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Abstract 
 
A formalism of solid state physics has been applied to provide an additional tool for the research of cosmo- 
logical problems. It is demonstrated how this new approach could be useful in the analysis of the Cosmic 
Microwave Background (CMB) data. After a transformation of the anisotropy spectrum of relict radiation 
into a special two-fold reciprocal space it was possible to propose a simple and general description of the 
interaction of relict photons with the matter by a “relict radiation factor”. This factor enabled us to process 
the transformed CMB anisotropy spectrum by a Fourier transform and thus arrive to a radial electron density 
distribution function (RDF) in a reciprocal space. As a consequence it was possible to estimate distances 
between Objects of the order of ~102 [m] and the density of the ordinary matter ~10–22 [kg·m–3]. Another 
analysis based on a direct calculation of the CMB radiation spectrum after its transformation into a simple 
reciprocal space and combined with appropriate structure modelling confirmed the cluster structure. The in- 
ternal structure of Objects may be formed by Clusters distant ~10 [cm], whereas the internal structure of a 
Cluster consisted of particles distant ~0.3 [nm]. The work points in favour of clustering processes and to a 
cluster-like structure of the matter and thus contributes to the understanding of the structure of density fluc- 
tuations. As a consequence it may shed more light on the structure of the universe in the moment when the 
universe became transparent for photons. On the basis of our quantitative considerations it was possible to 
derive the number of particles (protons, helium nuclei, electrons and other particles) in Objects and Clusters 
and the number of Clusters in an Object.  
 
Keywords: CMB Radiation, Analysis of CMB Spectrum, Radial Distribution Function of Objects, Early 

Universe Cluster Structure, Density of Ordinary Matter 

1. Introduction 
 
The angular power spectrum (anisotropy spectrum) of 
the Cosmic Microwave Background (CMB) radiation 
([1,2]) shows incredible similarity with X-ray or neutron 
scattering measured on non-crystalline materials ([3], 
[4]), see Figures 1 and 2.  

Astronomers ascribe to various peaks of the anisotropy 
spectrum of the CMB radiation different processes [5]. It 
is the Sachs-Wolf effect, Doppler effect, Silk damping, 
Rees-Sciama effect, Sunyaev-Zeldovich effect, etc. In 
this connection it should be stated that all theoretical 
predictions of the standard cosmological model are in 
very good agreement with the course of the anisotropy 

spectrum of CMB radiation.  
However, the formal similarity in the form of both 

figures initiates the tempting idea if an analysis of the 
anisotropy spectrum of relict radiation using an analo- 
gous approach as is common in solid state physics, i.e. in 
the structural analysis of disordered materials, would 
bring more information on the structure of the early uni- 
verse.  

The inspiration for this approach we found further in 
the nowadays situation: Although the individual disci- 
plines in physics are highly specialized, nevertheless 
their methods and results are shared in areas that at the 
first sight may seem to be far apart. An example of this is 
the already established use of elementary particle physics 
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Figure 1. Anisotropy spectrum of the CMB radiation [1]. 
The figure describes the dependence of the magnitude of 
the intensity of microwave background on the multipole 
moment L = 180˚/α, where α is the angle between two points 
in which the temperature fluctuations are compared to an 
overall medium temperature. The description of the Y-axis 
is for simplicity described in [Arbitrary units]. The original 
description was given as L(L + 1)CL/2π in [μK2] units, where 
L is the multipole moment, CL is a function reflecting the 
width of the window measuring the temperature fluctua- 
tions. 
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Figure 2. X-ray scattering diagram taken on a sample of a 
chalcogenide glass of a composition (Ge0.19Ag0.25Se0.50) using 
the MoKα radiation, see [4] for detail. The reciprocal space 
scattering vector s is defined in Equation (A5). 
 
in cosmology.  

Similarly, we hope that it may be time now to apply 
the formalism of solid state physics to some special 
cosmological problems and in this way to provide an 
additional tool for their research.  

First of all our new approach may be useful in the 
analysis of the CMB data. We will show how after the 
transformation of the anisotropy spectrum of relict radia- 
tion into a special two-fold reciprocal space we will be 
able to process the transformed CMB anisotropy spec- 

trum by a Fourier transform and thus calculate a radial 
distribution function (RDF) of the matter in a reciprocal 
space. Because the CMB radiation reflects the fluctua- 
tions in the density of the matter, we hope that in this 
way our study will contribute to the understanding of the 
structure of these density fluctuations. Simultaneously, 
as a consequence, it may shed more light on the structure 
of the universe in the moment when the universe became 
transparent for photons (see Subsection 5.1.).  

Moreover, in contrast to solid state physics where the 
atomic (coherent) and Compton (incoherent) scattering 
factors are describing theoretically the interaction of 
X-rays (or neutrons) with all kinds of atoms, this new 
formalism will present a general description of the inter- 
action of relict radiation with the matter by a single “rel- 
ict radiation factor”, which should unify all processes 
realized during the interaction of relict radiation with 
various kinds of particles forming the primordial matter, 
see Subsections 2.3.3. and 5.2.  
 
2. Construction of the Classic and Relict  

Reciprocal Space 
 
In solid state physics the principal mathematical method 
during the structure analysis of the matter is the Fourier 
transform of the intensity of X-rays (or neutrons) scat- 
tered by atoms building the material. The experimental 
data are collected in the reciprocal space and their Fou- 
rier transform brings the required information on the 
distribution of atoms in the real space. In this contribu- 
tion we will try to apply this approach to the CMB spec- 
trum (see Figure 1) and simultaneously point out the 
complications we have to overcome in this direction. 

The necessary basic mathematical apparatus is sum- 
marized in the Appendix A, the most important basic 
equations for the analysis of “scattered” radiation and 
leading to the radial density distribution function (RDF) 
are Equations (A1) and (A2). The essential difference in 
the use of terms “scattering” and “interaction” of photons 
will be elucidated in the next Subsection 2.1.  
 
2.1. The Relict Radiation Factor 
 
During a conventional structure analysis with X-rays or 
neutrons, the X-ray or neutron atomic scattering factors 
are a precise picture of the interaction of radiation with 
the matter and are known precisely [6]. They enter into 
the calculation of the RDF in correspondence with the 
composition of the studied material; see Equations (A6), 
(A7) and (A10). Generally, for coherent scattering, the 
atomic scattering factor f is the ratio of the amplitude of 
X-rays scattered by a given atom Ea and that scattered 
according to the classical theory by one single electron 
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Ee, i.e. a ef E E  ( f Z ), where Z is the number of 
electrons in the atom.  

Moreover, there are scattering factors not only for the 
coherent but also for the incoherent (Compton) type of 
scattering, see e.g. later on Figure 6.  

In our study, however, the basic obstacle is that with 
CMB photons we have not a classic scattering process of 
photons on atoms; i.e. a process described in equations of 
the Appendix A. There are not atoms, there are particles 
only (e.g. baryons, electrons, etc.), which participate in 
the formation of the structure of density fluctuations. 
Therefore we will speak throughout this article about an 
“interaction” instead of “scattering” in all cases when 
instead of the classic “atomic scattering factor” the new 
“relict radiation factor” will be used.  

It is true that a part of the interaction of photons with 
electrons before the recombination may be realised as 
Thomson scattering (elastic scattering of electromagnetic 
radiation by a free charged particle, as described by 
classical electromagnetism)1, but the complex picture of 
physical processes describing the interaction of relict 
photons with the non uniform matter composed of vari- 
ous particles (electrons, ions, etc.) is not known to such 
an extent in order to enable a theoretical calculation of 
this interaction (on the basis of scattering factors).  

