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ABSTRACT 

Using the path integral formalism, the fine structure and dynamics effects are taken into account for the broadening of 
spectral lines in a plasma. A compact expression of the dipolar autocorrelation function for an emitter in the plasma is 
derived for Lyman alpha lines with fine structure. The expression of the dipolar autocorrelation function takes into ac-
count the dynamics effects, which are represented by the time microfield autocorrelation function. 
 
Keywords: Path Integrals; Autocorrelation Function; Electric Dipole; Fine Structure; Dynamical Effects 

1. Introduction 

The spectral line shapes of radiative atoms and ions in 
the plasma provide valuable diagnostic tools for a num-
ber of physical quantities, such as the density and tem-
perature of charged particles, the transported radiative 
energy, and possibly the determination of electric fields 
[1]. The shape of lines in a plasma results from the inter-
actions between the radiator and all constituents (neutrals, 
electrons and ions) of the plasma. With variable contri-
butions depending on plasma conditions, causes of broad- 
ening are the Doppler effect, which is produced by the 
movement of the radiator, natural broadening, due to the 
finite lifetime of the atomic excited state, and what will 
be the focus of this paper, the Stark broadening which is 
due to the interaction between the radiator and the elec-
tric field of the two kind of perturbers (ions-electrons) [2]. 
This problem has been widely studied using the standard 
Hamiltonian approach of quantum mechanics. It started 
with the work of Baranger [3], and Kolb and Griem [4]. 
In these classic papers on Stark broadening, the electrons 
are treated within the impact theory, and the ions in the 
quasi-static approximation. Both kind of particles having 
a Coulomb interaction with the radiator, the difference 
between ions and electrons is merely due to their velocity 
difference. For many plasma conditions, ions are slow 
enough to justify the use of a quasi-static approximation, 
but for hydrogen plasmas. In our investigation, we intro-
duce an alternative method able to take into account the 
fine structure and the dynamics effects. This method is 

based on the Feynman path integral formalism [5,6] 
which deals with electrons and ions on the same physical 
basis. The general frame for this formalism has been pre-
viously developped [7,8], but has then only be applied to 
the static ion case. Using this formalism, one can treat 
time-independent and time-dependent problems on the 
same footing, which is a real advantage over the standard 
Hamiltonian approach when solving time-dependent pro- 
blems. 

In this paper we retrieved the formula of the dipolar 
auto-correlation function common in the line broadening 
theory. Our derivation uses the Feynman path integral 
formalism. Since the mean time of the electron-emitter 
collision is negligible compared with the ion-emitter one, 
we shall replace the electron-emitter collision effects by 
a standard collision operator, whereas the ion-emitter 
collisions effects, via the dipole approximation, will be 
treated in the perturbative approach using the path inte-
gral formalism. Section 2 is concerned by with rather low 
density, and/or high temperature, this static approxima-
tion may however no longer be valid. The formulation of 
the dipolar auto-correlation function and in Section 3, we 
apply earlier results to the Lyman alpha line with fine 
structure in time-dependent electric microfield. Conclu-
sion and perspectives are given in Section 4. 

2. The Spectral Line Shape in the Path  
Integrals Theory 

We start here by the time dipolar autocorrelation function 
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of the radiator from which the spectral line shapes are 
generally deduced. The emitter is perturbed by ions and 
electrons treated as charged particles moving on classical 
paths. For a description of the radiator perturber interac-
tion, it is usually sufficient to keep only the first term in 
the multipole expansion, using the so-called dipolar ap-
proximation. As quoted before, the effect of the electrons 
is usually treated with the impact theory by a collision 
operator. Our path integral approach could be applied to 
both electrons and ions. The electric microfield appear-
ing in our formalism could thus be created by the elec-
trons, the ions or both kind of particles. The usual start of 
spectral line shape theory is the general formula giving 
the radiation power [9]: 

    i

0

e dt1
Re

π
I C t t




 C t

            (1) 

where  is the auto-correlation function of the dipo- 
lar momentum of the emitter given by: 
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As we are concerned in this work by the Lyman structure, 
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Using the Wigner-Eckart theorem, we obtain in the 
, , jn j m
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where  is the reduced matrix element, 1
1

2

 the en-
ergy corresponding to 


 1, 1 2n j 

 

 and the matrix 
element of the evolution operator T in upper state a. 

