
Journal of Modern Physics, 2012, 3, 1190-1198 
http://dx.doi.org/10.4236/jmp.2012.329154 Published Online September 2012 (http://www.SciRP.org/journal/jmp) 

A Guess Model of Black Holes and the  
Evolution of Universe 

Zhenhua Mei1, Shuyu Mei2 
1College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China 

2Medical College, Qingdao University, Qingdao, China 
Email: mzh62@qust.edu.cn 

 
Received June 10, 2012; revised July 16, 2012; accepted July 23, 2012 

ABSTRACT 

Based on the gravitational theory, fundamental data, and comprehensible suppositions, an evolution model of the uni-
verse was proposed. The universe exists in explosion and constringency mobile equilibrium state. The critical sizes of 
celestial bodies were calculated in their evolution process. 
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1. Introduction 

As the theoretical ratiocination (Einstein’s theory of rela-
tivity) and the cumulating of the more and more obtained 
data or phenomena from astronomic observation of the 
celestial bodies, people began to have a general impres-
sion of the universe, such as the clangorous words ex-
pressed: big bang, expanding universe, and black hole et 
al. (Ginsburg 1985). From a point of view that the mi-
crocosm decides the macrocosm, more information of the 
universe can be predicted from present knowledge of the 
elementary particles. 

In this paper, some parameters of evolution of the uni-
verse were calculated. The main thoughts were the New-
ton’s universal gravitation and the structures of matter. 

2. Preparation of Research 

2.1. Fundamental Data and Suppositions 

The gravitational constant, G, is 6.670 × 10–11 N m2·kg−2. 
The radius of hydrogen atom, a0, is 5.29 × 10−11 m. The 
mass density of atomic nucleus, ρn, was determined (Er-
dei 1976) to be 2 ×1017 kg·m−3. The mass of neutron, mn, 
is 1.67495 × 10−27 kg, radius rn, 1.2598 × 10−15 m. The 
combining energy of nucleus is 8 MeV. The gravitational 
acceleration on earth surface is 9.81 m·s−2. The sun has 
the mass of 1.989 × 1030 kg, density of 1.409 × 103 
kg·m−3, radius of 6.960 × 108 m. 

Suppositions: the combining energy of nucleus (strong 
interaction in nucleus) came from gravitation, and the 
nucleus consisted of gravitons; the combinative form 
between nucleus was its overlaps one another. 

2.2. Formula Derivation A—Gravitational 
Acceleration of a Particle from Solid Sphere 

According to Newton’s law, the gravitational force be-
tween two distant particles has the form: 

2 F maF GmM r , and  . Hence, the gravitational 
acceleration, 2a GM r

 

. 
However, to a neighboring large body (has a mass of 

M, radius of R), the radius of the body cannot be ne-
glected; its accurate result can be obtained by processing 
a mathematical integral. 

As Figure 1 expressed, a solid sphere has a radius of R, 
a homogeneous density of ρ, the particle has a mass, m, 
and has a distance, nR, from the center, the gravitational 
acceleration, a, of the particle was derived as follows: 
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Figure 1. Sketch map of a particle (m), which with a dis-
ance, nR, from the center of the solid sphere. t   
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where, “M” is the arbitrary point in the solid sphere, “h” 
the point corresponding to “M” horizontally. “r” is the 
distance of the point “M” from original point “o”, ρ′ is 
ideally homogeneous mass density of a solid sphere, ρ 

the average one. k stands for the calibration factor of av-
erage mass density. 