It is therefore evident that it will not be possible to use 
the conventional atomic scattering factors and that a new 
special factor reflecting the complexity of interaction 
processes of photons with the primordial matter has to be 
constructed. We only point out that the description of 
these interactions is possible only in a special two-fold 
reciprocal space into which the CMB spectrum is trans- 
formed. This new factor will be called the relict radia- 
tion factor and substitutes all complicated processes 
which participate in the formation of the angular power 
spectrum of CMB radiation.  

The construction of the relict radiation factor is pre- 
sented in Subsection 2.3.3. 
 
2.2. The Wavelength of Radiation 
 
The wavelength of radiation is a quantity of highest im- 
portance, too. It follows from Equation (A5), that the 
greater the wavelength the smaller is the maximal possi- 
ble value smax of the reciprocal space vector. At the same 
time the upper limit of the integral in Equation (A2) 
strongly influences the quality of the Fourier transform. 

Although there is a broad distribution of wavelengths 
of photons (see later on the discussion in Subsection 5.3.) 
the calculation will be undertaken for the wavelength 

corresponding to the maximum of the wavelength distri- 
bution which corresponds to the temperature 2.725 K of 
the Universe today (see later on Figure 18), i.e. for the 
wavelength λ = 1.9 [mm].  

That this wavelength is rational is based on three ar- 
guments. First of all photons with this wavelength bring 
us the information on their last several interactions with 
particles today, in the second place the CMB radiation 
spectrum is the same for all wavelengths and in the third 
place the wavelength corresponding to the maximum of 
the wavelength distribution secures the highest probabil- 
ity of the interaction process of photons with the matter. 
 
2.3. Preparatory Calculations 
 
2.3.1. The Classic Reciprocal Space 
During a classic scattering experiment we measure the 
intensity of the scattered radiation (e.g. X-rays) as a 
function of the scattering angle θClassic. This scattering 
angle describes in real space the angle between the inci- 
dent and scattered radiation. Its relation with the scatter- 
ing vector in reciprocal space was described in Equation 
(A5).  

On the other hand the angle α in the anisotropy spec-
trum of relict radiation (see already Figure 1) is not a 
scattering angle. It is an angle characterizing the distance 
between an arbitrary point to another—in those different 
points the temperature fluctuation is measured and com-
pared with the overall medium one.  

In order to overcome the incomparableness between 
the angles α and θ, we will construct an angle dependent 
reciprocal space to the angle α. The basic quantity de- 
termining this reciprocal space will be the scattering an- 
gle θClassic.  

We will suppose that the maximum possible value of 
the classic scattering angle  90˚, corresponds to 
the maximum value of the multipole moment Lmax = 
3000. 

max
Classic 

As a consequence we receive a transformation coeffi- 
cient Q  

max max
Classic QL  ,              (1) 

(its value in this case is Q = 0.03). 
We are then able to calculate the whole set of θClassic 

angles 

 max max
Classic Classic   LQ L L             (2) 

and because L = 180/α, then 

    max max
Classic Classic1 180 L   ,        (3) 

1It is just the low-energy limit of Compton scattering: the particle ki-
netic energy and photon frequency are the same before and after the 
scattering, however this limit is valid as long as the photon energy is 
much less than the mass energy of the particle. 

i.e. 

 Classic Classic1 P  ,             (4) 
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where 
2

Classic 180 degP Q                  (5) 

is a coefficient enabling the transition between the space 
α and the space θClassic and where the angular space 
θClassic is reciprocal to the angular space α. 

According Equation (A5) we are now able to construct 
the whole set of scattering vectors sClassic  

 Classic Classic4π sins   ,          (6) 

where λ is the wavelength of the relict radiation. It 
should be noted that the quantities sClassic and α are in an 
indirect relation. The space of the vector sClassic will be 
further on called a “Classic reciprocal space”.  

It should be pointed out that in this construction (see 
Equation (6)) the scattering vector sClassic is defined in the 
reciprocal space (1/λ) and that this space is now dipped 
into the reciprocal space (1/α), see Equations (2), (4) and 
(6). For this “dipping” we will use further on the expres- 
sion that the space sClassic is a 2-fold reciprocal space to 
the space α.  

The recalculation of the original data presented in Fig- 
ure 1 using Equations (4) and (6) is shown in Figure 3. 
This new intensity dependence is labelled IClassic ( ).  Classics
 
2.3.2. The Relict Reciprocal Space 
There is a possibility to construct another reciprocal 
space which will be based directly on the angle α. For a 
better comparison and lucidity we will use now for the 
angle α the labelling θRelict. i.e. 

Relict  ,                 (7) 

hence  

L = 180˚/α = 180˚/θRelict.           (8) 

In close analogy with Equation (A5) we now trans- 
form the anisotropy spectrum of CMB (relict) radiation 
into a reciprocal space (1/λ) described by the parameter 
SRelict  

 Relict Relict4π sinS   ,          (9) 

where λ is the wavelength of the relict radiation. The 
space of the vector SRelict will be further on called the 
“Relict reciprocal space”. 

It should be noted that quantities SRelict and Relict   
are in a direct relation. The anisotropy spectrum of the 
CMB radiation rescaled on the basis of Equation (9) is 
here labelled IRelict (SRelict) and is shown in Figure 4.  
 
2.3.3. Construction of the Relict Radiation Factor 
Generally, a correct scattering factor has to fulfil three 
criterions: 
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Figure 3. Anisotropy spectrum of the relict radiation shown 
in Figure 1 is recalculated as a function of sClassic, i.e. after a 
rescaling of the angular moment L and is labelled IClassic 

(sClassic). The rescaling of the angular moment L is realized 
on the basis of Equations (2), (4) and (6) and using the 
MoKα radiation wavelength λ = 0.071609 [nm]. 
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Figure 4. Anisotropy spectrum of the relict radiation shown 
in Figure 1 is after a rescaling of the angular moment L, 
recalculated as a function of the relict reciprocal space vec-
tor SRelict and labelled IRelict (SRelict). The rescaling of the 
angular moment L is realized on the basis of Equations (8), 
(9) and (11) using the MoKα radiation wavelength λ = 
0.071609 [nm]. The dashed line represents a smoothed 
curve. 
 

1) the Inorm (s) curve should oscillate along the Igas (s) 
curve and as a consequence according Equation (A9); 

2) the curve Idistr (s) should oscillate along the zero 
value of the intensity axis; 

3) the resulting RDF must not be contaminated by 
parasitic fluctuations due to bad scaling (see Section A2.) 
as a consequence of a bad course of the scattering factor. 

The mutual relation between quantities Inorm (s), Igas (s) 
and Idistr (s) is explained in the Appendix A, see equations 
(A9), (A10) and (B1) with (B2).  

In Figure 5 the calculation of the crucial curve Igas is 
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undertaken for the relict radiation factor fRelict. The form 
of this factor was determined by the trial and error 
method and is shown in Figure 6. In this figure is the 
factor fRelict compared with the coherent ( coh

Xf ) and inco- 
herent ( incoh

Xf ) atomic scattering factor for X-rays corre- 
sponding to the Hydrogen atom (according the Interna- 
tional Tables for Crystallography [6]). 

Similarly as for X-rays we have set the relict radiation 
factor fRelict 

Relict 1  for  0f  s              (10) 

and further, we have set in Equation (A7) Z = 1 and m = 
1, hence in Equation (A6) is Km = 1. From this point of 
view our construction of the relict radiation factor fRelict 
should formally correspond to a “hydrogen-like” parti-
cle. 

