
Journal of Quantum Information Science, 2016, 6, 181-213 
http://www.scirp.org/journal/jqis 

ISSN Online: 2162-576X 
ISSN Print: 2162-5751 

DOI: 10.4236/jqis.2016.63013  August 12, 2016 

 
 
 

Undulatory Theory with Paraconsistent Logic 
(Part II): Schrödinger Equation and Probability 
Representation 

João Inácio Da Silva Filho 

Laboratory of Applied Paraconsistent Logic, Santa Cecilia University, Santos, Brazil 

 
 
 

How to cite this paper: Da Silva Filho, J.I. 
(2016) Undulatory Theory with Paraconsis- 
tent Logic (Part II): Schrödinger Equation 
and Probability Representation. Journal of 
Quantum Information Science, 6, 181-213. 
http://dx.doi.org/10.4236/jqis.2016.63013  
 
Received: June 7, 2016 
Accepted: August 9, 2016 
Published: August 12, 2016 
 
Copyright © 2016 by author and 
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International 
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

   

  Abstract 
Part I of this study proved that the Paraconsistent Annotated Logic using two values 
(PAL2v), known as the Paraquantum Logic (PQL), can represent the quantum by a 
model comprising two wave functions obtained from interference phenomena in the 
2W (two-wave) region of Young’s experiment (double slit). With this model 
represented in one spatial dimension, we studied in the Lattice of the PQL, with their 
values represented in the set of complex numbers, the state vector of unitary module 
and its correspondence with the two wave functions. Based on these considerations, 
we applied the PQL model for obtaining Paraquantum logical states ψ related to 
energy levels, following the principles of the wave theory through Schrödinger’s equ-
ation. We also applied the probability theory and Bonferroni’s inequality for demon-
strating that quantum wave functions, represented by evidence degrees, are probabil-
istic functions studied in the PQL Lattice, confirming that the final Paraquantum 
Logic Model is well suited to studies involving aspects of the wave-particle theory. 
This approach of quantum theory using Paraconsistent logic allows the interpretation 
of various phenomena of Quantum Mechanics, so it is quite promising for creating 
efficient models in the physical analysis and quantum computing processes. 
 

Keywords 
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1. Introduction 

Around the 17th century, several scientists supported the wave theory of light. Howev-
er, Newton’s corpuscular theory describing light as a particle already existed and was 
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well accepted within the scientific community. In 1801, the English physicist and physi-
cian Thomas Young demonstrated the phenomenon of light interference within solid 
experimental results that further supported the wave theory of light [1]. It was found 
that while light appeared to behave as a particle flow, there were cases where it exhi-
bited wave characteristics, such as in an interference phenomenon. This contradiction 
between corpuscular and wave theory was addressed by other scholars, which culmi-
nated in the development of quantum mechanics from 1900 to 1925 [2] [3]. 

Nowadays, the wave-particle duality is the accepted theory, enunciated by French 
physicist Louis-Victor de Broglie and based on Albert Einstein’s findings on photons 
characteristics. With the wave-particle duality, the behavior of light and its interaction 
with matter can be explained through a partial differential equation representing a wave 
function, usually in the form of Schrödinger’s equation. The latter describes how the 
quantum state of a physical system changes over time. It was published by the Austrian 
physicist Erwin Schrödinger in 1926, and is currently one of the most important equa-
tions for interpreting the results of quantum mechanics phenomena [1]-[4]. 

This paper assumes that it is possible to model phenomena occurring in classical 
quantum mechanics experiments through a non-classical logic, whose main foundation 
is its tolerance to contradiction. To this end, we used Paraconsistent Annotated Logic 
with annotation of two values (PAL2v), named the Paraquantum Logic (PQL) [5]-[8], 
to model and solidify wave theory concepts. 

In Part II, we applied concepts presented in Part I where, based on observations of 
Young’s Double Slit Experiment, it was possible to establish the basis for the quantum 
behavioral representations through two wave functions. For the mathematical rela-
tionship between PQL equations and Schrödinger’s equation, we considered the same 
model that defines the quantum as a Paraquantum logic state (ψ) located in Para- 
quantum universe represented by the Lattice associated to the PQL. Analyses and de-
ductions are made in the Lattice of the PQL, represented in the set of complex numbers 
with its four state vectors P(ψ) of unitary module; from these, we obtained correlations 
between concepts of quantum mechanics and the method for obtaining energy levels 
established in Schrödinger’s equation. 

