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ABSTRACT 

When the Grover’s algorithm is applied to search an unordered database, the probability of success usually decreases 
with the increase of marked items. To address this phenomenon, a fixed-phase quantum search algorithm with more 
flexible behavior is proposed. In proposed algorithm, the phase shifts can be fixed at the different values to meet the 
needs of different practical problems. If research requires a relatively rapid speed, the value of the phase shifts should 
be appropriately increased, if search requires a higher success probability, the value of the phase shifts should be appro- 
priately decreased. When the phase shifts are fixed at , the success probability of at least 99.38% can be obtained 

in 

0.1π

O N M   iterations. 
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1. Introduction 

Grover’s quantum search algorithm [1] is one of the most 
important developments in quantum computation. For 
searching a marked state in an unordered database, it 
achieves quadratic speed up over classical search algo- 
rithms. At present, Grover’s quantum search algorithm 
has been greatly noticed and has become a challenging 
research field. However, the Grover’s algorithm also has 
some limitations. When the fraction of marked items is 
greater than a quarter of the total items in the database, 
the success probability will rapidly decrease, and when 
the fraction of marked items is greater than half of the 
total items in the database, the algorithm will be disabled. 

Up to now, many efforts in improving Grover’s origin- 
nal algorithm have been done. The Grover’s original al-
gorithm consists of inversion of the amplitude in the de-
sired state and inversion-about-average operation [1]. In [2], 
Grover presented a general algorithm: Q  I U I U  , 
where U is any unitary operation,  is the adjoint of 
U, 

U 

2I I    , 2I I    ,   is an initial 
state and   is a desired state. When 1U U W   , 
where W is the Walsh-Hadamard transformation, and 

0  , the general algorithm becomes the original algo-
rithm. Long extended Grover’s algorithm [3]. In Long’s 
algorithm, I  and I  are expressed as  

 1I I ie       and  1 ie I I     , 
respectively. Long further studied two-phase matching 

conditions [4]. When π   , Long’s algorithm be-
comes Grover’s original algorithm. In [5], Grover pre-
sented the new algorithm by replacing the selective in-
versions by selective phase shifts of π 3 . Just like clas-
sical search algorithms the algorithm has a fixed point in 
state-space toward which it preferentially converges. Li 
et al. studied the changes of the approximation error in 
the fixed-point search algorithm obtained by replacing 
equal phase shifts of π 3  by different phase shifts [6]. 
In [7], by applying Partial Diffusion Operator, Younes et 
al. proposed a quantum search algorithm and showed that 
the performance of the algorithm is more reliable than 
other quantum search algorithms especially for multiple 
matches within the search space. The minimum success 
probability of this algorithm is 84.72% when  

0.3084M N  . In [8], by regarding the searching en-
gine as a three-dimensional rotation in the SO(3) picture, 
Long presented a modified version of Grover’s algorithm 
that searches a marked state with full successful prob-
ability. However, two phase shifts in Long’s algorithm 
are determined by the number of iterations and the num-
ber of marked items, not a fixed value. Building quantum 
devices using fixed operators is a must to simplify the 
hardware construction. Quantum search engine is not an 
exception [9]. Therefore, this algorithm is not conducive 
to the quantum computer hardware implementation. 
Yonues presented a fixed phase quantum search algo-
rithm in [9]. By selecting phase shifts of  in the 
standard amplitude amplification, the success probability 

1.825π
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of at least 98% is obtained in O N M , which is better 
than other fixed operator quantum search algorithms. In 
[10], a novel information geometric cha- racterization of 
Grover’s quantum search algorithm is presented, and the 
possible deviations from Grover’s algorithm within this 
quantum information geometric setting are discussed. In 
[11], a method for implementing the Grover search algo-
rithm based on multi-level systems is proposed. 

