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Abstract 
 
The fracture toughness, the driving force and the fracture energy for an infinite plate with a fractal crack are 
investigated in the fractal space in this work. The perimeter-area relation is adopted to derive the transforma-
tion rule between damage variables in the fractal space and Euclidean space. A plasticity yield criterion is 
introduced and a damage variable tensor is decomposed into tensile and compressive components to describe 
the distinct behaviors in tension and compression. A plastic damage constitutive model for concrete in the 
Euclidean space is developed and generalized to fractal case according to the transformation rule of damage 
variables. Numerical calculations of the present model with and without fractal are conducted and compared 
with experimental data to verify the efficiency of this model and show the necessity of considering the fractal 
effect in the constitutive model of concrete. The structural response and mesh sensitivity of a notched unre-
inforced concrete beam under 3-point bending test are theoretical studied and show good agreement with the 
experimental data. 
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1. Introduction 

Concrete has been widely used in civil engineering for its 
good in-situ casting and molding abilities. As a quasi- 
brittle material, the fracture behavior of concrete receives 
much of researchers’ concerns. Though classic fracture 
mechanics which is based on the assumption of smooth 
cracking in materials can analyze concrete properties and 
meet the need of structure design in a certain extent, no 
advance is made to explain the failure mechanism from 
the change of the concrete internal structure. The difficulty 
mentioned above has a hindering effect for researchers to 
improve the mechanical property of concrete. 

Fractal geometry is established by Mandelbrot in 
1970s [1], which plays an important role in the develop-
ment of fracture mechanics theory. Researches show that 
the fracture zone of metal, rock and concrete has fractal 
characteristics [2-4]. This leads a widely use of fractal 
geometry in many fields of material science, for in-
stances, the Sierpinski carpet was adopted by Carpinteri 
et al. [5] to simulate the composition of concrete cross 
section, and the fractal effect was also introduced into 
the cohesive crack model. Another remarkable applica-
tion of fractal geometry is to describe the roughness of 

cracks quantitatively. Saouma et al. [6] and Issa et al. [7] 
investigated the crack profiles of concrete through tests 
and pointed out that cracks in concrete have an average 
fractal dimension of 1.1. Meanwhile, Issa et al. [7] ana-
lyzed the fracture surface of concrete and found its frac-
tal dimension is about 2.1 to 2.3. 

Studies on the damage of concrete point out that the 
propagation micro defects, i.e. microvoids and micro-
cracks, etc, is the mainly cause of the macro fracture of 
materials. Based on this fact, a new kind of constitutive 
model for concrete, called the damage constitutive model, 
is developed within the framework of continuum damage 
mechanics. In this model, the choice of damage variable 
is a key to control the effectiveness and performance. 
Because of the heterogeneity of concrete, definition of 
the damage variable still remains at the state that the 
change of material macro property, such as elastic 
modulus and stress, are used to reflect the development 
of damage indirectly, and no direct relation is set with 
the intrinsic deflects. As the progress in studying fractal 
phenomena, some researchers try to explore the damage 
growth by means of fractal geometry. Zhao [8] defined a 
damage variable as a function of the area of fracture sur-
face, and proposed a new damage constitutive model for 
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rock in which the fractal effect was taken into account; 
Guarracino [9] gave out a damage variable as the ratio of 
the porous and REV (or the representative elementary 
volume) volume fraction of materials and presented a 
fractal constitutive model for rock. 

In this work, the fracture behaviors of a material with 
fractal cracks are investigated by using fractal geometry. 
Theoretical expressions of the fracture toughness, the 
driving force and the fracture energy is derived conse-
quently. The transformation rule of a fractal damage va-
riable in the fractal space and a apparent damage variable 
in the Euclidean space is obtained by adopting the pe-
rimeter-area relation. This rule is introduced into a new 
plastic damage constitutive model of concrete presented 
in this research. A notched plain concrete beam under 
3-point bending test is simulated to verify the efficiency 
of the model. 
 