For a general integral 
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For integral 
 

     

  
     

 
  

  
  

  

2 22 2 2 2

0

2
22 2

0

d ln 1 1 ln 1 1

1
d ln 1 1

R
R

2 22 2 2 2

22

0 2 22 2 2 2

22 2

1 1 1 1

1 11
d 1

1 1 1 1

ln 1 1 1

R
R

x R x n R x R x n R

x
x x R x n R

              
   

       
 





 

 0

 

 0

  

 

R

R x n R x n R

n Rn R
x

R x n R x n R

R R R n R R

      

   
  

       
 

         
 

  -

     

 
  

  

       
 

 
  

2 2

2
22 2

0 022 2

2
2 2

2

2

0 22 2

1 ln 1

1
d d ln 1 1

1 1

1 2 1
ln 1 2 1 1 1 ln

1 1

1
d

1 1

R R

R

n R x x

n R
x x R x n

R x n R

n
R R n R n R

n

n R
x

R x n R

   

      
    

                 




   

 



 

   

   

 .

2 21
R

n R

R

  
 



 

 0

         (3) 

Copyright © 2012 SciRes.                                                                                 JMP 



Z. H. MEI, S. Y. MEI  1192 

For general integral 
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           (6) 

 
F(n) is a function of n. The, F – n, diagram was show- 

ed igure 2. 
the earth, the averag density ρ is 5.5153 × 

103 kg·m−3, the radius R is 6.356078 × 106 m. The gravi-
tational acceleration on earth surface was calculated (n = 
1) to be 12.68 m·s−2. However, the real value of gravita-
tional acceleration on earth is 9.81 m·s−2. It is 0.7736 
times than the calculated one. It is because of the earth 
that does not have an ideally homogeneous density used 
in above formula derivation process. The ratio can be 
used as calibration factor, k, of average density of a solid 
sphere (ρ′ = kρ. For earth, k = 0.7736; and it was sup-

posed to be fit for any other celestial bodies). 

2.3. Formula Derivation B—Self-Gravitational 
Pressure in Center of Solid Sphere 

The gravitational pressure in center from solid sphere can 
be calculated according to Equation (6). 

 in F
For e mass 

1 1d d d d 3F a m a V SRa n    , (where, 3V SnR ) 

1 3dp SRadn   

 12
1 2 0

4
d d .

3
p p Gk R F n n            (7) 
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The integral,  1

0
dF n n , can be calculated diagram-

matically. The diagram showed in Figure 3. 
The area beneath the curve calculated by computer 

gave the result of 0.62129. Thus, p = 0.62129 × 
4Gkρ2R2/3. Supposing the considered celestial body has 
the same value of calibration factor k of earth, then we 
obtained 

p = 0.6408Gρ2R2.             (7.1) 

2.4. Formula Derivation C—Gravitational 
Potential Energy from Solid Sphere 

The gravitational potential energy, Eg, from a solid 
sphere can be calculated. 

 2 d .
n

F n n


      (8) 

According to relation (6), t  
1

d

gd d 4gE E ma l mGk R   

he integral, F n n


 , 

can be calculated diagramm gram showed 
in Figure 4. 

The area beneath the curve calculated by computer 
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Figure 2. Diagram of function F (n). 
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Figure 4. Partial diagram of function F(n). The variable n 
changes from 1 to ∞. 
 
gave the result of 1.7193. Therefore, we have 

Eg = 1.7193 × 4GkρmR2 = 5.320GρmR2.     (8.1) 

3. Target Calculation 

3.1. Maximal Radius of Celestial Bodies 

Atoms have similar energy demand whe
compressed in nucleus forming a new atom (which has 
lower atomic number). Taking atom zinc as an example, 
when one electron of Zn is compressed in nucleus, the 
is

ef
fi

ci
en

t
l a

cc
el

er
a

/m
·s

–2

 

gure 3. Partial d  function F (n). The variable n 
changes from zero to one. 

n one electron is 

otopic atom Cu is then formed. The energy demand, 
ΔEa, can be calculated. According to quantum theory, the 
energy of an outer electron of a atom has the form E ≈ 
−13.6Z2/n2 (in ground state). Thus, 

2 2

13.
4ZnE  

2 2

30
6 13.6 765 eV

Z

n
    . 

2 2

2 2

29
13.6 13.6 715 eV

4
cu

Z
E

n
      . 