The methods mentioned above cannot solve the pro- 
blem that the algorithm efficiencies decrease as the 
marked items increase. In this paper, we study the phase 
matching in Grover’s algorithm, and propose an adaptive 
matching, namely,  f     , where λ is the frac-
tion of marked items, and  f   is the polynomial for λ. 
With application of the new phase matching, when λ is a 
rational number in range  3 5 8  to 1/4, the proba- 
bility of getting correct results is equal to 1 with two 
Grover iterations, and when λ is greater than 1/4, the 
probability of getting correct results is equal to 1 with 
only one Grover iteration. 

In this letter, with application of two operators with 
arbitrary phase rotations in [3] and the phase matching 
conditions in [4], we will present a general Grover algo- 
rithm with fixed-phased shifts. The different algorithms 
can be derived from this algorithm according to the dif- 
ferent phase shifts. When the phase shifts are fixed at 

, the success probability of at least 99.38% can be 
obtained in 
0.1π

O N M   iterations. 

2. Grover’s Algorithm and Its Problem 

2.1. Grover’s Algorithm Summary 

Suppose we wish to search through a search space of N 
elements. Rather than search the elements directly, we 
concentrate on the index to those elements, which is just 
a number in range 0 to N – 1. For convenience we as- 
sume N = 2n, so the index can be stored in n qubits, and 
that the search problem has exactly M solutions, with 
1 M N  . The algorithm begins with the state 0

n
. 

The Walsh-hadamard transform is used to put the state 
0

n
 in the equal superposition state, 

1

0

1 N

x

x
N






  .              (1) 

The Grover quantum search algorithm then consists of 
repeated application of a quantum subroutine, know as 
the Grover iteration or Grover operator, which we denote 
G. The Grover iteration may be broken up into four steps. 

1) Apply the oracle O. The oracle is a unitary operator 
defined by its action on the computational basis 

   O x q x q f x  ,           (2) 

where x  is the index register,  denotes addition 
modulo 2, and the oracle qubit 


q  is a single qubit 

which is flipped if   1f x  , and is unchanged other- 
wise. 

2) Applying the Walsh-Hadamard transform nH  . 
3) Perform a conditional phase shift, with every com-

putational basis state except 0  receiving a phase shift 
of –1,   01 xx x

   . 
4) Applying the Walsh-Hadamard transform nH  . 
It is useful to note that the combined effect of steps 2), 

3), and 4) is 

 2 0 0 I 2 In nH H      ,      (3) 

where   is the equally weighted superposition of 
states, (1). Thus the Grover iteration, G, may be written 
as  2G I   O . 

Let M N  , and CI(x) denote the integer closest to 
the real number x, where by convention we round halves 
down. Then repeating the Grover iteration 

 
 

arccos
CI

2arcsin
R





 


 




             (4) 

times rotates   to within an angle arcsin π 4   
of a superposition of marked states [12]. Observation of 
the state in the computational basis then yields a solution 
to the search problem with probability at least one-half. 

2.2. Grover’s Algorithm Success Probability 

In fact, the Grover iteration can be regarded as a rotation 
in the two-dimensional space spanned by the starting 
vector   and the state consisting of a uniform super- 
position of solutions to the search problem. Let   
represent a normalized states of a sum over all which are 
not solutions to the search problem, and   represent a 
normalized states of a sum over all which are solutions to 
the search problem. Simple algebra shows that the initial 
state   may be re-expresses as  

   cos sint t    ,          (5) 

where arcsint  . After R Grover iterations, the initial 
state is taken to 

  
  

cos 2 1 arcsin

          sin 2 1 arcsin

RG R

R

  

 

 

 
.        (6) 

Hence, the success probability is 

  sin 2 2 1 arcsinP R   .          (7) 

The curve of P is shown in Figure 1. 

2.3. The Drawback of Grover’s Algorithm 

It is easy to deduce from Equations (4) and (7) that when  

 3 5 8 0.14645   , P  decreases rapidly. When 

0.14645 1 4  , P  increases rapidly. When 
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Figure 1. The success probability of Grover’s algorithm. 
 