2. Fracture Parameters in the Fractal Space 
 
2.1. Simplification of Fracture Zone 
 
Figure 1 illustrates an infinite plate with a fractal cut in 
uniaxial tension. The cut releases the stress in a fracture 
domain, whose shape can be approximated as an ellipse 
[10]. A standard Koch fractal curve is employed to con-
struct the boundary of the crack, see Figure 2. n denotes 
the construction step. Keep the area of frac 
ture zone as a constant of 2

0a , then the fractal dimen-

sion D of the crack is independent on the yardstick 

03 n a   , where η is a shape parameter and η=2π 

when smooth cracking. 
 
2.2. Critical Cracking Stress 
 
According to the fractal theory [1], the real length 2a and 
the apparent length (projected to the axial) 2a0 of the 
crack has the following relation: 

1
0
D Da a                      (1) 

The surface energy of the fracture surface is: 
 

 
 

Figure 1. A fractal crack in the infinite plate. 

 
 

Figure 2. Construction of the crack boundary with a stan-
dard Koch fractal curve. 

 
1

0( ) 4 4 D Da ta t a                   (2) 

where t is the plate thickness. The perimeter C of the 
fracture zone is: 

1
04 4 D DC a a                     (3) 

Thus, one gets the zone area A as follows by adopting 
the perimeter-area relation 

   
2 2 42

2 2
0 02

D

D DDA a m C m a   


           (4) 

where the proportional coefficient m is: 
42 Dm                      (5) 

Therefore, the strain energy released during the crack-
ing process can be written as: 

2 2
2
0

0 0

( )
2 2

t t
U A a

E E

                   (6) 

where σ denotes the tensile stress of the plate; E0 is the 
elastic modulus. For a plate strain state, one needs to 

replace E0 in Equation (6) with  2
0 01E  , where ν0 is 

the Poisson’s ratio. 
The Griffith fracture criterion state that: materials 

cracks when the released elastic energy ΔU equals to the 
surface energy Π concentrated in the fracture zone for an 
infinitesimally small increment of the crack length da0, 
i.e., 

 
0

0
d U

da

  
                 (7) 

Substituting Equations (2) and (6) into Equation (7), 
one obtains the critical cracking stress σc for materials as: 

1 2 1
0 04 D D

c E D a                   (8) 

For a smooth cut case, D=1.0, η=2π, and we have: 

0

0

2
c

E

a





                  (9) 
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2.3. Fracture Toughness 
 
Wunk and Yavari [11] studied the stress field at the frac-
tal crack tip, and presented the component σy in y direc-
tion as shown in Figure 1. 

 
  cos( ) sin sin 1

2

f
I

y

K

r
     


       (10) 

where f
IK  is the fractal stress intensity factor; α repre-

sents the singularity order of the stress field, and can be 
expressed as: 

2

2

D



 , 1 2D               (11) 

in terms of D for a self-similar fractal crack. 
For D=1.0, we have α=1/2 and f

I IK K , and Equa-

tion (10) degenerates to the smooth cracking case as: 

 
1 3

cos sin sin
2 2 22

I
y

K

r

  


        
     (12) 

When σy=σc, 
f f

I ICK K , the crack begins to grow. Re-

ferring to Equations (8) and (10), one obtains the fractal 
fracture toughness for materials: 

 
 

1 2 1
0 02 4

cos( ) sin sin 1

D D
f

IC

r E D a
K

   
    

      


   
    (13) 

Figure 3 illustrates the relation among f
ICK , D and a0. 

It can be noted from Figure 3 that f
ICK  decreases with 

the increasing of the crack length; If a0=0,  
f

ICK  tends to be infinite, and no crack exists in materials, 
which verifies the concept that the growth of initial de-
flects leads to the final failure of materials. The greater 
the D value, the more bifurcated the cracks are, and the 
larger f

ICK  is, which indicates that roughness has a hin- 

 

 
Figure 3. Influences of D and a0 on f

ICK . 

dering effect on the cracking of materials. 
 