1 50 eVcu ZnE E E    . 

For an extreme hot electron of atom of hydrogen, 

ΔEa = ΔE1 + 13.6 = 63.6 eV = 1.02 × 10−

 radioactive
is decreasing

adius a , we guessed that the hydrogen 
at
nucleus. Then, the maximu  pressure, pmax,a, for com-
pressing a hydrogen atom to neutron could be derived as: 

ΔEa = FΔr = pSΔr = pSa0. 

17 J 

As the gravitational force increasing, many  
otopes formed with the atomic number . 

Considering the atom of hydrogen, that has the maximum 
compression r 0

oms would be the last element to be compressed to 
m

 
17

max, 3 311
0

13 2

3 3 1.02 10

4π 3.14159 4 5.29 10

1.64 10 Nm

a
a

E
p Ea V

a







  
   

  

 

(9) 
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where, Δr was replaced with the radius of hydrogen atom 
a0. 

The pressure comes from the gravitation of celestial 
body. Combining Equations (7.1) and (9), we have  

0.6408Gρ2R2 = 1.64 × 1013, 
then, 

6 1
10

G
  . 

If a solid celestial body has the same average mass 
density of earth (5.5153), then 

max 5.07R

6
max, 3 11

1
5.07 10

5.5153 10 6.670 10
solidR


 

    

To a hot gas celestial body, which has the same aver-
age mass density of sun (1.409), then, we have 

81.12 10 m. 

6
max,

8

1
5.07 10

1.409 10

4.41 10 m.

gasR  
 

 

3 116.670 10  

295.06 10 kg . 

3.2. Minimum Neutron Star 

A model of neutron star was showed in Figure 5. A neu-
tron body with the radius of R is in the center of the star. 
A general matter layer with the thickness of (n − 1)R is 
around the neutron body. 

 contains two parts. 
Equation (6) can express linearly in a short segment. 

F(n) = 1.355571n, (n = 0 → 1). 

According to Equation (7), 

maxm V 

The gravitational pressure on the surface of neutron 
body can be calculated. It

 2d d .kp R F n n   1 2

4

3ip p G 

 

 

2 2

2 2 21 .

kR

kG n R
 

1 1 2 1

1

4 4
d

3 3

1.355571 d 0.9037

n

n

p Gkp F n n G

n n

 



 

 





 

 2

1

4
d .

3

n

nkGR F n n   

2
2 1 2 1

4
d

3

.

n
p Gk R F n n

p p p

 

 



layer 

1 2

where, ρn is the nuclear mass density, ρ the mass density 
matter. Substituting the parameters, we have 

 3 2 21n R 
    (10) 

 10 2

1
7.589 10 d

n
R F n n  

    
1.1418 10p  

y 

z 

(n - 1)R 

x  

Figure 5. A model of neutron star. 
 

Combining Equations (9) and ( 0), we have 1

   3 2 2 10 21.1418

1.64

n  


) 

7.1) and (13), we have 

1

13

10 1 7.589 10 dn R R F n n  (11
10 .



According to Equations (6) and (11), we obtained fol-
lowing results: 

R = 11.2 m, nR = 1121 m 

R = 16 m, nR = 32 m 

R = 261 m, nR = 261.6 m 

R = 15257 m, nR = 15257 m. 

Combining Equations (
32

 

2

32

211 17

1.99 10

0.6408

1.99 10

0.6408 6.670 10 2 10

n

R
G









   
 

3.3. Minimal

 the radius of a neutron star achieved its maximal 
value, as the mass continuing accumu ing, a graviton 
body began growing, the radius of neutron star then de-
cr

eutron star began to have 
the ability to draw back a photon; we call it becoming a 
body of black hole. The maximum radius of black hole 
can be calculated by imitating the process of what  
in paragraph 3.2. Just replacing ρ and ρn with the value of 
ρn

 
 

24 2 2

24 2

1

1.865234 10 1

8.682 10 d .
n

p n R

R F n n

  

  
         (12) 

According to Equations (12) and (13), following rela-

30
max 2.98 10 kg.nm p V  

15257m.