Further we have to point out that in connection with 
the presentation of the quantity Igas (s) in Equation (A10) 
its course in Figure 5 is given now by the relation 

  2
gas RelictI s f .             (11) 

In Figure 5 we see that the function Inorm (s) is prop- 
erly oscillating along the function Igas (s) and therefore 
the function Idistr (s) is properly oscillating along the zero 
line. The consequence is that we will obtain a “proper” 
radial distribution function, i.e. without any parasitic 
maxima, see the Subsection 3.1. 
 
2.3.4. Relation between the Classic and Relict  

Distribution of distances 
We rewrite now the basic Equation (A2) using the scat-  
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Figure 5. Calculation of quantities Inorm (s)—full line, Igas (s) 
—dashed line (see Equation (11)) and of Idistr (s)—dashed 
dotted line, according Equations (A9), (A10) and (B1), (B2) 
using the “artificial” relict radiation factor fRelict for the 
wavelength λ = 0.071069 [nm]. Oscillations of the curve Idistr (s) 
are along the x-axis; hence the criterions set at the begin- 
ning of this section are fulfilled. See text for details.  
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Figure 6. Behaviour of the relict radiation factor fRelict is 
shown. For comparison the courses of the classic coherent 
and incoherent X-ray atomic scattering factors Xfcoh  and 
f X

incoh  for Hydrogen are included. The parameter sClassic is 
defined in Equation (6), the parameter XsClassic  is described 
in Equation (A5). Data for Xfcoh  and Xfincoh  are taken from 
[6]. The calculation is demonstrated for the wavelength λ = 
0.071069 [nm].  
 
tering vector in the classic reciprocal space sClassic, see 
Equation (6). 

      Medium Fourier
0 C[nm*] ,r r r I    lassics ,  (12) 

where  Medium
0 r  is the member which is not Fourier- 

dependent and describes the structure-less total disorder 
depending on the density of the matter.  

The parameter r is measured in [nm*] in order to em-
phasize that the calculation of the RDF ρ(r) is realized on 
the basis of the parameter sClassic, which is dipped in a 
2-fold reciprocal space (see Subsection 2.3.1.). In other 
words: the calculation of the RDF ρ(r) is realized in the 
reciprocal space of classic distances, which have the 
dimension [nm*]. Here we again point out the fact, that 
classic distances are distances between Objects calcu- 
lated on the basis of the function IClassic (sClassic), see Fig- 
ure 3, which we analyze using Equation (A2) or (12). 

In order to receive now the information in the real 
space of classic distances (characterized by the parame- 
ter R) we must calculate the reciprocal value of the pa- 
rameter r, hence the relation between r and R is 

 1 [nm*] [nm]r R .           (13) 

It would be now possible to rewrite quite formally 
Equation (A2) using the scattering vector in the relict 
reciprocal space SRelict, see Equation (9). Similarly as for 
Equation (12) we would receive 

      Medium Fourier
0 R,R R R I S    elict .  (14) 
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Quite hypothetically the RDF ρ(R) would then bring 
us information on the real space of relict distances, which 
have the dimension [nm]. Actually, however, a RDF will 
not be calculated in this case, because the distribution 
I(SRelict), see Figure 4, is not convenient for a Fourier 
transform. The calculation of relict distances in the real 
space, i.e. of distances between complex Objects (big 
clusters) will be done on the basis of a theoretical calcu- 
lation of the function I(SRelict)) using the Debye formula 
(18) calculated for appropriate models, see later on Sec- 
tion 4.  
 
3. Calculations in the Classic Reciprocal 

Space sClassic 
 
3.1. Calculation of RDFs  
 
In our first example we calculate in Figure 7 the RDF of 
Objects corresponding to the Fourier transform of inten- 
sities  for the wavelength λ = 
0.071069 [nm] which is a frequently used wavelength 
(λMoKα) in e.g. structure analysis, see Equation (A2) and- 
or (12). The scaling of intensities has been already dem-
onstrated in Figure 5 on the basis of the relict radiation 
factor fRelict constructed in Figure 6. 

Fourier
Classic, I sr

The calculated RDF shows a form typical for RDFs 
obtained for disordered materials. It turns out that in the 
region from 0.1 to 0.4 [nm*] we observe peaks 0r and 1r. 
Moreover there is a minimum minr which separates this 
region from a structure-less course starting at the posi- 
tion 2r. Such behaviour indicates the existence of order- 
ing in the matter. In other words, there is a distinctive 
separation of the matter ending its ordering at 1r = 0.312 
[nm*] from the residual structure-less phase which starts 
at 2r = 0.395 [nm*]. For these reasons we will consider 
as a boarder between the ordered and disordered state the 
gap at minr = 0.348 [nm*]. 

In the same way we calculated RDFs for four more 
typical wavelengths, i.e. 0.110674 (λSeKα), 0.154178 
(λCuKα), 0.250466 (λVKα) and 0.537334 [nm] (λSKα). From 
these calculations it follows that, as expected, the de- 
pendence of the magnitude of corresponding coordina- 
tion spheres on the wavelength λ is linear, see Figure 8, 
moreover, all RDFs had the same appearance.  

In this connection we have to point out, that the dis- 
tances are measured in reciprocal space distances [nm*] 
and that, with respect to Equation (13), these distances 
have to be recalculated to “real space” distances, e.g. in 
[km]. This recalculation is realized in Table 1 only for 
the most important distance minr = 0.348 [nm*]. Simul- 
taneously we review this parameter for all wavelengths 
(Figure 8) and simultaneously extrapolate this distance 
to the wavelength of relict radiation photons λ = 1.9  
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Figure 7. Calculation of the radial distribution function 
(RDF) according equations (A2) and-or (12) for the wave- 
length λ = 0.071069 [nm]. The dashed-dotted line corre- 
sponds to the second member in equation (12), the dashed 
line is the first member in this equation (dependent on den- 
sity) and full line is the sum of both components, see text for 
details. Value of the density D necessary to shift the mini- 
mum at 0.348 [nm*] to positive values of the RDF is indi- 
cated in the upper right corner. 
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[mm]. 

Real space distances minR calculated in Table 1 are 
visualized in Figure 9. The extrapolation to the wave- 
length of relict photons 1.9 [mm] indicates that for this 
wavelength the shortest minR distances are of the order 
102 meters. Later on (see Subsections 4. and 5.1.) the dis- 
tance minR will be ascribed to the distance between “Ob- 
jects”.  
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Figure 9. Dependence of the real space distances minR (full 
circles) on the wavelength λ (see Table 1 for details). Simul- 
taneously an extrapolation to a distance corresponding to 
the wavelength of CMB (relict) photons 1.9 [mm] is visual- 
ized (empty circles). Later on (Sections 4. and 5.1.) the 
quantity minR will describe the distance between “Objects”. 
 
Table 1. Review of the most important distance minr char- 
acterizing the separation of the ordered region from the 
structure-less one on the wavelength λ (see Figure 8). Re- 
calculation to the real space distances minR [km] is included. 
Extrapolation of this distance to the wavelength of relict 
radiation photons 1.9 [mm] is computed together with an 
estimate of final errors. 