2.4. Driving Force 
 
Classic driving force is defined as the strain energy dis-
sipated to form a unit fracture area [11], and can be ex-
pressed as: 

   2

0

1

2
IU K

G
t a E

 
   


            (14) 

Submitting Equations (1) and (6) into Equation (14), 
one gets: 

2
2 1
0

02
f D DG a

E D

                  (15) 

For the mode I cracking case, G f reaches its maximum 
value max

fG  when σ increases to the tensile strength σt of 

materials: 

2
2 1

max 0
02

f D DtG a
E D


               (16) 

We also have the cracking resistance GIC of materials 
as: 

1
2

2ICG
t a


  


             (17) 

If max
f

ICG G , cracking occurs, and cracks does not 

grow when max
f

ICG G . This is the G-fracture criterion 

for fractal cracks. 
 
2.5. Fracture Energy 
 
The fracture energy GF of materials is defined as the area 
under the stress vs. the crack open displacement curve in 
the cohesive law, and represents the energy dissipated on 
the unitary crack surface [12]. GF is usually determined 
by tests. For a large size specimen, the fracture energy 

*
FG  equals to the max driving force max

fG  expressed in 

Equation (16), approximately. Therefore, fracture energy 
GF for a normal size specimen has relation with max

fG  as: 

* * *
max
f

F N FG A G A G A              (18) 

where AN and A* are the real areas of the fracture surfaces 
corresponding to the normal size and large size speci-
mens, respectively, with a transformation as: 

2 2
*

*

,

D

ch
N

ch N

l
A A

l


 

   
 

             (19) 

where *
chl  and ,ch Nl  are the characteristic lengthes cor-

responding to A* and AN, respectively. Usually, *
chl  is 

taken to be the minimum threshold of characteristic 
lengths. For concrete, *

chl = 0.15 mm when
0f
 = 100 MPa 
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and *
chl = 0.15 mm when 0f

 = 200 MPa [13], and *
chl  

can be obtained by linear interpolation for other strengths. 

,ch Nl  is given by [14]: 

, 02ch Nl a b                 (20) 

where the constant b < 1 represents the initially cracked 
portion of the interface prior to load application, 2a0 is 
the initial crack diameter and is assumed to be equal to 
the maximum aggregate size in concrete. 

Substituting Equations (16) and (19) into Equation 
(18), one obtains 

2 2 2
, 2 1

0*
02

D

ch N D Dt
F

ch

l
G a

E Dl






  
    
 

     (21) 

Here 2a0 needs is considered to be the final length of 
the main crack for concrete, and represents a specimen 
size. Figure 4 shows the behaviors of GF as the changes 
of a0 and D. We can find that GF increases with the in-
creasing of these two factors. 
 
3. Damage Variable 
 
An apparent damage variable is defined as the ratio of 
the effective bearing area Ak and the cross section area Ac 
of materials, and has the following form: 

k

c

A

A
                     (22) 

For a Euclidean shape, the area A0 and the perimeter 
C0 have the following relation: 

2
0 0 0A m C                   (23) 

where m0 is a shape constant. Substituting Equation (23) 
into Equation (22), one obtains the expression for the 
apparent damage variable   as follows: 

and 
2

k

c

C

C


 
  
 

                  (24) 

where Ck and Cc are the perimeters corresponding to Ak 
and Ac, respectively. It is reasonable for us to take Ck  

 

 

Figure 4. Influences of D and a0 on GF. 

Cc as the crack length in one direction and the total 
length of all cracks in all directions in a unit cell at fail-
ure, respectively. 

By referring to Equation (1), the perimeter C of a 
fractal damaged surface and the counterpart C0 in the 
Euclidean space has the following relation: 

1
0
D D

chC C l                  (25) 

Substituting Equation (4) into Equation (22), concern-
ing Equation (25), and based on the fact that cracks in 
concrete is statistically self-similar fractal when the 
yardstick δ ranges from 0.263 to 1 [15], one obtains the 
following expression for a fractal damage variable in the 
fractal space: 

1 1

ˆ 16 c kD D 
 

  
                 (26) 

where Dk = 1.0 ~ 2.0. From Equation (29), we find that 
only the fractal dimension is different between the fractal 
and apparent damage variables, and δ has no influence 
on this relation. Since Ac is the cross section area of ma-
terials, which indicates Dc = 1.0, thus Equation (26) can 
be rewritten as: 

1
1

ˆ 16 kD
ij ij 

 
  

                  (27) 

For a smooth crack, Dk = 1.0, and no fractal effect ex-
ists, and we have: 

îj ij                     (28) 

From the above discussion, we notice that the apparent 
damage variable in the Euclidean space is a special case 
of the fractal damage variable in the fractal space, and 
the fractal damage variable is the generalization of the 
apparent damage variable. Figure 5 illustrates the dif-
ferences between the two kind damage variables in uni-
axial compression with an assumption that Dk takes the 
average value of 1.1, and the original evolution data for 
apparent damage variables is referred from reference 
[16]. 
 