Moreover, this paper seeks a probabilistic interpretation in the PQL Lattice aligned to 
Max Born’s investigations [9] that were conducted in the field of quantum mechanics 
and stood out for their statistical interpretation of the wave function as well as the use 
of norms to guide probabilistic calculation [10]. 

The Paraquantum Logic Model is built and studied in order to demonstrate its valid-
ity to quantum phenomena. In this work, the consistency of results found through 
Schrödinger’s equations was verified by comparing them to probabilistic models of 
wave-particle theory using Bonferroni’s inequality [11]. 

In Section 2 of this article, we summarize the main concepts and equations of the 
Paraquantum Logical Model. In Section 3 we present the method to determine energy 
levels along the imaginary axis of the PQL Lattice from two wave functions characteris-
tic of the quantum. In Section 4, we include Schrödinger’s equation in the Paraquantum 
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Logical Model and study the way that their values are correlated to the PQL analysis. In 
Section 5 we present the probabilistic analysis using Bonferroni’s inequality to represent 
PQL values as probabilities; and in Section 6, we draw conclusions about this work. 

2. Paraquantum Logic (PQL) Concepts 

In this part, we give continuity to studies conducted in Part I, which focused on the 
fundamentals of Paraconsistent Logic (PL) and quantum mechanics to create a model 
based on the wave theory of the particle. The Paraconsistent Logic (PL) is a non-classical 
logic whose main foundation is its tolerance to contradiction without trivialization.  

A special form of PL, the Paraconsistent Annotated Logic (PAL) has an associated 
lattice τ (Lattice FOUR), in which logical states connotation can be assigned to its ver-
tices.  

In [8], we observe that an atomic proposition of logic language PAL can be 
represented by P(μ, λ), where μ and λ are elements in a closed interval [0, 1] and belong 
to a set of real numbers [5]-[8]. These two values μ and λ are considered information 
signals and called evidence degrees. Each degree of evidence is extracted from different 
sources and independent, but both sources are related to the same proposition P, and 
are therefore considered as Observable Variables in the physical world [8]. 

Using linear transformations, we can relate evidence degrees exposed in a unitary 
square Cartesian plane (XY) to a value in the horizontal axis of Lattice τ associated to 
the Paraconsistent Annotated Logic with two values (PAL2v) [8]. This value is called 
the certainty degree and is calculated by 

CD µ λ= −                             (1) 

where: μ is the favorable evidence degree to proposition P, 
λ is the unfavorable evidence degree to proposition P. 
Through this method, the contradiction degree displayed on the PAL2v vertical axis 

is obtained by 

1ctD µ λ= + −                           (2) 

The PAL2v logic is reversible and established by the following equations: 

1 1 1
2 2 2C ctD Dµ = + +                        (3) 

and 

1 1 1
2 2 2C ctD Dλ = − + +                       (4) 

We can then relate the behavior and values of Paraconsistent logical states in the 
PAL2v Lattice, known as the Paraconsistent Universe, to evidence values that corres-
pond to measurements in Observables of the physical world [8]-[12]. 

The logical negation in PAL2v affects the certainty degree (DC) signal and is obtained 
by changing evidence degrees in the annotation, such that: 

( ) ( ), ,P Pµ λ λ µ¬ =                           (5) 
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when applied in the analysis of physical systems, PAL2v is called Paraquantum Logic 
(PQL). Therefore, the concept of Paraconsistent logical state, or Paraquantum logical 
state (ψ), detects a single point in the PQL Lattice formed by the pair of certainty (DC) 
and contradiction (Dct) degrees. These two values represented by a pair [8]-[12] form a 
single point in the PQL Lattice—a single Paraquantum logical state—represented by 

( ) ( ) ( )( ), ,,PQ C ctD Dµ λ µ λψ =                         (6) 

A Vector of State P(ψ) in the PQL Lattice originates in one of the two vertices: True 
(t) or False (F), which compose the certainty degree horizontal axis. With its origin in 
one of the vertices of the PQL Lattice, the Vector of State P(ψ) has at its vertex a point 
formed by the pair indicated by the Paraquantum function [8] [12]-[17]: 

( ) ( ) ( )( ), ,,PQ C ctD Dµ λ µ λψ = . 