Review of the reciprocal space 
distance minr in [nm*] on the basis 

of results presented in  
Figures 8 and 9 

Recalculation of the reciprocal 
space distance minr in [nm*] 
into the real space distance 

minR [km] 

λ [nm] minr [nm*] minR [km] = 1/minr [nm*–1] 

0.071069 0.348 2,873,563 

0.110674 0.542 1,845,018 

0.154178 0.752 1,329,787 

0.250466 1.221 819,001 

0.537334 2.618 381,971 

Extrapolation to higher wavelengths λ 

λ [nm] minr [nm*] minR [km] 

1 4.87 205,231 

10 49 20,523 

100 487 2052 

500 2 436 410 

1 000 4 873 205 

1 000 000 4 872 561 0.205 

1 900 000 9 257 865 0.108 

= 1.9 [mm] = 9.3 ± 0.1 [mm*] = 108 ± 2 [m] 

3.2. Calculation of the Density 
 
The calculation presented in Figure 7 and repeated for 
four additional wavelengths enabled us to estimate the 
density of the matter, i.e. the important parameter effect- 
ing the first member ρ0

Medium(r) in Equation (12). We 
simply supposed that the fluctuations of the RDF should 
not be negative. In order to shift in Figure 7 the mini- 
mum at minr = 0.348 [nm*] to positive values we had to 
set the density to a value D = 108.60 [kg·m–3]. In the 
same way we have determined densities for the remain- 
ing four wavelengths. 

The results are summarized in Figure 10 and Table 2. 
In the log-scale is the dependence of density on the 
wavelength nearly linear and therefore enables again an 
extrapolation to higher wavelengths. This extrapolation 
is presented in Table 2 and visualized in Figure 11. 

It follows from Table 2 and Figure 11 that the most 
probable medium density of density fluctuations of the 
matter with which CMB (relict) photons realized their 
last interaction is ~9·10–23 [kg·m–3]. Taking in account 
the limits of our calculation then the density can be for- 
mally written as 22 310 10D     [kg·m–3], see also Fig- 
ure 11 and Table 2. 
 
4. Modelling in the Relict Reciprocal Space 

SRelict 
 
In the case when Figure 4 should be an X-ray scattering 
picture of a disordered material (e.g. of a glass) then such 
record would represent a picture typical for a material 
with well developed clusters. Their mutual distance 
should then characterize the position of the “first” mas- 
sive peak. It follows from theory and experience that it is  
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Figure 10. Dependence of macroscopic densities on short 
wavelengths. In the log-scale this dependence is nearly lin- 
ear. Numerical values are given in Table 2. Numbers indi- 
cate wavelengths, for which the corresponding RDF was 
calculated. 
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Table 2. Review of numerical values of densities according 
Figure 10 is presented. Extrapolation of the sequence of 
densities to higher wavelengths, especially to the wave- 
length of relict radiation photons 1.9 [mm] is shown. First 
five densities D were calculated following the description in 
Subsection 3.2. Possible final error is estimated and the 
values of the critical density according [7] and [8] are given.  

Wavelength λ [nm] Macroscopic density D [kg·m–3]

0.071069 108.6 

0.110674 40.84 

0.154178 17.18 

0.250466 4.39 

0.537334 0.46 

Extrapolation to higher wavelengths λ 

λ [nm] D [kg·m–3] 

1 9.0E–02 

10 6.0E–05 

100 4.0E–08 

1 000 2.0E–11 

1 000 000 1.0E–21 

1 900 000 = 1.9 [mm] 9.0E–23 ± E–3 

Critical density according [7,8]: Dcritical = 5.0 to 7.0 E–27 [kg·m–3] 
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Figure 11. Extrapolation of the dependence of densities on 
wavelengths λ to the wavelength of relict (CMB) photons λ = 
1.9 [mm]. Empty circles represent values shown already in 
Figure 10. Full circles are extrapolated values. Dashed lines 
show the limits of possible extrapolations. 
 
not possible to get from this peak information on the 
internal structure of Clusters, only on their magnitude 
and mutual distance. 

The method which has to be used for an analysis of 
this type of scattering is a direct calculation of scattered 

radiation on the basis of the Debye formula 

      Relict Relict Relict
1 1

sin
n n

i j ij ij
i j

I S f f d S d S
 

  .  (18) 

Here fi and fj are the scattering factors of n input parti- 
cles and dij are the distances in real space between all 
available particles in the model and SRelict is the scattering 
vector in the relict reciprocal space defined in equation 
(9). It should be pointed out that as scattering factors fi 
and fj we have used now the relict radiation factor fRelict 
calculated in Subsection 2.3.3. The summation is over all 
n particles in the model. This formula gives the average 
scattered intensity for an array of particles (or atoms in 
solid state physics) with a completely random orientation 
in space to the incident radiation.  

Our model was quite simple: For the wavelength λ = 
0.071069 [nm] the Cluster was a tetrahedron (5 particles) 
with an inter-particle distance 0.263 [nm] i.e. located in a 
cube with an edge 0.607 [nm]. In order to find the best fit 
with the scattering curve according Equation (18), the 
distance between Clusters (tetrahedrons) had to be d = 3 
[nm], i.e. the tetrahedrons were located in positions of 
the basic skeleton, see Figure 12, characterized now by a 
side a = 6.93 [nm]. This model had 22 × 5 particles, i.e. a 
total of 110 particles. This calculation is shown in Fig-
ure 13. 

For all other wavelengths (λ ≥ 0.110674 [nm]) we had 
to increase the dimensions of the Cluster. The Cluster 
had then the form of the skeleton shown in Figure 12 
with an edge 0.607 [nm] and consisted of 22 particles 
(again with an inter-particle distance 0.263 [nm]) em- 
bedded in 8 edge-bound tetrahedrons. Only this Cluster 
occupied then the “positions” of the cubic basic skeleton 
shown in Figure 12 forming now an Object. (A more  
 

 

Figure 12. The basic skeleton (and-or a part of a Cluster 
structure) consists of 22 “positions” formed by 8 edge- 
bound tetrahedrons. All positions are identical, for a better 
graphic representation are the centres of tetrahedrons 
drawn white. The picture has been constructed using pro- 
grams [9] and [10]. 
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instructive schematic presentation of an Object is shown 
in Figure 17 where Clusters are presented as small 
darker circles filled with “particles”.) When changing the 
dimension of this basic skeleton, we simultaneously 
changed again the distance d between Clusters. In order 
to reach for λ = 0.110674 [nm] the correct position of the 
massive peak at 1.6 [nm–1] an inter-Cluster distance d = 
4.65 [nm] had to be used, i.e. the dimension of the 
skeleton was characterized by the side a = 10.74 [nm]. 
This model had then 22 × 22 particles, i.e. a total of 484 
particles and simulated a part of the Object structure. The  
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Figure 13. Calculation of the profile of the recalculated 
anisotropy spectrum for λ = 0.071069 [nm] based on a set of 
22 Clusters with a mutual distance d = 3 [nm]. The Cluster 
was formed by a tetrahedron (5 particles); hence there were 
110 particles in a model, see text for details. Full line - ex-
periment, empty circles - calculated scaled and smoothed 
curve, dashed line - calculated scaled scattering. 
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Figure 14. Calculation of the profile of the recalculated 
anisotropy spectrum for λ = 0.110674 [nm] and for a set of 
22 Clusters with a mutual distance d = 4.65 [nm]. The 
Cluster consisted of 22 particles, hence there were 484 par-
ticles in the model, see text for details. Full line - experiment, 
empty circles—calculated scaled and smoothed curve, dashed 
line—calculated scaled scattering.  

calculation is shown in Figure 14. 
Calculations of Cluster distances for additional wave- 

lengths (0.154178, 0.250466 and 0.537334 [nm]) have 
shown (see Figure 15) that the dependence of Cluster 
distances on the corresponding wavelength is linear. This 
fact enabled an extrapolation of the Cluster distance d to 
the wavelength of relict photons λ = 1.9 [nm], see Table 
3. This extrapolated distance is Relict  [cm]. The 
extrapolation is visualized in Figure 16.  