 

Figure 5. Evolutions of damage variables for concrete in 
uniaxial compression cases. 
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4. Plastic Damage Constitutive Model for 
Concrete 

 
Among the various existed constitutive models for con-
crete, the plastic damage model has a better effect to 
characterize the stiffness degeneration, the strain soften-
ing and the unilateral effect of concrete under various 
loading conditions. 
 
4.1. Decomposition of Effective Stress Tensor 
 
In view of the fact that the typical failure modes of con-
crete are cracking in tension and crushing in compression, 
we decompose the effective stress tensor into tensile and 
compressive parts (denoted by σ  and σ , respec-
tively) by utilizing spectral decomposition technique 
[17,18]: 

: σ P σ                  (29) 

:   +σ σ σ P σ               (30) 

where P+ and P- are the fourth-order projection tensors 
expressed as [19]: 

  i ii ii
i

H   P p p            (31) 

  P I P                  (32) 

where I is the fourth-order identity tensor;  iH   

represents the Heaviside function calculated for the ith 
eigenvalue i  of σ ; Pij is the second-order tensor and 

is defined as: 

 1

2ij ji i j j i    p p n n n n       (33) 

where ni is the ith normalized eigenvector corresponding 
to i . 

 
4.2. Plasticity 
 
We adopt a plasticity yield function f and a plastic poten-
tial function Fp as: 

    1 2 max
ˆ, 3f I J    σ κ κ  

   1 0c   κ             (34) 

2 13p pF J I               (35) 

where   2x x x   denotes the Macaulay bracket 

function, max̂  is the algebraically maximum effective 

principal stress. α, β and c are parameters with the fol-
lowing forms [20]: 

0 0

0 02
b

b

f f

f f


 

 





; 

 
     1 1

c

c
  



   
κ

κ
 

   c f κ κ ;    c f κ κ  (36) 

where 0bf
  and 0f

  are the initial equibiaxial and uni-

axial compressive yield stresses, respectively. 0 0bf f   
lies between 1.10 and 1.20 from experiments, therefore, 
α varies from 0.08 to 0.12.  c κ  represent the inner 

cohesion, and  f  κ  are the evolution stresses (posi-

tive values are used here in compression) in the effective 
stress space due to plastic hardening or softening under 
uniaxial tension and compression, respectively. 1I  is 

the first invariant of the effective stress tensor, 2J  is 
the second invariant of the effective deviatoric stress 
tensor. αp ≥ 0 is a dilation parameter with 0.2 ≤ αp ≤ 0.3 
for concrete. 

According to the flow rule, the rate of the effective 
plastic strain p  can be written as: 

2

3

2 3

p
ijp p p p

ij ij
ij

sF

J
    



     
   

       (37) 

where p  is a plastic consistency factor, and can be 
determined by the consistency condition for the yield 
surface f, which can be expressed in the Kuhn-Tucker 
form as: 

0f  , 0p  , 0p f  , 0p f        (38) 

In this study, the linear isotropic hardening rules are 
introduced to describe the change of the yield surfaces in 
the effective stress space, and can be expressed in simple 
forms as [21]: 

  p
yf f E     κ             (39) 

where yf   are the effective yield strengths in uniaxial 

tension and compression, and have approximate values 

as 0yf f   and 0yf f  , respectively. 0f
  are the 

uniaxial yield strengths of concrete corresponding to 
tension and compression, respectively. pE   are the 
effective plastic hardening modulus in uniaxial case, and 
have relation with the elastoplastic tangent modulus 

epE   as [22]: 

