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ABSTRACT 

The Khuri-Jones correction to the partial wave scattering amplitude at threshold is an automorphic function for a di-
hedron. An expression for the partial wave amplitude is obtained at the pole which the upper half-plane maps on to the 
interior of semi-infinite strip. The Lehmann ellipse exists below threshold for bound states. As the system goes from 
below to above threshold, the discrete dihedral (elliptic) group of Type 1 transforms into a Type 3 group, whose 
loxodromic elements leave the fixed points 0 and ∞ invariant. The transformation of the indifferent fixed points from −1 
and +1 to the source-sink fixed points 0 and ∞ is the result of a finite resonance width in the imaginary component of 
the angular momentum. The change in symmetry of the groups, and consequently their tessellations, can be used to dis-
tinguish bound states from resonances. 
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1. Introduction and Summary 

This paper suggests that the origin of strong interaction 
symmetries may be found in functions that are auto- 
morphic with respect to a group generated by a fractional 
linear transformation. Examples of automorphic func- 
tions are the circular functions which are automorphic 
with respect to  , and elliptic functions 
which are periodic with respect to a group generated by 
two translations. Elliptic functions live on tilings that are 
parallelograms which fill up the entire plane. By cutting 
and pasting, the tessellations can be made into a torus of 
genus 1. 

2 n n 

1z

Poincaré and Klein were interested in looking for 
automorphic functions of higher genus; that is, complex- 
valued functions invariant under specific groups. Klein 
had already examples in the shape of regular solids, of 
which there are only a finite number. We will show that, 
for real angular momenta, the partial wave amplitude is 
such an automorphic function corresponding to the dihe- 
dral group. According to Khuri [1] and Jones [2], the 
partial wave amplitude derives its form from the asymp- 
totic large angular momentum limit of the Legendre 
function of the second kind which has three singular 
points. These singular points are homologues of vertices 
of triangles in a conformal mapping, and the group we  

will be dealing with is the triangular group. 
In the unphysical region the angular momentum be- 

comes complex, and, consequently, the vertex angles of 
the triangles in the division of the sphere, which would 
otherwise have the form of a double pyramid, also be- 
come complex.The real part corresponds to a rotation, 
while the imaginary part represents a stretching. What 
were indifferent fixed points of an elliptic transformation 
below threshold,  cosz, where  

0,z  
, become 

source-sink fixed points, , of a loxodromic 
transformation above threshold. What mathematically 
can be obtained by conjugation has a completely diffe- 
rent physical explanation: the transition from the physical, 

 1, 1z    1, 1z  

 3SO

0,

2 3

, to the unphysical, , region as 
the system passes through the threshold. This can also be 
viewed as a transformation from the discrete, elementary 
group of Type 1, consisting of elliptic elements whose 
group is conjugate to a subgroup of , to a discrete, 
elementary group of Type 3, with loxodromic elements 
that leave invariant the fixed points . In this way, it 
may be feasible to study the strong interaction sym- 
metries through the tessellations of the hyperbolic plane, 

, and ball, , that Poincaré used to study the sym- 
metries of kleinian groups, or discrete groups of Möbius 
transformations with complex coefficients. 
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2. Modified Scattering Amplitude 

It is well-known that the scattering amplitude can be cast 
into what is now known as the Watson-Sommerfeld 
representation [3], 

   
      ,

i k

k
,

sin
i

i i

A k z
k

  P z






 k

  1 P z 
integer

k

      (1) 

although its history goes back much further to Poincaré, 
who used it to study the bending of electromagnetic 
waves by a sphere [4]. The poles occur at integer values 
of the angular momentum, , and the residue is 
written as the product of the Legendre function of the 
first kind,   , , which 
contains all the angular dependencies, and a factor 

, which is a function of the linear momentum, . 

  P z 

 k
Partial waves can be projected out of (1) by using 
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d ,
2 1
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for integer  and complex  . The contribution from 
one Regge pole to the partial wave scattering amplitude 
is 
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The residue has been found to vary as [5,6] 
 

 

  

 

This gives incorrect threshold behavior by predicting 
that 
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In order to correct the result, Khuri [1] and Jones [2] 
modified the residue, 

    1cosh ,z expk k        (3) 

where 
2

2
1 1,

2

m
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2 0k  m
0

cosz             (4) 

in the unphysical region where , and  is the 
particle’s mass. In the limit as , they obtained 
the correct threshold behavior  
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The added factor (3) supplies the partial wave with a 
branch point at 2 2 4k m   because the square root in 

 
22 2

2 2
1
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m m

k k

       
     

 

1cosh ln 1 1z

  


 

vanishes there, but it does not give the additional branch 
points at 

2 22jm k 2,3,j  



 

 for . 