12 1d  

It should be noted that the recalculated anisotropy 
spectrum depends in this case directly on the angle θRelict 
which is equal to the angle α (see Equation (8)) and 
therefore a recalculation of the inter-Cluster distance d 
into real space distances is not necessary because the 
Debye formula analyzes the relict reciprocal space rep- 
resented by the vector SRelict directly in real space dis- 
tances, see the quantity dij in Equation (18).  
 
5. Discussion 
 
In the following discussion we will concentrate on sev- 
eral important ideas which may arise when reading this 
paper.  

In particular this contribution should demonstrate how 
the formalism imported from solid state physics could be 
useful in solving specific cosmological problems: It may 
shed some new light on the physical processes taking 
place in the primordial plasma.  

First of all, according our opinion, this work points in 
favour of clustering processes and consequently to a 
cluster-like structure of the matter in the moment when  
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Figure 15. Dependence of distances d between Clusters on 
the wavelength λ (numerical values are shown). With ex-
ception of the “0.071 case” models consisted of 22 Clusters 
with 22 particles in each Cluster, i.e. a model included 484 
particles. Inter-Cluster distances characterize the position 
of the massive peak, see Figures 13 and 14 and the text for 
details. 
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Table 3. Extrapolation of distances d between Clusters to 
the wavelength of relict photons λ = 1.9 [nm]. These dis- 
tances influence the position of the massive peak, see Fig- 
ures 14, 15 and 16. The estimate of the final error is based 
on errors given in Figure 15. 

Wavelength λ [nm] Distance between Clusters d [nm]

0.071069 3.00 ± 1.50 

0.110674 4.65 ± 1.00 

0.154178 7.20 ± 1.00 

0.250466 13.00 ± 1.00 

0.537334 30.00 ± 1.00 

Extrapolation to higher wavelengths λ 

λ [nm] d [nm] 

1 60.81 

10 608 

100 6081 

500 30,404 

1 000 60,808 

100 000 6,080,792 

1 000 000 60,807,919 

1 900 000 115,535,046 

= 1.9 [mm] dRelict = 12 ± 1 [cm] 
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Figure 16. Extrapolation of distances d between Clusters to 
the wavelength λ = 1.9 [mm]—full squares; calculated val- 
ues—empty squares (see Figure 15 and Table 3). 
 
the universe became transparent for photons (see Sub- 
section 5.1.). 

In the second place the new formalism enabled us a 
simple and general description of the interaction of relict 

radiation with the matter and may help in an improve- 
ment of the theoretical predictions of the CMB pattern 
(see Subsection 5.2.). 

Finally this new approach may be useful in the analy- 
sis of the CMB data. We have shown that the transfor- 
mation of the anisotropy spectrum of relict radiation into 
a special two-fold reciprocal space and into a simple re- 
ciprocal space was able to bring quantitative data in real 
space. Problems with the transformation into reciprocal 
spaces, mainly with the use of the proper wavelength of 
relict photons will be discussed in Subsection 5.3. 
 
5.1. The Cluster-Like Structure of the  

Primordial Matter 
 
The most important consequence of our quantitative re- 
sults obtained in Sections 3 and 4 is, according our opin- 
ion, the idea of clustering processes taking part in the 
formation of the primordial matter. There we have ar- 
rived to three distances, which we interpret in a follow- 
ing way: The first distance ~102 [m], (Table 1) should 
indicate the distance between Objects (big clusters), the 
second one ~10–1 [m], (Table 3) should indicate the dis- 
tance between smaller Clusters, while the internal struc-  
 

 

Figure 17. A schematic arrangement of Clusters (darker 
regions) with particles (small white points) in an Object 
(white region). In our model the distance between Objects is 
~102 [m], see Table 1. A detailed structure of a Cluster and 
of an Object in this model is presented in Figure 12. The 
most probable model distance between Clusters is ~10–1 [m], 
see Table 3. The distance between particles in the model is 
0.26 [nm]. We estimate that there are ~1011 particles in one 
Object and ~102 particles in one Cluster (see Appendix C1 
and C2) and ~109 Clusters in one Object, see Appendix C3. 
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ture of a single Cluster was formed in the model by 22 
particles with a medium particle distance 0.26 [nm], see 
Section 4. 

In Figure 17 we show a schematic picture of this 
cluster model. The big circle represents an Object. An 
Object is a clump of Clusters, where only a part of this 
clump was simulated in the model (the model of an Ob- 
ject had 22 Clusters each consisting of 22 particles, i.e. it 
consisted of a total of 484 particles). 

Although this model gave a sufficiently well agree- 
ment with the width of the massive peak, as demon- 
strated in Figure 14, our estimates (see Appendix C) 
show that the number of Clusters as well as the number 
of particles in one Cluster is greater., i.e. that there may 
be as far as 1011 particles in one Object and 102 particles 
in one Cluster. That the density plays an important role 
in these calculations will be discussed in Subsection 5.4. 

Even when the cluster model gave a good profile of 
the massive peak at e.g. 1.62 [nm], than such a model of 
internal structure of Clusters cannot be a unique one, 
because the calculation of the profile is not sensitive to 
the internal cluster structure, nevertheless the cluster-like 
character of the modelling process has to be maintained. 
 
5.2. The Relict Radiation Factor 
 
We have already pointed out in Subsection 2.1. why 
during the analysis of the CMB spectrum it has not been 
possible to apply conventional atomic scattering factors 
used in solid state physics and why a new special factor 
reflecting the complexity of interaction processes of pho- 
tons with the primordial matter has to be constructed. It 
is important to have on mind that the description of these 
interactions is possible only in a special two-fold recip-
rocal space into which the CMB spectrum was trans-
formed. We have called this new factor the relict radia-
tion factor and it had to substitute all complicated proc-
esses which participate in the formation of the angular 
power spectrum of CMB radiation. 

Because relict photons realize their interaction with 
various kinds of particles and we have generated only 
one radiation factor, this factor represents, as a matter of 
fact, a medium from all possible individual relict radia- 
tion factors. In this way this new formalism offers a gen- 
eral description of the interaction of relict radiation with 
the matter and simultaneously reflects the complexity of 
processes which influence the anisotropy spectrum of 
CMB radiation from the cosmological point of view [5]. 

During our study we have concentrated on three im- 
portant facts which may justify the attempt to interpret 
the anisotropy spectrum of CMB radiation as a cones- 
quence of the interaction of photons with density fluctua- 
tions which characterize the distribution of particles be- 

fore the recombination process. 
The first fact is that temperature fluctuations in the 

CMB spectrum are related to fluctuations in the density 
of matter in the early universe and thus carry information 
about the initial conditions for the formation of cosmic 
structures such as galaxies, clusters or voids [11]. 

Secondly, it is the fact that the information on these 
density fluctuations in the distribution of particles (elec- 
trons, ions, etc.) has been brought by photons. Photons 
which we observe from the microwave background have 
travelled freely since the matter was highly ionized and 
they realized their last Thomson scattering (see already 
Subsection 2.1.). If there has been no significant early 
heat input from galaxy formation then this happened 
when the Universe became cool enough for the protons 
to capture electrons, i.e. when the recombination process 
started [12]. 

The third fact is that the anisotropy spectrum is angu- 
lar dependent, see Figure 1.  

Although we know that the anisotropy spectrum of 
CMB radiation, as presented in Figure 1, has no direct 
connection with a scattering process of photons, it was 
the transformation of the CMB spectrum into a two-fold 
reciprocal space, which enabled us to interpret the ani- 
sotropy spectrum of CMB radiation as a result of an in- 
teraction process of photons with density fluctuations of 
the matter represented by electrons, ions or other parti- 
cles. This approach enabled us to reach an advantageous 
approximation of this process.  