0

0

ep
p

ep

E E
E

E E







               (40) 

According to the plasticity consistency condition, we 
have: 

0
f f

f
 

  
 

σ κ
σ κ

                (41) 

and obtain the rate form of the constitutive equation as 
follows: 

0,

p
p

ij ijkl kl
kl

F
C  


 

   
           (42) 

where C0,ijkl is the fourth-order undamaged elastic stiff-
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ness tensor. 
Accounting for the coupling of tension and compres-

sion, κ  can be written as [22]: 

 max min, (1 )
Tp pw w   κ            (43) 

where max
p  and min

p  are the maximum and minimum 

values of the equivalent plastic strains p
ij ; w is the 

weight factor and has the following form: 
3 3

1 1

ˆ ˆ
i i

i i

w  
 

               (44) 

where ˆ
i  are the principle stresses. 

Substituting Equations (42) and (43) into Equation 
(41), we obtain: 

0,

1p
ijkl klp

ij

f
C

h
 










           (45) 

where ph   can be expressed in the following forms: 

0,

max
ˆ

p p
p

ijkl
ij kl

f F f F
h C w

   




   
 
   

     (46) 

 0,

min

1
ˆ

p p
p

ijkl
ij kl

f F f F
h C w

   




   
  
   

   (47) 

where max̂  and min̂  are the maximum and minimum 

effective principle stresses, respectively. Therefore, we 
can rewrite the rate form of the relation Equation (42) for 
the effective stress and the strain as: 

ij ijkl klC                   (48) 

where Cijkl is the elasto-plastic tangent stiffness tensor 
and has the following form: 

0, 0, 0,

1 p

ijkl ijkl ijrs mnklp
rs mn

F f
C C C C

h  
 

 
 

    (49) 

 
4.3. Helmholtz Free Energy 
 
A damage constitutive model of a material is based on 
the second law of thermodynamics which states that all 
the selected internal variables must satisfy the Clau-
sius-Duhem inequality for any irreversible process under 
an isothermal condition, and has a simple form as: 

: 0 σ ε                  (50) 

where σ and ε are the stress and strain tensors,   is the 

total Helmholtz free energy (HFE) which can be consid-
ered as the sum of the elastic part e  and the plastic 

part p , that is: 

     , , , ,e e e p   ε κ Φ ε Φ κ Φ     (51) 

where Φ  is the damage variable tensor. 
We decompose e  into tensile and compressive 

parts as: 

     , , ,e e e e e e        ε Φ ε ε     (52) 

where 

       0

1
, 1 1 :

2
e e e e e e            ε ε σ ε  (53) 

       0

1
, 1 1 :

2
e e e e e            ε ε σ ε  (54) 

where    0 : 2e e e  ε σ ε  represent the initial elastic 

strain energy of materials;   are the tensile and com-

pressive components of Φ . Therefore, we derive: 

       0 0
1 1

e e e e

e e

 
 

 
 
 

   
 

ε ε
σ

ε ε
 

   1 1       σ σ            (55) 

The incremental form of Equation (55) can be ex-
pressed as: 

   1 1 d d            +σ σ σ σ σ      (56) 

Equations (56) and (48) form the final plastic damage 
constitutive equations for the plain concrete. 

Similarly, we can rewrite p  as: 

     , , ,p p p         κ κ κ      (57) 

Referring to the fact that the contribution to the plastic 
HFE from plastic strains of concrete in tension is much 
smaller comparing to the one in compression, we assume 
that 0p   . Thus, we have: 

       0, 1p p p        κ κ κ      (58) 

Substituting Equations (51), (52) and (58) into Equa-
tion (50), we get: 

: 0
e p

e p
e

       
           

σ ε σ ε κ Φ
κ Φε

     (59) 

Since the above inequality must be satisfied for any 
elastic strain εe, we have: 

e

e





σ
ε

                   (60) 

0YΦ                     (61) 

: 0
p

p 
 


σ ε κ

κ
                (62) 

where Y  is the damage energy release rate and can be 
expressed as: 


 


Y

Φ
                   (63) 

According to the above discussions about the total 
HFE, we can rewrite Y  as: 

0Y                      (64) 
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We define the damage criteria in tension and compres-
sion for concrete, respectively, as: 

 , 0g Y r Y r                 (65) 

where r  are the current damage thresholds whose ini-
tial values is denoted by 0r

 . Equation (65) indicates that 

damage is initiated when Y   exceed the corresponding 
damage thresholds r . 

