-
ble 7, the APARCH (1, 1) model pass both the LRuc and LRcc test at 95%, 97.5% 
and 99% confidence levels. While the EGARCH (1, 1) and AVGARCH (1, 1) 
pass the LRuc test at only 97.5% and 99% confidence levels. Hence, the APARCH 
(1, 1) model has the highest number of passes and is therefore considered to be 
the most appropriate model in forecasting VaR for the Bitcoin. In relation to the 
other seven cryptocurrencies, the results are summarized as follows; the 
APARCH (1, 1) and TGARCH (1, 1) models have the highest number of passes 
for Ethereum; NAGARCH (1, 1) model for Moreno; NGARCH (1, 1) for Lite-
coin; CSGARCH (1, 1) for Dash, Ripple, and NEM. Finally, APARCH (1, 1) for 
Stellar. Both the LRuc and LRcc coverage tests recommend the same GARCH-type 
models in most of the cases. These results demonstrate that the asymmetric 
GARCH-type models mostly have better VaR forecast performance for all cryp-
tocurrencies especially at 99% level of significance and are also consistent with 
those found in the failure rate performance. Moreover, the fact that more 
GARCH-type models pass the LRcc test for 99% VaR than for 95% VaR can be 
explained by the independence test where a smaller number of exceedances 
makes it easier not to occur after each other. 

Finally, the VaR forecast performance of GARCH-type models is greatly de-
pendent on the GARCH-type specification, with most GARCH models per-
forming fairly better at the 95% level of significance. The p-values for both con-
ditional and unconditional coverage tests are relatively low for most of the 
GARCH models, with the TGARCH and AVGARCH models showing among 
the lowest probability values. Generally, the conditional variance component of 
the GARCH-type specification plays a significant role since it provides models 
with a long memory and a more flexible lag structure.  

6. Conclusions 

Cryptocurrencies are relatively new and innovative investment assets that are 
characterized by high volatility and are uncorrelated with traditional financial 
assets such as stocks, currencies and bonds. In this paper, the focus is on 
modelling the volatility dynamics and out-of-sample forecasting performance of 
several GARCH-type models for cryptocurrency returns. Specifically, we have 
considered twelve symmetric and asymmetric GARCH processes, to evaluate 
the out-of-sample VaR forecasting performance of the eight major cryptocur-
rencies by market capitalization. This is implemented under the assumption 
that the innovations distributions of cryptocurrencies returns are skewed, 
heavy-tailed and leptokurtic. The out-of-sample VaR forecast performance of 
the GARCH-type specification is evaluated using by means of backtesting using 
conditional and unconditional coverage tests. 

The empirical results of the study can be summarized as follows. Firstly, in-
novations distributions that capture skewness, kurtosis and heavy tails constitute 
excellent tools in modelling distribution of cryptocurrencies returns. The skewed 
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versions of Student-t, GED and hyperbolic distributions for return innovations 
confirm their predominance over the alternatives in terms of better predictive 
ability. Secondly, the GARCH-type volatility models combined with a skewed 
distribution of return innovations, like the skewed t-Student or the Skewed-GED, 
provide acceptable VaR forecasts. While the results do not guarantee a 
straightforward preference between GARCH-type models, the asymmetric 
GARCH models with long memory property with skewed and heavy-tailed in-
novations distributions demonstrate better overall performance for all crypto-
currencies. Finally, regarding the accuracy tests, the VaR forecast performance 
comparison results vary with the cryptocurrencies. Given the high volatility dy-
namics present in all the cryptocurrencies, investors need to be cautious about 
their investments decisions in any cryptocurrency while investment managers 
should select asymmetric GARCH-type models with a long memory to forecast 
the VaR of cryptocurrencies. 
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