The process consisted of two steps: First of all we 
have constructed in Subsection 2.3.1. an angular recip-
rocal space characterized by the “scattering” angle θClassic, 
see Equations (2) and (4). This space is reciprocal to the 
space characterized by the angle α (α is the angle be-
tween two points in which the temperature fluctuations 
of CMB radiation are compared to an overall medium 
temperature).  

Then, we have constructed an additional “classic” re- 
ciprocal space (1/λ) into which the first one (the θClassic 
space) was dipped, by defining in this new “two-fold” 
reciprocal space the classic scattering vector sClassic, see 
Equation (6). Only after these transformations we treated 
in this new classic reciprocal space the transformed ani- 
sotropy CMB spectrum as a scattering picture of relict 
photons. 

It was only this space in which we simulated (in Sub- 
section 2.3.3.) the interaction of CMB (relict) photons 
with density fluctuations by the relict radiation factor 
fRelict.  

The criterion for the trial and error construction of the 
relict radiation factor fRelict has been that this factor had to 
fulfil the three requirements set at the beginning of Sub-
section 2.3.3. Only then it was secured that after the Fou-
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rier transform, according Equations (A2) and-or (12), 
there will not be any (or at least small) parasitic fluctua-
tions on the curve ρ(r) and-or ρFourier. That we have 
achieved these demands is documented in Figure 7 
where we do not see any parasitic fluctuations on the 
curve ρFourier and as a consequence on the curve ρ(r).  

To summarize: It is true that in our formal analogy 
between scattering of e.g. short-wave radiation on disor- 
dered matter (Figure 2) and “scattering” of CMB pho- 
tons on electrons, ions and other particles (Figure 1) is 
an essential difference, because the physical processes 
are completely different, e.g. the scattering process itself, 
length scales involved, etc., however, the difference be- 
tween physical processes is reflected and simultaneously 
eliminated by the special relict radiation factor fRelict 
(Subsection 2.3.3.), which we have included into all cal-
culations based on the classic two-fold reciprocal space 
(see Subsection 2.1.). Moreover, additional calculations 
in the relict reciprocal space (see Subsection 4.) based on 
the relict radiation factor were done directly for the 
transformed angular power spectrum of relict radiation 
(see IRelict (SRelict) in Figure 4) and thus present an infor-
mation on distance relations between Clusters (formed 
by particles) in real space.  
 
5.3. The Wavelength Problem 
 
The problem is to which wavelength of relict photons we 
have to relate our calculations. One possibility may be to 
refer this wavelength to that time when 379.000 years 
after the Big Bang the Universe cooled down to 3000 K 
and the ionization of atoms decreased already only to 1%. 
Then according Wien’s law 

max b T                  (16) 

where λmax is the peak wavelength, T is the absolute 
temperature of the blackbody, and b is a constant of 
proportionality called Wien’s displacement constant, 

3 [mK], we obtain for the temperature 
3000 K a wavelength value 

2.8978 10b  
max 966   [nm], see [13].  

However, simultaneously we must be aware of the fact 
that we are analyzing CMB photons now when the tem- 
perature of the universe, due to its expansion, is 2.725 K. 
Then the wavelength of photons according the Wien’s 
law should be ~1 [mm]. 

On the other hand the COsmic Background Explorer 
(COBE) measured with the Far Infrared Absolute Spec- 
trophotometer (FIRAS) the frequency spectrum of the 
CMB, which is very close to a blackbody with a tem- 
perature 2.725 K [11,14]. The results are shown in Fig- 
ure 18 in units of intensity (see the text to Figure 18). It 
follows that the wavelength corresponding to the maxi- 
mum is 1.9 [mm].  
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Figure 18. Dependence of the intensity of the CMB radia- 
tion on frequency as measured by the COBE Far InfraRed 
Absolute Spectrophotometer (FIRAS) ([11,14]). The thick 
curve is the experimental result; the points are theoretically 
calculated for an absolute black body with a temperature of 
2.725 [K]. The x axis variable is the frequency in [cm–1]. 
The y-axis variable is the power per unit area per unit fre- 
quency per unit solid angle in MegaJanskies per steradian 
[sr], (1 [Jansky] is a unit of measurement of flux density 
used in radioastronomy, abbreviated “Jy” (1 [Jansky] is 
10–26 [W·m–2·Hz–1]). 
 

After all we have decided to relate our results to the 
wavelength of CMB photons λ = 1.9 [mm] which corre- 
sponds to the maximum of the intensity distribution. Be- 
cause the distribution of the spectrum covers a relatively 
broad interval of wavelengths, see Figure 18, calcula- 
tions based on the wavelength 1.9 [mm] should then 
represent the most probable estimate. Moreover, this 
consideration is supported by the fact that the angular 
distribution of CMB radiation is the same for all wave- 
lengths.  

However, on the basis of graphs in Figures 10, 12 and 
16 an easy recalculation of distances and-or of the density 
would be possible when another CMB photons wave- 
length would be considered as more appropriate.  
 
5.4. The Density of the Mass and Distances  

between Objects, Clusters and Particles 
 
The way how we arrived to numbers characterizing the 
density of the matter was described in Subsection 3.2. In 
a conventional X-ray analysis the density is the macro- 
scopic density of the material under study. Therefore we 
suppose that also in this case the density which influ- 
ences the parabolic shape of the curve of total disorder 
(see the first member on the right side of equation (A2) 
and-or (12) and Figure 8) should be understood as a real 
medium density of density fluctuations.  
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

The dependence of the density on the wavelength as 
demonstrated in Figures 11 and 12 is not perfectly linear; 
therefore we have marked in Figure 11 the extent of 
possible linear dependences. This result can be formally 
written as 

22 310 10D    [kg·m–3].         (17) 

This medium value is about 105 times higher than the 
“critical density” Dcritical ~ (5 to 7) × 10–27 [kg·m–3], see 
Table 2.  

Further, we should have in mind that the local density 
in a Cluster or in an Object has to be greater. We are able 
to document this fact on the basis of our Cluster model. 
Based on particle distances dparticles = 0.263 [nm], we 
have simulated a part of the Cluster structure by a cube 
with an edge aCluster = 0.607 [nm]. There were 22 parti- 
cles in this cube which can be closed in a sphere with a 
radius RCluster = 2dparticles = 2 × 0.263 [nm] = 0.53 [nm]. 
The volume of this sphere is VCluster = 0.62 [nm3] = 0.62 × 
10–27 [m3]. Supposing that particles are represented ac- 
cording expression (C6) by their medium mass 1:1:1

partm   
 [kg], we obtain for the density in the Cluster 

the value   

272.77 10

 1:1:1
Cluster part Cluster22 60.94 0.62 98D m V    [kg·m–3], 

(18) 

i.e. a value approaching density values known from solid 
state physics (i.e. values lying between the densities of 
gases and liquids). 

At the same time we have to take in account that the 
estimates concerning the density of matter are really 
complicated. The microwave light seen by the Wilkinson 
Microwave Anisotropy Probe (WMAP), suggests that 
fully 72% of the matter density in the universe appears to 
be in the form of dark energy [15] and 23% is dark mat- 
ter. Only 4.6% is ordinary matter. So less than 1 part in 
20 is made out of matter we have observed experiment- 
tally or described in the standard model of particle phys- 
ics. Of the other 96%, apart from the properties just men- 
tioned, we know “absolutely nothing” [16]. In this con- 
nection we consider the density value we have received 
(9 × 10–23 [kg·m–3]) as the density of the ordinary matter.  