3. The Dihedral Group 

Unwittingly, Khuri and Jones transformed the partial 
wave scattering amplitude into an automorphic function. 
It is the form that the Legendre function of the second 
kind takes in the limit as  [7], viz., 
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Said differently, the automorphic function, 
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is the ratio of two independent solutions of the Fuchsian 
differential equation, 
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   (8) 

The curly brackets denote the Schwarzian derivative of 
 with respect to , 

2
3

, .
2

w w
w z

w w

       
 

It is a projective invariant that was first discovered by 
Lagrange in his studies of conformal mapping of a sphere 
onto a plane, although the name was coined by Cayley in 
favor of Schwarz. 

The Schwarzian (8) clearly shows that Q z
1, 1,z

  has 
three singular points at    

w
, which are homo- 

logues of the vertices of a triangle in the -plane. Since 
the sum of angles, 

 1 1
,

2 2
        



z 1, 1,  

 

the triangles are spherical, and there is no real orthogonal 
disc which encloses the triangular tessellations. Hence, 
the need to project them onto a sphere. 

The spherical triangles are conformally represented in 
the -half plane by the angular points, . The 
plane is then projected onto a sphere stereographically 
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[8]. The triangle on the sphere is bounded by arcs of 
great circles that cut the equator orthogonally. They form 
a double pyramid with the summits at the poles, each 
triangle having a vertex angle    , and two right 
angles at the base on the equator, as shown in Figure 1. 

At the pole,  , the conformal mapping (7) be- 
comes 

 
 

 

2

2

2 1

11

2 1

ln 1 cosh .

w

z

        
     

 coshw u iv 
in ,

ln
z z

z z
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Since ,  cosh coshz w  
cosh cos and sinh sx u v y u v

0u 
0 v

 the upper half of 
the -plane is conformally mapped onto the interior of a 
strip in the -plane bounded by the line  on the 
right, and the lines  on the bottom and 

z
w

v  

   

 on 
the top. 

The partial wave amplitude, (2), then reduces to 
1 2 1    at the pole, so that the contribution from 

one Regge pole at 
2 0k 

 to the partial wave projection, 
as , is 

    
 

24 ln
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2 1
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1
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Inverting the conformal map (7) gives the dihedral 
equation [9], 

 cosh ln ,n w
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2
n

n
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where1 

              (10) 

Introducing homogeneous coordinates (9) can be written 
as 

2 2
1 1 2
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2
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w
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2
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which is the arithmetic-geometric mean inequality. The 
vanishing of the functional determinant of the numerator 
and denominator of (11) [9], 
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indicates that there are    zeros at 

 

Figure 1. The -sphere for the dihedron where the sphe- 
rical triangles consist of hatched and unhatched parts with 
bases on the equator. The critical points −1, 0, 1, ∞, corre- 
spond to the branch points, −1, +1, and ∞ on the sphere. 
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1 0w   and 
, and another  zeros at 2 0w  2n
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Therefore, we can write the ratio of homogeneous 
coordinates as either, 

 1 1

2 2

, or 0,1, , 1 ,r rw w
g g g r n

w w
      (12) 

where the first term 
2e , e ,i n i ng g  

w

 

is the nth root of unity. 
Since the values of the homogenous coordinates have 

absolute value of unity, they lie on the equator, and (12) 
correspond to rotations of the -sphere either through 
angles 2 r n , or r n

0w
. According to (9), the critical 

points w  and  
z

 of the w -sphere correspond 
to   z

rw g
 of the -sphere. In addition, the points 

  correspond to the point  on the -sphere, 
while those of 

1z  z
rw g g 1z all correspond to  

1, 1,

 on 
the same sphere. Hence, there will be three branch points, 
   z on the -sphere—the same three singular po- 
ints of the Legendre function of the second kind. 

4. Complex Angular Momentum 

For   close to  we can perform a Taylor series ex- 
pansion in terms of the energy difference 


 E E E   

,

, 
and retain only linear terms [10], 

IE iR             (13)    

Rewhere R  , I Im , and the prime denotes 
differentiation with respect to the energy, evaluated at the 
energy . It is clear from the dihedral equation, (9), 
that 

E


 

 when both are real. This also follows from 
the condition that the fixed energy dispersion relation, 

1The most interesting cases for angular momenta are 

   
0

0

1
d ,

z
A z Q z A z z


  

          (14) 

converges. For large z,  A z z 

2n

 [10, p. 148], while 

 , and 

  1n  , although we can choose some multiple s  of 


 h 

can be made arbitrarily close to an integer whose sole effect is to change 
the number of iterates on the elliptic element, 

, whic

sg g . 
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   1Q z z    P z    for all values of , and not like 

which requires 
1

Re
2



Re Re

, so that (14) will converge only  

when 
eiw r

. 
Introducing (13) into (9), together with  , give 

2 2

ln
2

cosh
1

4R

E r i
z

E

 




   


  

1 1
ln

2
.