1 4 1 2  , P  decreases rapidly. When 1 2  , 
there is , 0R  P  , and the algorithm is disabled. 
Hence, the Grover’s algorithm is no longer useful when 

1 4  . 
The reason for the problem is that the two phase rota-

tions in Grover iteration are fully equivalent in both am-
plitude and direction, namely π. According to [12], the 
result of such phase rotations is that, for the one Grover 
iteration, the phase of the   increases 2arcsin   
radians, and that rotating through at least arccos   
radians takes the   to  . When 3 5 8,1   , 
there are only 1 1 4   and 2 3 5 8    make R an 
integer, namely, 

1
1

1

arccos
1

2arcsin
R




  , 2
2

2

arccos
2

2arcsin
R




  . 

3. The Grover Algorithm with Fixed-Phase 
Shifts 

3.1. The Searching Engine Description 

Assume that 1 2, , , Ms s s  denote the marked 
states, and that 1 2, , , N Mt t t   denote the non- 
marked states. Let 

1 1

1 1
, ,

sin ,

M N

i ii i

M
s s t t

M N M

M N



 
 





 
 

and 0 π 2  , then the initial system can be written as 
follows, 

1(0)

0

1 1

1

cos sin

cos sin

N

i

N M M

i ii i

i
N

t s
N M M

t s



 

 







 



 


 



  .   (8) 

Two phase shifting operator in Grover’s algorithm 
may be generally expressed as follows, 

 1 i
sI I e s   s ,               (9) 

 0 1 0iI I e    0 .              (10) 

Hence, the searching engine is described as follows, 

   
   

0

2

2

1 cos 1 1 sin cos

1 sin cos 1 sin 1

s

i i i

i i i

G HI H I

e e e

e e e

  

  

  

  

 

   
 
      

, (11) 

where H denotes Walsh-Hadamard operator. 

3.2. The Searching Process Description 

Quantum search is such a process of repeatedly applying 
the search engine G to the initial state (0) , which in- 
crease the probability amplitude of the marked state. Af-
ter diagonalization, the successive operations of search-
ing engine G can be written as follows [8], 

11 12

21 22

1n n a a
G Q Q

a aC
  

   
 

 ,           (12) 

where 

  
  

( /2)

( /2)

cos 2 sin cos cos1

cos cos 2 sin cos

i

i

e
Q

C e





  

    

  
 
   

,(13) 

( 2 )

( 2 )

0

0

i

i

e

e

 

 





 
    


,            (14) 

  22cos cos 2 sin cosC       ,      (15) 

  arcsin sin 2 sin   ,              (16) 

 

  

2 ( 2 )
11

2 ( 2 )

cos

cos 2 sin cos

i n n

i n n

a e

e

 

 



  





 

 
,    (17) 

  
 

12

( /2 2 ) ( /2 2 )

cos cos 2 sin cos

i n n i n n

a

e e     

  

   

 

 


,        (18) 

  
 

21

( /2 2 ) ( /2 2 )

cos cos 2 sin cos

i n n i n n

a

e e     

  

   

 

 


,        (19) 

 

  

2 ( 2 )
22

2 ( 2 )

cos

cos 2 sin cos

i n n

i n n

a e

e

 

 



  





 

 
.    (20) 

After n applications of G on (0)  we get, 

( ) (0)n n n nG a t b    s .         (21) 
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such that, 

   

 

2 2

3 ( 2 )

2
2

1
cos sin cos

2

sin 2 sin 2

cos ( )

cos cos sin cos
2

n

i n

i n n

i n n

a

C

n e

e

e

 

 

 

  

 



  

   
 





      
  





           

,     (22) 

 

 

   

π
2 2 2

2
2

22

1
2 cos sin cos

2

cos sin 2

sin cos sin cos
2

 sin cos

n

i n

i n n

i n n

b

C

n e

e

e



 

 

  

 

  

 

   
 





        
  






      
  


 



.     (23) 

3.3. The Success Probability of the Proposed 
Algorithm 

From Equations (21)-(23), after n iterations, the success 
probability sP  and the failure probability  can be 
respectively written as follows, 

tP

   

 

 

2

2

4 2
2

4

2 4

3

2

4

1
4cos cos sin cos sin 2

2

sin cos cos sin cos
2

4cos sin cos sin cos
2

sin 2 sin 2
2

4cos sin cos sin cos
2

n
sP b

n
C

n n

   