Last remark should be given to the probability of Ob- 
ject interactions in the case of their apparently large mu- 
tual distances (~102 [m]). It follows from the Maxwell 
speed distribution that the root mean square particle ve- 
locity v corresponding to the temperature T = 3000 [K], is 

3kT m  ,               (19) 

where k is the Boltzmann constant (k = 1.38 × 10–23 
[Joule·K–1]) and m is the mass of the particle, which may 
be here for example the mass of the proton m = 1.67 × 
10–27 [kg]. Then we obtain  

   23 3 27

20 27

3 1.38 10 3 10 1.67 10

12.42 10 1.67 10

  

 

     

  
 

38.6 10   [m·s–1] 

This is already a velocity, which should make possible 
an intensive interaction of Objects formed by Clusters 
consisting of particles.  
 
6. Conclusions 
 
A formalism of solid state physics has been applied to 
provide an additional tool for the research of cosmologi- 
cal problems. It was demonstrated how this new ap- 
proach could be useful in the analysis of the CMB data. 
After a transformation of the anisotropy spectrum of rel- 
ict radiation into a special two-fold reciprocal space it 
was possible to propose a simple and general description 
of the interaction of relict photons with the matter 
380.000 years after the Big-Bang by a “relict radiation 
factor”. This factor, which may help in an improvement 
of the theoretical predictions of the CMB pattern, en- 
abled us to process the transformed CMB anisotropy 
spectrum by a Fourier transform and thus arrive to a ra- 
dial electron density distribution function (RDF) in a 
reciprocal space. 

As a consequence it was possible to estimate distances 
between Objects of the order of ~102 [m] and the density 
of the ordinary matter ~10–22 [kg·m–3]. Another analysis 
based on a direct calculation of the CMB radiation spec- 
trum after its transformation into a simple reciprocal 
space and combined with appropriate structure modelling 
confirmed the cluster structure. It indicated that the in- 
ternal structure of Objects may be formed by Clusters 
distant ~10–1 [m], whereas the internal structure of a 
Cluster consisted of particles distant ~0.3 [nm].  

In this way the work points in favour of clustering 
processes and to a cluster-like structure of the matter and 
thus may contribute to the understanding of the structure 
of density fluctuations and hence to a refinement of pa- 
rameters describing the Standard Model of Cosmology 
[17]. Simultaneously, the work sheds more light on the 
structure of the universe in the moment when the uni- 
verse became transparent for photons. On the basis of 
quantitative considerations it was possible to estimate the 
number of particles (protons, helium nuclei, electrons 
and other particles) in Objects and Clusters and the 
number of Clusters in an Object.   
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r

Appendix A: Basic Equations 
 
Generally the intensity of radiation scattered2 on a mat- 
ter (solid, liquid) offers us information on the structure of 
a material of any kind in the reciprocal space. The rela- 
tion between the reciprocal and real space is mediated by 
the Fourier transform of the radiation intensity scattered 
by a disordered material. 

The basic formula transforming the reciprocal space 
information into the real space one is in the case of non- 
crystalline (non-periodic) materials [18] 

   24π el
m m mm

r r a K   .         (A1) 

In a more detailed description the quantity ρ(r) is then 
expressed as 

   

       
max

2
0

2

0

4π

2 π sin exp d

el
m mm

s

r r a K r

r si s rs s

 









 s
 (A2) 

and describes the radial electron density distribution 
function (RDF) in real space in the case when the atomic 
scattering factor fm (see Equation (A6)) is given in elec- 
trons [e]. The parameter r is the distance of an arbitrary 
atom from the origin in real space units. 

In Equation (A2) am are the concentrations of elements 
composing the matter 

m
,  are the 

elemental contributions of electron density to the overall 
electron density, i.e. it is the electron density around an 
atom of kind m, the factor exp(τs2) is an artificial tem- 
perature factor in which usually τ = –0.010, 0

 1ma   el
m r

el  is the 
mean electron density in a totally disordered material, 
which can be deduced from the macroscopic density via 
the Avogadro number L 

  21
0 10el

m mm
L M D a Z     ,      (A3) 

where Zm is the atomic number of kind m, D is the mac- 
roscopic density in [g·cm–3] and M is the molecular 
weight 

m mm
M a W  ,             (A4) 

Wm are corresponding atomic weights. The factor 10–21 in 
Equation (A3) is a consequence of the fact that the pa- 
rameter r is in [nm]. 

The parameter s is in Equation (2) related with the 
wavelength λ of scattered radiation by the formula  

 4π sins   .             (A5) 

Here is s = s – s0, where s0 is the vector of the incident 
and s the vector of the scattered radiation in the recipro-

cal space. 
Further, θ is the angle between the incident and scat- 

tered radiation (X-rays or neutrons) and λ is the wave- 
length of this radiation and Km is the effective number of 
electrons in an atom of kind m 

m m eK f f ,              (A6) 

where fm is the atomic scattering factor for X-rays for an 
atom of the kind m (see already Subsection 2.1.) and fe is 
the atomic scattering power of an electron for X-rays 

e m m mm m mf a f a Z            (A7) 

During a conventional experiment (e.g. see Figure 2), 
i.e. using MoK radiation, we have Classic = 0.071069 
[nm] and the maximum possible value of Classic  corre- 
sponding to θ = 90˚ is then according Equation (A5) 

s

max 1
Classic Classic4π 176.819 [nm ]Mos    .    (A8) 

Here we are starting to use the subscript “Classic”, 
which should point out that the scattering vector in the 
reciprocal space sClassic will be considered in the same 
way as in the “classic” conventional non-crystalline case. 

In Equation (A2) is i(s) the experimentally obtained 
scattered intensity of radiation, Icorr is this intensity cor- 
rected for various factors3 and properly scaled for the 
absolute value of scattering, hence 

       2
distr corr gas ei s I I s I s f   ,      (A9) 

the parameter 2
ef  is acting here as a sharpening func- 

tion. 
The general formula for the scattering on gas Igas (s) is 

  2 incoh
gas m m m mm m

I s a f a  f  ,      (A10) 

where incoh
mf  are the scattering factors for the incoher- 

ent (Compton) scattering, see Figure 6. 
The labelling Idistr for i(s) is used in Appendix B, 

where the scaling methods, important for a correct Fou- 
rier transform, are reviewed. 
 
Appendix B: The Scaling Problem 
 
In Equation (A9) we have already introduced the quantity 
Icorr (s), i.e. the corrected experimental scattered intensity. 
However, in order to arrive to a correct RDF, Icorr (s) 
must be scaled to the Igas (s) function in the absolute scale 
of atomic scattering, see Equation (A10). 

In the simplest scaling method we suppose that for 
high s-values there are not any scattering effects on the 
corrected experimental curve Icorr (s) and therefore the 2The term “scattering” (e.g. of radiation) is used throughout the Ap-

pendix, however, in the moment when in the quantity fm (see equation 
(A6)) the atomic scattering factor is substituted by the relict radiation 
factor, see Subsections. 2.1. and 5.2. we speak about an interaction of 
photons with the primordial matter. 

3In a conventional experiment the scattered intensity is corrected for 
scattering on “air”, absorption, divergency of the X-ray beam, Lorentz 
and polarization factor. During our calculations we have included only 
the polarization factor. 
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Icorr (s) and the Igas (s) curves should be equal. Then the 
scaling parameter aHSV is for maxs s  easily calculated 
as 

   HSV gas corra I s I s .          (B1) 

As a consequence we obtain in the whole interval of 
s-values a scaled scattered intensity  HSV

normI s  repre- 
sented by the equation 

   HSV
norm HSV corrI s a I s .         (B2) 

The function  HSV
normI s  oscillates around the Igas (s) 

curve. Following Equation (A9), we subtract the scatter- 
ing on gas and obtain the most important function Idistr, 
see Figure 5. 