E r
       

      

  (15) 

The resonance width, 
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vanishes below threshold, but R
z x iy 

 is always positive 
definite. Introducing  into (15) it becomes 
clear that only below threshold do we have a conformal 
mapping [11] of circles, r const , in the -plane, 
onto ellipses, 

w
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2
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y
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z

2cosh ln sinh ln

x

r E
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in the -plane, whose semi-major axis and eccentricity 
are  cosh ln r E R  and  sech ln Rr E  , respec- 
tively. In other words, 

ln
h ,

R

r i

E
cosz




 
   

          (17) 

represents an ellipse with semi-major axis  
 ln r E cosh R , and eccentric angle, R E   . In 

high energy physics, (17) would be referred to as a Leh- 
mann ellipse [12]. 

Moreover, the straight lines const  w., in the - 
plane, are mapped onto hyperbolas, 

   
2 2

2
1,

R R

y

E E 
 

  

z

2cos sin

x

 
    (18) 

in the -plane, with semi-axes  cos E  R  and 
 sin E  

1z  

ln r

R . The foci of the hyperbolas are the same 
as those of the ellipses (16), viz., . The families 
of ellipses, (16) and hyperbolas, (18), that constitute a 
system of confocal conics is destroyed above threshold 
by a mixing of  and   in the real and imaginary 
parts of the argument in (15) due to the presence of a 
finite resonance width, . 

5. Discontinuous Elementary Groups 

Below threshold, the resonance width, , vanishes iden- 
tically, and the group of rigid motions are pure rotations, 
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The rotation matrix (19) ensures that the fixed points 
are at  , instead of the usual rotation matrix which has 
indifferent fixed points, i . The motion on a sphere is 
shown in the upper sphere in Figure 2. We are in the 
physical region of bound states where  cos 1,1  . 

Dynamical resonances for decaying unstable particles 
give a finite width above threshold. This introduces de- 
formations which are hyperbolic elements, 

1 1
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The fixed points of (20) are the same as those of (19), 
and, consequently the trace of their commutator is 
 , 2tr U V . The combination of stretching and rotation 

give rise to loxodromic elements, 
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which can be thought of as a rotation through a complex  

angle, 
1

2R E i       
 

. 

The map, 

1
,

1

z
z

z






1

 

moves   to 0 and 1  to . Mathematically, this is 
mere conjugation, but, physically, it represents the trans- 



 

 

Figure 2. Elliptic (above) and loxodromic (below) motion on 
a sphere. 
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formation of real (bound states) into complex (dynamical 
resonances) angular momenta. The loxodromic motion is 
shown in the lower part of Figure 2, which is described 
by the scaling map, 

,z az
 2e R i Ea    
1

1


0 

 

                 (22) 

where the modulus of the multiplier, , is 
greater than 1. The fixed point at   (or ) is an 
attracting fixed point, or sink, while the fixed point at 0 
(or ) is a repelling fixed point, or source. Therefore, 
points will spiral out of the source, 0, and spiral into the 
sink, , as shown in lower figure in Figure 2. Below 
threshold, , and the fixed points are indifferent, 
giving rise to the pattern shown in the upper figure in 
Figure 2. 

For  a positive integer, the contour 1  in the de- 
finition of the Legendre function of the first kind [13], 
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is a closed curve, oriented in the positive direction, that 
encloses both points . The integrand is real when  
is on the real axis between  and  . This is the phy- 
sical region. For non-integer , (23) is a hypergeometric 
function with a branch cut going from  to    in 
order to keep it single-valued. 

In contrast, Legendre function of the second kind, 
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where 2  is a figure 8 encircling the points   and 
. The Legendre function of the second kind, (24), is 

regular and single-valued in the -plane which has been 
cut along the real axis from 1 to . According to (24), 

 cannot be an integer, and it has logarithmic singulari- 
ties at  and  because the path must cut the 
lines joining  to  and . 
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The isometric circles of  and  are 
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2: e 0 and :
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respectively, which are exterior to one another. Isometric 
circles define a complete locus of points in the neigh- 
borhood of which lengths and areas remain invariant 
under substitutions of the form  [14]. It can be shown 
that the fundamental region for the group of motions 
generated by  consists of that part of the plane ex- 
terior to I  and I   [14, p. 54]. A point belongs to the 
fundamental region if a circle can be drawn about the 
point as its center that does not contain an interior of the 
isometric circles. 