 Mass of Black Hole 

When
lat

eased correspondingly. When the mass of graviton 
body grew large enough, the n

done

 and ρg (showed in Equation (20)), Equation (11) be- 
came Equation (12). Where ρg is stands for the mass den-
sity of graviton. 
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tions were obtained: 

R = 0.971 m, nR = 9714 m, M = 7.679 ×1029 kg 

 = 7.679 ×1029 kg 

 m, M = 4.537 ×10  kg 

R = 4200 10  kg 

, M = 1.114×1033 kg. 

3.4. Calculation of Graviton 

Nuclear has the combining energy of about 8 MeV 
(Wichmann 1971). Deducting the influence of proton, the 
maximum combining energy of nuclear would be 9.15 
MeV, i.e., 1.47 × 10−12 J. The parameter of the radius of a 
graviton, r0, is the first needs to obtain. Depending on 
above suppositions described in Section 2.1, and the nor- 
mal gravitational potential energy formula, E = Gm1m2/r, 
substituting m1, m2 with the mass of neutron, E with the 
combining energy in nucleus, then we have  

R = 9.714 m, nR = 9714 m, M

R = 97.10 m, nR = 9710 m, M = 7.671 ×1029 kg 

R = 1154 m, nR = 9279 m, M = 6.722 ×1029 kg 

R = 4078 m, nR = 7340 29

R = 10793 m, nR = 11873 m, M = 3.672 ×1030 kg 

R = 14090 m, nR = 14908 m, M = 7.825 ×1030 kg 
324 m, nR = 42273 m, M = 1.971 ×

R = 74934 m, nR = 75084 m

, 

   
0 1 2r Gm m E

Supposing the energy demand for dest
ΔEn, is equal to its maximum combining en
have 

ΔEn = 1.47 ×10−12 J. 

Following the derivate process in Section 3.1, but re- 
placed ΔEa with ΔEn, a0 with rn, Equation (9) becomes 

211 27 12

52

6.670 10 1.67495 10 1.47 10

1.273 10 m.

  



    

 

 

roy a neutron, 
ergy, then we 

 

max, 3

12

315

3

4π

10

98 10

n
n

n

E
p En V

r





  


       (13) 

 but re- 
laced ρ and max, n, Equa- 
io

   24 2 2 7 2

1

32

1.865 10 1 1.376 10 d

1.99 10

n

gn R R F n n


   

 



32 2

3 1.47

4 3.14159 1.25

1.76 10 Nm .

 


 

 

Following the derivate process in Section 3.2
 ρn with ρn, and ρg, pmax, a with p

,
p
t n (11) became Equation (14). 

 (14) 

 
  

32 24 21.76 10 1.865 10 1   

1 2
7

1
0 d .

n

g F n n 1.376 1

R n

 
             (15) 

A Smalles ed XTE J1650- 
500) has the g (Robert & Rob 
2008). Perha ole theoreti-
cal empo-
ra  have 

   

t Known Black Hole (nam
mass, Mb, of 7.558 × 1030 k
ps it is not the minimal black h
er, it was considered to be truely; howev  here t

rily. According to the data and Equation (8), we
2 2

2

2

1.7193 4

4 d

2.

g n

g n n

E Gkp mn R

mGk R F n n

mc

 


 

 



  

   17 2 2 2 263.4386 10 d 2.180 10g n n
n R R n n 


      

 
   

26 172.180 10 3.4386 10R

172 10 d .g n
F n n


   

  
            (16) 

     17 3 3 3

30

2 10 4π 3 4π 3

7.558 10 .

b g nM n R R      

 
 

     17 3 3 3

30

2 10 4π 3 4π 3

7.558 10 .

g nn R R     

 
 

 17 3 3 3

30

8.37766 10 4.1888

7.558 10 .

g nn R R   

 
 


 

30 17 37.558 10 8.3776 10R n  

1 3
174.1888 2 10 .g  

           (17) 

Combining Equations (15), (16) and (17), we have 
Equations (18) and (19). 