There are several other scaling methods. An integral 
method [19] is characterized by a scaling factor HGW  
and supposes that the areas under the experimental scat- 
tering curve Icorr (s) and the structure-less Igas (s) curve 
should be equal. Similarly there is a quadratic integral 
method [20] characterized by a scaling parameter . 

a

aKRM

Our long experience in the research of disordered ma- 
terials documents that the better was the experiment and 
the better has been the application of scattering factors, 
the smaller was the difference (only several percent) be- 
tween the scaling coefficients HGW , HSV  and KRMa  
and simultaneously the smaller were the parasitic fluctua-
tions on the RDF. In the present work we have used all 
three scaling methods and have kept the difference be-
tween scaling factors in the limit of 4 percent. 

a a

 
Appendix C: Quantitative Relations between 
Objects, Clusters and Particles Estimated on 
the Basis of the Cluster Model 
 
C1. Estimates from Object Distances 
 
In Subsection 3.1, we have defined that the nearest dis-
tance between Objects (big clusters) is ~108 [m], see 
Table 1. In this moment we suppose a relatively simple 
organization of Objects, i.e. a “cubic body-centred” ar-
rangement, in which an Object in the centre has 8 nearest 
neighbour Objects distant bO = 108 [m], where bO is the 
half of the body diagonal in a cube with a side 

   2 3 2 108 [m] 1.732 125 [m]O Oa b    .  (C1) 

The volume VO of this cube is therefore 
6 31.953 10 [m ]OV   .           (C2) 

Using now our result on the density of the matter, see 
Table 2, 

23 3
29 10 [kg m ] O OD      m V         (C3) 

we are able to calculate in this model the mass m2O of 

Objects embedded in a cube with the volume VO. 

2

23 3 6 3

17

9 10 [kg m ] 1.953 10 [m ]

17.58 10 [kg].

O Om D V
 



 

    

 

    C4) 

At the same time, however, we have to take in account 
that, as a matter of fact, there are two Objects in the 
space of the cube (in each cube corner there is only 1/8 
of the second Object). Hence the mass mO embedded in 
one Object is 

178.79 10 [kg]Om   .           (C5) 

1) The mass is formed by a 1:1:1 mixture of pro-
tons, helium nuclei and electrons 

We may suppose now that the universe (in the time 
when the microwave background radiation began propa- 
gating) consisted of baryons (protons, helium nuclei, etc) 
and electrons, neutrinos, photons and dark matter parti- 
cles. Supposing now that we have a mixture consisting of 
protons, helium nuclei and electrons in a relation 1:1:1, 
then the medium mass of a “particle” 1:1:1

partm  in this mix- 
ture is 

   
 

1:1:1 27 27
part

27

1.67 10 [kg] 6.64 10 [kg]

0.00091 10 [kg] 3,

m  



   

 
 

i.e. 

 1:1:1 27 27
part 8.311 3 10 [kg] 2.77 10 [kg]m       (C6) 

and the number of particles 1:1:1
partON  in one Object is in 

this case 

   
1:1:1 1:1:1
part part

17 278.79 10 [kg] 2.77 10 [kg] ,

O ON m m

 



  
 

i.e. 
1:1:1 10
part 3.17 10 particles.ON            (C7) 

2) The mass is formed by a 1:1:10 mixture of pro-
tons, helium nuclei and electrons 

Supposing now a mixture consisting of protons, he- 
lium nuclei and electrons in a relation 1:1:10, then the 
medium mass of a “particle” 1:1:1

partOm  in this system is 

   
 

1:1:10 27 27
part

27

1.67 10 [kg] 6.64 10 [kg]

10 0.00091 10 [kg] 12,

Om  



   

  
 

i.e. 

 1:1:10 27 27
part 8.319 12 10 [kg] 0.69 10 [kg]Om      . (C8) 

and the number of particles 1:1:10
partON  in one Object is then 
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   
1:1:10 1:1:10
part part

17 278.79 10 [kg] 0.69 10 [kg] ,

O ON m m

 



  
 

i.e. 
1:1:10 10
part 12.74 10 particlesON   .        (C9) 

This section may be summarized by the statement that 
there are 

11
part 10ON   particles in one Object   (C10) 

 
C2. Estimates from Cluster Distances 
 
According our calculations the distance between Clusters 
is ~12 [cm] = 1.2 × 10–1 [m], see Table 3 and Figure 17. 
Similarly as in the previous case we suppose again a 
relatively simple organization of Clusters, i.e. a cubic 
body-centred arrangement in which a Cluster in the centre 
has 8 “nearest neighbour” Clusters distant 11.2 10Cb    
[m], where bC is the half of the body diagonal in a cube 
with a side 

   1

1

2 3 2.4 10 [m] 1.732

1.386 10 [m].

C Ca b 



  

 
   (C11) 

The volume VC of this cube is therefore 

   33 1 3 31.386 10 [m ] 2.66 10 [m ]CV      3 . (C12) 

Using now our result on the density of the matter, see 
already Equation (C3) 

23 3
29 10 [kg m ] C CD m     V  

we are able to calculate for this model the mass m2C of 
Clusters embedded in a cube having the volume VC. 

2

23 3 3 3

26

9 10 [kg m ] 2.66 10 [m ]

23.94 10 [kg].

C Cm D V
  



 

    

 

  (C13) 

Here again we have to take in account that there are 
two Clusters in the space of the cube (in each corner 
there is only 1/8 of the second Cluster). Hence the mass 
mC embedded in one Cluster is 

251.20 10 [kg]Cm   .          (C14) 

1) The mass is formed by a 1:1:1 mixture of pro-
tons, helium nuclei and electrons 

Similarly as in the preceding Appendix C1 we suppose 
again a mixture of protons, helium nuclei and electrons 
in a relation 1:1:1, respectively. The medium mass of a 

“particle” 1:1:1
partm  in this mixture is (see Equation (C6)). 

1:1:1 27
part 2.77 10 [kg]m    

and the number of particles 1:1:1
partCN  in one Cluster is 

then 

   
1:1:1
part part

25 271.20 10 [kg] 2.77 10 [kg] ,

C CN m m

 



  
 

i.e. 
1:1:1 2
part 0.43 10CN    particles.       (C15) 

2) The mass is formed by a 1:1:10 mixture of pro-
tons, helium nuclei and electrons 

Identically as in the preceding Appendix C1 the me- 
dium mass of a “particle” is in this case, see equation 
(C8), 

1:1:10 27
part 0.69 10 [kg]m    

and the number of particles 1:1:10
partCN  in one Cluster is then 

   
1:1:10 1:1:10
part part

25 271.20 10 [kg] 0.69 10 [kg] ,

C CN m m

 



  
 

i.e. 
1:1:10 2
part 1.74 10 particlesCN   .       (C16) 

This section can be summarized by the statement that 
there are 

2
part 10 particles in one Cluster.CN      (C17) 

 
C3. Consequences of Previous Calculations 
 
We are now able to calculate easily the number of Clus- 
ters in one Object. Because there are  par- 
ticles in one Object (Equation (C10)) and there are 

 particles in one Cluster, it follows that an 
Object should be composed from NC Clusters, where 

11
part 10ON 

2
part 10CN 

  11 2 9
part part 10 10 10 Clusters.C O CN N N     (C18) 

Supposing that densities in the Object and in the Clus- 
ter are equal then this value is independent on the value 
of the density and on the mass of the particle (e.g. 1:1:1

partm ) 
and depends only on the relation of the volumes VO/VC, 
because  

 part part

6 3 3 3

9

1.953 10 [m ] 2.66 10 [m ]

10 Clusters.

C O C O CN N N V V

 

 

  



    (C19) 

 