Initial strain energy of materials can be written as: 

   0 0 0

1
: : 0

2
e e e e e    ε ε ε C ε         (66) 

   0 0 0
e e p     ε κ             （67) 

where 0
e   is the initial strain energy of materials in 

compression, and can be expressed as: 

   20
0 0 2 1 0 1 1

0

1 21
2 1 0

2 3
e J I I I

E


             

  

 (68) 

 0 2 1 2 1 1

1
6 2

2 3

p
p pJ I J I I

 


     
    

 
κ

s



2 1 2 1 1
0

1
6 2

2 6
pJ I J I I

E
     

    
 

 

(69) 

where 2: 2J s s s  is the norm of s ; 

2

1
:

2
J    s s  is the second invariant of the compres-

sive effective deviatoric stress tensor s ; 1I
  and 1I

  

are the first invariant of σ  and σ , respectively. 

02 pE    s  is a material parameter. 

Therefore, 0   has the following form in compres-

sion case: 

 2

0 0 2 1 1 2 2 1 3 1 13 2J I J I I I             
 (70) 

where parameters Ω0, Ω1, Ω2, Ω3 are 

   
 0

0
0

6 2 1

6E

 
  ; 

 1

0

3

6 2 1

p



 

 
  

 
0

2

0

1 2

6 2 1





 

 
; 

 
0

3

0

0.5 3

6 2 1




 
 

 
 (71) 

Assume that concrete is in biaxial compression, which 
indicates σ3≡0, and we have: 

 

 

2 2 0
0 1 2 1 2

0 0

2 2
1 2 1 2 1 2

0

6 66 3

6 6

6
             

6

p

Y
E E

E


    

      

   
   


   

  (72) 

For an uniaxial compression case, we denote the uni-
axial compressive ultimate strength as 0f

 , and have 

σ1= 0f
 ,σ2=0. We can derive the initial damage threshold 

0r
  as: 

   0

0
0

3 6 1
6

p
f

r
E




               (73) 

And for an equibiaxial compression case, we use 0bf
  

to denote the biaxial compressive ultimate strength. One 
gets σ1=σ2= 0bf

 , and derives 0r
  as: 

 
   0

0 0
0

6 1 6 1 2
6

b p
f

r
E

 


           (74) 

Noticing that the initial damage threshold is unique for 
a material, we obtain the expression for Ω from Equa-
tions (73) and (74): 

  
     

2

0 0 0

2

0 0

6 1 3

6 1 6 1 2

b

p p
b

f f

f f



 

 

 

 
 

  
   (75) 

For concrete, one has 0 0bf f   = 1.10~1.16 and p = 

0.2~0.3. Assuming ν0=0.2, and substituting the above 
three parameters into Equation (74), we find that Ω ≥ 0 is 
always hold. Thus we have 0

p  ≥0 (see Equation (69)), 

and 0 0 0
e pY         ≥0, and finally have Y  ≥0. 

Accounting for the fact that damage is irreversible, we 
get  ,  ≥ 0. Therefore, the total HFE defined in 

Equation (51) satisfies the thermodynamic consistency, 
or satisfies the inequality of Equation (61). 

Equation (75) reaches the limit state Ω→+∞ when 

 
 

2

0 0

2

0 0

1

2 1

bp

b

f f

f f


 

 





, and the undamaged area of a ma-

terial in compression can be characterized by the follow-
ing inequality: 

 2 2 2 2
1 2 1 2 1 2 1 2 1 2

p                 

  01 p f                  (76) 

Figure 6 illustrates the changes of the undamaged ar-
eas with αp. We find that the increase of αp will lead an 
expansion of the undamaged area. 