    


 

26 17 22.180R  

1 2
172 10 dn n


  

30 17 37.558 10 8.3776 10 n  

10 3.4386 10 n

18) 

1 3
174.1888. 2 10  

g n
        (

g


   

 
  

26 17 22.180 10 3.4386 10 n 

1 2
17 


32 24 21.76 10 1.865 10 1n

1 2

.71.376 10 dg n n


2 10 dg n
n n  

n

   

  


        (19) 

Combining Equations (18) and (19) diagrammatically, 
we obtained 

n = 1.0190. 

R = 14090 m. 

Copyright © 2012 SciRes.                                                                                 JMP 



Z. H. MEI, S. Y. MEI  

Copyright © 2012 SciRes.                                                                                 JMP 

1198 

nR = 14358 m. 

ρg = 6.3096 × 1017 kg·m−3.                     (20) 

 
  352 1384π 1.273 10 3 5.452 10 kg.    

   (21) 

where mg is stands for the mass of a graviton. 

4.

x parts; and the process goes a circle (a → f →a). 
a) Growing of y. Preponderant 

no

 kg, 
radius, 4.41 × 108 km. 

b) Formation of neutron star. As the continuously ac-
cumulating of matter, the normal molecular celestial 
body begins to compress accompanied with 
engendered in the center. The compressing process looks 
like a process of phase variation. In the process, it will 
release large 

c) Growing of graviton star. With continuously com-
pressing, a graviton body would begin to grow 
center. The graviton star has a critical mass of 7.558 × 
1030 kg, radius of 14.9 km. 

d) Formation of black hole. When graviton star grows 
to its critical value, it becomes a mi
the mean time. It can capture photons just near its surface. 
Afterward, it gradually grows in mass with the accumu-
la

e) Explosion of black hole. When the density of black 
hole increased large enough, the distance between gravi-
tons going over a critical small value, the gravitational 
mechanism destroyed. The gravitation becomes repulsive 
force. Then, explosion occurred; the entropy increased 
sharply. Neutrons, protons, electrons, etc. particles an
afterward atoms were produced subsequently in the ex
plosion process. After explosion, this part of universe 
exists in expansion state in a unabidin

f) Constringency of partial univers
of explosion, the running matters slowed down, spread in 
wide space, mixed, and became part of cosmic dusts. 
Then, partial universe would exist in a contractive state 
in a long run. In intermediate constringency, the celestial 
bodies formed.  

5. Discussion 

When a celestial body has abundant material source in its 
surroundings, it will grow quickly and has a larger mass 
than we calculated. If the celestial body exists in process 
b, it would be a fixed star. The larger mass it has, the 
more quickly it will be compressed, and more efficiency 
the energy would release. i.e., the larger mass it owns, 
the higher brightness it will has. In th
star could burn with no existence of special fuels of nu-
clear fusion, but merely existence of normal atoms. 

will have a big black hole in its 
center. 

The universe consists of vast cosmic dusts and galax-
ies. They go along circle evolutive processes described 
above. Occasionally a limit big black ho
causing the expansion in a partial space. 
long time scale, most space contracted slowly. The uni-
verse exists in a mobile equilibrium state of explosion 
and constringency (Thomas & Hermann 1948). Those 
observed stars, which leave away at acceleratory velocity 
(Hubble 1929), might result in other reasons. It is by no 
means that the whole universe is expanding now. Re-
versely, our surrounding universe showed us its contrac-
tive views. We cannot imagine that the
Milky Galaxy is formed in an expansion pr

6. Tags 

A roughly information about graviton was derived in this 
pa

cs. Future observation of existence of new 
smaller bla parently meaningful. 
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