   

   

 

   



          

             

      
  

   
 

    
 

   

 
2

2 2

sin 2 sin 2 2

2sin cos cos sin cos cos 4
2

n n

n

  

   


 
 

 

 

 

   

2

2

2 2 2
2

4

2 4

4

2

1
4sin cos cos sin cos sin 2

2

cos cos cos sin cos
2

4cos sin cos sin cos
2

sin 2 sin 2 2

4cos sin cos sin cos
2

n
tP a

n
C

n n

   

   

   

  

   



          
             

      
  

 

     
 

 



 

 

3

2

4

sin 2 sin 2 2

2cos cos sin cos cos 4
2

n n

n

  

   





 

           
(25) 

and meet the following relationship . 1s tP P 

3.4. The Required Number of Iterations of the 
Proposed Algorithm 

According to [4], the searching engine G can be thought 
as a rotation in a 3-dimensional space, and the polariza-
tion vector of marked state is . For the initial 
state, the polarization vector is about (0

(0,0,1)
,0, 1) , each 

searching iteration is a rotation of the polarization vector 
through angle  )sin4arcsin sin( 2  . Therefore, the 
required number of iterations to get a match with the 
highest possible probability can be calculated as follows, 

  
π

4arcsin sin 2 sin
R

 

 
  
  

,           (26) 

where     is the floor operation. When M N , 

  π
O

4sin 2
R N

M N

 
  
  

M .      (27) 


           

(24) 3.5. The Relation between the Proposed  
Algorithm and the Other Algorithms 

According to the different values of α in Equation (26), 
the proposed algorithm can be transformed into the dif-
ferent algorithms. For instance, when π  , 

  
π π

44arcsin sin 2 sin

N
R

M 

   
   
    

 ,    (28) 

in this case, the proposed algorithm is equivalent to the 
Grover’s original algorithm. 
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When π 2   or 3π 2  , 

 
π π

4arcsin(sin 2 sin ) 2 2

N
R

M 
   

   
  

 ,   (29) 

in this case, the proposed algorithm is equivalent to the 
algorithm in [7]. 

When 1.825π   or 0.175π  , 

 
π 1.825π

4arcsin(sin 2 sin ) 2sin
R

  
       


 ,      (30) 

in this case, the proposed algorithm is equivalent to the 
algorithm in [9]. 

It can be seen from above depiction that the different 
algorithms can be achieved from the proposed algorithm 
according the different values of α. The above result 
shows that the proposed algorithm is the promotion of 
other search algorithms, it is the more flexible algorithm, 
and other algorithms can be seen as a special case of this 
algorithm. 

In the proposed algorithm, if two phase shifts are fixed 
at 0.1π, then the required number of iterations is 

  
π

5
4arcsin sin 2 sin

N
R

M 

   
   
    

 .     (31) 

In this case, examine the system after 5R M N    , 
the success probability will be at least 99.38% compared 
with 98% for Younes [9], 84.72% for Younes et al. [7], 
and 50% for the Grover’s original algorithm, which is 
better than any know fixed operator quantum search al-
gorithms. 

When 0.01π   or 1.99π  , 

  
π

50
4arcsin sin 2 sin

N
R

M 

   
   
    

 ,    (32) 

Figure 2 shows the success probability as a function 
of the ratio M N  for the proposed algorithm after in-
serting the calculated number of iterations R  shown in 
Equation (26) in Ps shown in Equation (24), where the 
phase shifts are set to π, π/2, , and , respec-
tively. 

1.825π 0.1π

4. Performance Comparison 

When  and 2 3 4 510 ,10 ,10 ,10 ,10N  6 0 1M N  , the 
performance comparison of the proposed algorithm with 
Younes algorithm [9], Younes algorithm [7] and the 
Grover’s original algorithm is shown in Tables 1-5. 
  From Tables 1-5, we can see that the success prob-
ability of proposed algorithm is the highest among four 
algorithms; however, the inquired number of iterations is 
the greatest. Despite this, from Equation (27), it can still 
achieve quadratic speed up over classical search algo- 
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Figure 2. The success probability curves of the proposed 
algorithm with the different fixed-phases after the required 
number of iterations. 
 