 
4.4. Evolution Laws 
 
The evolution laws proposed by Faria et al. [18] are 
adopted in this research. Damage variables (in the Euc-
lidean space) and their rate forms are expressed as: 

0

0

1 exp 1
r r

B
r r


 

 
 

  
    

   
        (77) 
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Figure 6. Influences of αp on undamaged domain. 
 

 0

0

1 1 exp 1
r r

A A B
r r


 

   
 

           
     

  (78) 

0dr h                     (79) 

where 

 
 

0
2

0

exp 1d
G r B r r r

h B
r rr

     
 

 

   
        

   (80) 
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 

  
   

   
          (81) 

where A- is a material parameter, and can be determined 
by the uniaxial compression test; B± can be expressed as: 

 

1

0
2

0

1
0

2
F

ch

G E
B

l f








 
   
 
 

            (82) 

where FG  is the fracture energy of a material and can 

be determined by tests or from Equation (21). 

Replacing   in the above model by ̂   in Equa-

tion (27), we can generalize the Euclidean constitutive 
model for concrete to the fractal space. 
 
5. Example Analysis 
 
5.1 Comparison of Constitutive Models 
 
In this section, numerical simulations of the present 
model considering fractal effect are performed for con-
crete under different loading conditions, and compari-
sons of the results are done with some experimental data, 
i.e. the unaxial loading test by Karsan and Jirsa [23] and 
the biaxial loading one by Kupfer et al. [24]. Material 
parameters for concrete are listed in Table 1. The values 
of E0, ν0, α

p and α are obtained from the study of Lee and 

Fenves [18]; Average values of lch,N, *
chl , η, a0, b and Dk 

are used here because of their narrow range intervals. 
Therefore, we can obtain the fracture energy for con-

crete from Equation (21) as: FG =45.3N/m in tension 

and FG =1497N/m in compression. 

 
5.1.1. Uniaxial Tension 
Both the predictions of the present model with and 
without the fractal effect and the test data obtained by 
Karsan and Jirsa [23] for concrete under uniaxial tension 
are illustrated in Figure 7(a). We can find that the two 
kind results of the present model agree well with the test 
data in the stress hardening stage. Comparing with the 
case of no fractal, the prediction considering the fractal is 
more coincident with the test. In the last large deforma-
tion stage, the three behaviors are close with each other. 
 
5.1.2. Uniaxial Compression 
Figure 7(b) shows the comparison of the calculation 
results of the present model and the test data for concrete 
under uniaxial compression obtained by Karsan and Jirsa  
 

 
(a) 

 
(b) 

Figure 7. Comparison of the constitutive curves of the pre-
sent model with test results (Karsan and Jirsa 1969) in the 
uniaxial loading conditions. (a) Uniaxial tension; (b) Uniax-
ial compression. 
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[23]. Comparing with the uniaxial tension case, both of 
the two kind results of the model are more efficient to 
simulate the concrete compressive behaviors. The pre-
dictions considering fractal is slightly lower than the two 
other data. 
 
5.1.3. Biaxial Tension 
In this simulation, equibiaxial tensile condition is 
adopted, and material parameters are taken as the same 
as those listed in Table 1. Figure 8(a) gives the behav-
iors obtained from the present model and the test in bi-
axial tension [24]. We find that the two kind theoretical 
results are coincident with the test data; in the initial 
strain softening stage, the result concerning no fractal 
agrees with the test better, but there is obviously a dif-
ference between them comparing with the data consider-
ing the fractal effect. All these show the superiority of 
the proposed model. 
 

Table 1. Material parameters for concrete. 

E0=31.7GPa ν0=0.2 0f
=3.48MPa 0f

=20MPa 

α=0.12 αp=0.2 δ=0.286 *
chl=0.156mm 

η=2π a0=6.0mm b=0.79 Dk=1.16 

 

 
(a) 

 
(b) 

Figure 8. Comparisons of the constitutive curves of the 
present model with test results (Kupfer et al. 1969) in the 
biaxial loading conditions. (a) Biaxial tension (σ1: σ2=1:1); 
(b). Biaxial compression (σ1: σ2=-1:-1). 