For both real and complex  

3

, the groups which 

are formed are discrete and elementary. By elementary it 
is meant that there exist finite orbits in  [15]. In the 
case that of real angular momenta, they constitute the 
group of finite, cyclic rotations. More specifically, if s  
is number of vertices of the polygon, where each vertex 
has jn  elements, then the relation to the size of the 
group, G , and the number of elements of the vertices is 
[15, p. 85] 

1

1 1
2 1 1
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Moreover, since j  it also follows that the right- 
hand side of (25) is bounded by 
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Now, for   we have a crescent for by two non 
concentric intersecting circles with two vertices, and (25) 
reduces to 

1 2

1 1 1 1
,

2G n n

 
  

 
 

which identifies G  as the harmonic mean. It can be 
satisfied by 1 2G n n 

 G
2

3s

. By conjugation, the fixed 
points, or vertices, can be brought to 0 and . Then  
is a finite, cyclic group of rotations in  [15]. 

The case   applies to a dihedron, for which (25) 
becomes 

1

1 2
1 .

s

j jn G

 

n

             (26) 

Suppose the number of elements at the vertices are 
ordered as 1 2 3n n  3n 

1 2n 

. The choice 1  is incom- 
patible with (26) since the sum on the left will be inferior 
to 1. We, therefore, choose , and (26) reduces to  

2 3

1 1 1 2
.

2n n G
  

4n  n
n

 

Since 2  will lead to a contradiction, 2  can be 
either 2 or 3. In the former case 3  is free to take on any 
value from 2 to   so there will be 2G n

2n 


 sides of 
the various triangles in the division of the sphere, as 
shown in Figure 1. 

Now another elementary group has , and has 
every element of the group leaving 0 and  invariant 
[15, p. 84]. The group cannot have the Poincaré metric,  

 2
1dz z

2

2
2

, because loxdromic motion does not pre-  

serve the unit disc,  . Rather, what is required is 
Poincaré’s extension which adds on an additional dimen- 
sion so that points on the plane  are stereographi- 
cally projected onto the sphere . Rotations, like loxo- 
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dromic transformations, also do not have an invariant 
real disc,  , so that both elliptic and loxodromic 
generators live on the sphere, . 

2

2

1
What appears mathematically as conjugation, by trans- 

ferring the fixed points  and  to 0 and 1  , is 
physically quite different for it takes the system from real 
to complex angular momenta. In other words, merely by 
conjugation, the vertices, , transform the physical 
region , or  in (4), into 0 and 

1, 1 
z 2 0 11,  k  , of 

the unphysical region, , or . The two 
types of transformations will give a different tessellation 
of hyperbolic space, and so can be studied in much the 
same way that Poincaré characterized his kleinian groups, 
which are much less well-known than their fuchsian 
counterparts [15, Ch. 8]. 

  2 0k 

z

 1,1z 

1, 
2 0k 

1, 1  z

6. Strengths and Weaknesses of the Analysis 

Different definitions of the Legendre function may be 
adopted according to whether  is considered to be an 
unrestricted complex variable, or a real variable confined 
to the open interval . However, there is no 
relation between complex values of the degree of a 
Legendre function and the unphysical region of  

.  1z
According to (4), bound states, , lie in the phy- 

sical region. But, what is missing is a conformal map- 
ping, 

 2 ,k



              (27) 

between the -plane and the  -plane. If we go back to 
the Watson-Sommerfeld representation, (1), we can write 
it, in the vicinity of , as [3, p. 46]  k
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where   is considered a real function of , the 
energy. Thus, if we consider the conformal mapping  

2k

 2sin ,w k   

then a semi-infinite strip of width 1 in the  -plane is 
mapped onto the upper half -plane where the boun- 
daries of the strip are homologues of the points 

w
1  and 

 on the real axis. The poles of (28) will then be at 1
1

2
 

2 0k

 . 

It is assumed that for  , the Regge trajectories 
(27) are real, but once , the Regge trajectories 
become complex. This being a bound state would lead to 
the conclusion that Regge trajectories are the desired 

interpolating functions between bound states [16]. 


2 0k 

2 0k For , 2k
Re

 is complex, and this describes 
resonances. It is argued [16] that   can coincide 
with integer 0  for k , while Im  remains 
small. Then appealing to continuity,  is considered 
complex where 

2 0  2k
2k

  becomes exactly equal to 0 . Con- 
sequently, we can take 


  physical with unphysical , 

which is a resonance, or unphysical 

2k
  with physical 

, which would correspond to a metastable state known 
as a shadow state [3, p. 47]. However, we are not at 
liberty to consider k2 complex as we originally con- 
sidered  complex. 

2k

k
Rather, discrete, elementary groups can be employed 

to distinguish between bound and resonance states. Only 
for maps of the form 

2, 1, 1,sz az a s 



Re

 

will the angular momentum become complex, and so 
transform the indifferent fixed points of Type 1 group 
into a Type 3 group whose orbits leave invariant the 
source-sink fixed points at 0 and  [15, p. 84]. What is 
still missing is the form of the Regge trajectory (27) 
which would connect   with k , and so lead to 
physical values in (4), and complex values of 

2 0
  with 

 which result in unphysical values of (4). 2 0k 
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