Table 1. The performance comparison of four algorithms 
(N = 102, α = 0.1π). 

 Prop.Alg Younes [9] Younes [7] Grover’s Alg

minP  0.9942 0.9819 0.8645 0.5000 

 
minP P

M N
 0.5100 0.5200 0.3000 0.5000 

maxR  50 28 11 7 

 
Table 2 The performance comparison of four algorithms (N 
= 103, α = 0.1π). 

 Prop.Alg Younes [9] Younes [7] Grover’s Alg

minP  0.9939 0.9801 0.8481 0.5000 

 
minP P

M N


 0.5120 0.5140 0.3080 0.5000 

maxR  158 90 35 24 

 
Table 3. The performance comparison of four algorithms 
(N = 104, α = 0.1π). 

 Prop.Alg Younes [9] Younes [7] Grover’s Alg

minP  0.9938 0.9800 0.8473 0.5000 

 
minP P

M N


 0.5123 0.5137 0.3084 0.5000 

maxR  502 286 111 78 

 
Table 4. The performance comparison of four algorithms 
(N = 105, α = 0.01π). 

 Prop.Alg Younes [9] Younes [7] Grover’s Alg

minP  0.9999 0.9799 0.8472 0.5000 

 
minP P

M N


 0.4960 0.5136 0.3084 0.5000 

maxR  15812 906 351 248 
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Table 5. The performance comparison of four algorithms 
(N = 106, α = 0.01π). 

 Prop.Alg Younes [9] Younes [7] Grover’s Alg

minP  0.9999 0.9799 0.8472 0.5000 

 
minP P

M N


 0.4960 0.5136 0.3084 0.5000 

maxR  50002 2866 1110 785 

 
rithms. When  and 210N  0.1π  , from Equation 
(31), max 5 2 50R N N  , this algorithm does not 
seem to have achieved the quadratic speed up of 
Grover’s original algorithm. However, when  
and 

610N 
0.01π  , max , this al- 

gorithm has demonstrated good acceleration role, and 
with the increase of N, this kind of speed up will be in-
creasingly significant.  

50 20 50,002R N N  

These results can be analyzed as follows. As the say-
ing goes, there is no free lunch. The proposed scheme 
obtains high successful probability at the expense of the 
number of iterations. When the phase shifts are fixed at 

, the success probability of at least 99.38% can be 
obtained, and when the phase shifts are fixed at , 
the success probability of at least 99.99% can be ob-
tained after more iteration. Since the phase shifts α is set 
to a adjustable parameter in Equation (11), the proposed 
scheme is more flexible, and it can obtain a balance be-
tween speed and accuracy. 

0.1π
0.01π

When , the probability curves of four search 
algorithms are shown in Figure 3, and the inquired itera- 
tions number curves are shown in Figure 4. 

210N 

5. Conclusion 

In the future quantum computers, the search engine should 
be constructed from fixed operators that can handle the 
whole possible range of the search problem, i.e. whether 
a single match or multiple matches exist in the search 
space. Based on this consideration, in this letter, we pre- 
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Figure 3. The success probability distribution of four quan- 
tum search algorithms after the required number of itera- 
tions. 
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Figure 4. The required number of iterations for the pro-
posed algorithm, Younes algorithm [9], Younes et al. algo-
rithm [7] and Grover’s original algorithm. 
 
sent a fixed-phase quantum search algorithm with more 
flexible behavior. The phase shifts can be fixed at the 
different values to meet the needs of different practical 
problems. If research requires a relatively rapid speed, 
the value of the phase shifts should be appropriately in-
creased, if search requires a higher success probability, 
the value of the phase shifts should be appropriately de-
creased. When the phases shifts are fixed at , the 
proposed algorithm can get a solution with probability at 
least 99.38% in 

0.1π

5 N M 
   iterations. 
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