5.1.4. Biaxial Compression 
In equibiaxial compression, concrete shows a good plas-
tic deformation ability which can be found both in the 
proposed model and the test [24]; see Figure 8(b). The 
three curves are well close with each other. Comparing 
with the three other loading cases discussed above, the 
peak stress increases obviously, accompanied by the 
slowest decreasing softening stage in biaxial compres-
sion, which indicates a good compressive capacity of 
concrete under the confining pressure condition. Spe-
cially, model with fractal damage variables is more ac-
curately than the one with apparent damage variables. 
 
5.2. Structural Analysis 
 
An unreinforced notched concrete beam under 3-point 
bending is simulated to verify the efficiency of the pre-
sent concrete damaged plasticity model. This problem 
has been studied extensively both experimentally by Pe-
tersson [25] and analytically by Meyer et al. [26], among 
others. This beam is simply supported at both ends with 
concentrated force acting at the center. Its sketch is illus-
trated in Figure 9 (unit: m). 

The measured parameters of concrete are: elastic mo- 
dulus E0=30GPa, Poisson’s ratio ν0=0.2, density ρ0 = 
2400 kg/m3 and uniaxial tensile strength ft = 3.33 MPa. 

The present constitutive model considering the fractal 
effect of concrete is adopted for the theoretical analysis. 
The model parameters are taken as: FG  = 138 N/m, 0f

  

= ft = 3.33 MPa, 0f
  = 30 MPa, and other properties are 

same as that listed in Table 1. The beam is under the 
plane stress condition. Accounting for the symmetry of 
both the structure and the load, only one half of the beam 
is modeled. The model is meshed with 280 4-node bilin-
ear, reduced integration plane elements. The beam is 
loaded by prescribing the vertical displacement at the 
center of the beam until it reaches a value of 0.0015 m. 
The Riks method is used to solve this problem. 

Figure 10 illustrates the variation curves of the con-
centrated force and the center displacement of the beam 
calculated from the theoretical analysis and the Peters-
son’s test [25]. We can note that the theoretical result is 
coincidence with the test at the loading stage and slightly 
higher then the test at the unloading branch. Figure 11 
shows the distribution of the principal tensile stress of 

 

 

Figure 9. Notched beam: geometry and dimensions (unit: m). 
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the structure as well. 
Mesh sensitivity is investigated in this study by mesh-

ing the structure into coarse and fine grids, respectively, 
with 70 and 1120 same type elements with the medium 
mesh case. Resolving the above problem at the same 
condition, we get the relation between the load and dis-
placement in center. Figure 12 represents the relation 
curves corresponding to the three kind meshes. We find 
that: comparing with the coarse mesh case, the structural 
responses agree well for the other two meshes. The 
structure is not sensitive to the mesh size in general. 
 
6. Conclusions 
 
In this research, the fracture toughness, the driving force 

and the fracture energy of a material with fractal cracks 
are investigated and their theoretical expresses in the 
fractal space are derived based on fracture mechanics and 
fractal geometry. The surface energy and the strain en-
ergy in the fractal fracture zone are theoretical expressed 
in the fractal space. The transformation rule of damage 
variables in the fractal space and the Euclidean space is 
obtained which indicates that the apparent damage vari-
able in the Euclidean space is a special case of the fractal 
one in the fractal space with the fractal dimension of 
cracks equals to 1. We introduce a plastic yield function 
and decompose the damage variable tensor into tensile 
and compressive parts to establish a plastic damage con-
stitutive model for concrete in the Euclidean space. Gen-
eralization of this model to the fractal space is done by 
utilizing the damage variable transformation rule. 

 

 

Figure 10. Comparison of the theoretical and experimental data for the load vs. displacement curve. 
 

 

Figure 11. Distribution of the principle tensile stress. 
 

 

Figure 12. Influences of mesh size on structural response. 
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Comparisons of the results obtained from the present 
model and tests for concrete under different loading con-
ditions are done to verify the efficiency of this model and 
show the necessity of considering the fractal effect in the 
constitutive model of concrete. The present model con-
sidering the fractal effect is used to analyze a notched 
plain concrete beam under 3-point bending. Mesh sensi-
tivity is also concerned. The numerical results show the 
efficiency and validation of the present model for struc-
tural analysis. 
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