3. Application to Lyman-α Broadening 

In the case of Lyman alpha line with fine structure, the 
autocorrelation function can be written as: 
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and  are the collision operators. i 1,2
eФ 

The matrix element of the evolution operator  in the upper state  is: 

     *
',0 d d , ,0q aT t K t        r r r r r r                            (7) 

 
where  , ,0K tr r

  r

a  is the Feynman propagator de-
scribing the emitter evolution in the surrounding ion 
plasma.   are the eigen functions of the Dirac op-
erator relative to the free hydrogen atom. Then, to calcu-
late the dipolar auto-correlation function  C t  it is 
useful to evaluate the Feynman propagator  

 , ,0aK tr r  as follows: 
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where 0
DL  is the Dirac Lagrangian for the free hydrogen 

atom, and (  e r E ) is the interaction between the hy-
drogen atom and the surrounding plasma in the dipole 
approximation. 

 It is possible to develop the propagator , ,0aK tr r  
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as a perturbation series knowing the free propagator 0K  relative to the free hydrogen atom: 
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where  and nj  is the spectra of the 
free atom including the fine structure. 

The eigenfunctions of Dirac Hamiltonian in Coulom-
bian field [10] are given by: 
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   f r , g
jjl m  are the spherical spinors, r
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 are a 

radial functions and     
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Let us compute first the matrix element  which 

can be written as: 
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Replacing the propagator by its expression, integrating 
over  and , and using the orthogonality of the 
wave functions we get : 
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Let us examine the structure of the first terms in this 

expansion. Calling 1  the successive terms in the sum 
over k in Equation (14), we can write the first terms as: 
 term 0k  : 0
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In this formula, neglecting the coupling effect of the  

states 2, , jn j m  with the state 
3 1

2, ,
2 2

, we obtain  

that:  
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By using the properties of the spherical harmonics and 
the selection rules for the different terms of order , the 
result of this component is : 
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Summarizing (19) and (20), we can write the formula 
(5) for the dipolar auto-correlation function  C t  as 
[11]: 
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e  and  are the electronic collision operators 
relative to  1 21p s3 22  and  1 2 1 22 1p s

 

 transi-

tions respectively, and the symbol Λ  means as said 
earlier the statistical average over the ionic perturbers. 

Making the integral over    in (22), leads to express 
 h t  as a function of the time microfield auto-correla- 

tion function  C t

 

EE . The latter represents, as known, 
the dynamical effect of the electric microfield on the 
emitters radiative properties : 
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where t means the time in the inverse of the electronic  
24π ee

p
e

N

m

 
 
 
 

plasma frequency unit . 

Equation (21) gives the time dipolar autocorrelation 
function regardless of the nature of charged particles, we 
can apply it according to different interests, either to ions 
or to electrons. 

4. Conclusions 

Using the path integral formalism, we derive an expres-
sion for the Lyman alpha line shape retaining the fine 
structure and the effect of ion dynamics. Our main ap-
proximation is a reduction to pair correlation functions of 
a cluster expansion in the electric microfield. 

This allows to sum all the terms appearing in the stan-
dard perturbative solution in the path integral point of 
view, and to express the time dipolar autocorrelation 
function in a compact expression involving the electric 
field autocorrelation function. In particular, we would 
like to use the ability of the path integral point of view 
for the description of a full quantum emitter-perturber 
interaction. Interesting applications of a full quantum 
approach exist in high temperature plasmas such as 
found in fusion devices, for a modelling of the emission 
of multicharged emitters perturbed by electrons. 
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