The State Vector P(ψ) will always be the sum of its two component vectors:  
Vector CX



, with the same direction of the certainty degree axis (horizontal), whose 
module equals the intensity complement of the certainty degree: ( ),1C CX D µ λ= −  

Vector ctY


, with the same direction of the contradiction degree axis (vertical), whose 
module equals the intensity of the contradiction degree: ( ),ct ctY D µ λ=  

Given a Paraquantum logical state (ψcur) defined by Equation (6), we can calculate 
the module of Vector of State P(ψ) according to the equation: 

( ) ( )( ) ( )( )2 2

, ,1 C ctMP D Dµ λ µ λψ = − +                   (7) 

where: ( ),CD µ λ  = certainty degree calculated by Equation (1), 

( ),ctD µ λ  = contradiction degree calculated by Equation (2). 

The angle formed by the module of the Vector of State P(ψ) and the certainty degree 
axis x, gives the inclination angle of the Vector of State αψ. 

Paraquantum logical states ψ in the trajectory indicated by the vertex of State Vector 
P(ψ) of unitary module are defined as superposed Paraquantum logical states supψ  [8] 
[12]-[17]. For this one-dimensional space study, we divided the PQL Lattice into 4 qu-
adrants.  

Figure 1 shows the PQL Lattice represented by evidence degrees obtained in the 
physical medium and the State Vector P(ψ)I of unitary module of quadrant I and incli-
nation angle ψα . 

In order to advance in the study of the logical quantum model with two wave func-
tions, a few concepts previously defined in Part I will be briefly presented. 

2.1. Quantum Pulses of Concentrated Oscillation Energy 

Studies on Young’s experience indicate the existence of interference phenomena 
beyond the two slits, in the 2W region. Quanta, or oscillation energy pulse, is thus formed 
by wave interference phenomena [1] [18] [19] occurring in the 2W region. For the first 
type of interference phenomenon, classified as Type I, we consider two waves traveling 
in the same direction, at the same frequency and wavelength, and at the same amplitude 
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Figure 1. PQL lattice with state vector P(ψ) of unitary module and Paraquantum logical states ψ. 

 
but with a lag. For the second type of interference phenomenon, classified as Type II, 
we consider the interaction between two waves propagating in opposite directions. 

The incidence of wave pulse on the two slits instantly reflects on the dynamic beha-
vior of the waves in the 2W region. As a result, the two types of wave interference phe-
nomenon occur simultaneously. The extraction equation of the favorable evidence de-
gree is thus given by the following wave function equation: 

( ) ( ) ( ) ( ) ( )1 1 1, cos 2 sin 2 sin cos
2 2 2

x t Kx wt Kx wtµ φ φ= − + + +            (8) 

With φ  as the lag angle between two propagating waves. 
Comparing Equation (3) to Equation (8), we find the wave function for the unfavor-

able evidence degree: 

( ) ( ) ( ) ( ) ( )1 1 1, cos 2 sin 2 sin cos
2 2 2

x t Kx wt Kx wtλ φ φ= − − + + +            (9) 

By comparing Equation (3) and Equation (4) to Equation (8) and Equation (9), we 
analyze wave functions that characterize the quantum in the 2W region. Therefore, the 
certainty degree involving its characteristic wave equation is 

( ) ( ) ( ), cos 2 sin 2C x tD Kx wtφ φ= − +                   (10) 

Likewise, the contradiction degree involving its characteristic wave equation is 
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( ) ( ) ( ), sin cosct x tD Kx wt=                        (11) 

After obtaining wave functions that represent evidence degrees obtained in the phys-
ical environment, in the 2W region, we can study the behavior of the quantum through 
the PQL Lattice [8] [12]-[17]. 

In the PQL Lattice, the inclination angle ψα  of a State Vector P(ψ) of unitary mod-
ule can be defined by wave functions characteristic of the quantum. By comparing the 
lag angle φ  of waves in the physical environment (2W region) to the inclination angle 

ψα  of State Vector P(ψ) of unitary module, we observe that: 

2ψα φ=                           (12) 

Based on these considerations, the tangent of the inclination angle ψα  of Vector of 
State P(ψ) is calculated with the complement value, which expresses the certainty de-
gree: 

( ) ( ) ( )
( ) ( )

sin cos
tan

1 1 cos sin

Kx wt

Kx wt
ψ

ψ ψ

α
α α

  =
  − − − +  

           (13) 

Certainty degrees as a function of the inclination angle ψα  of the state vector P(ψ) 
of unitary module are expressed by the complement given by: 

( ) ( ) ( ), 1 cos sinC x tD Kx wtψ ψα α = − − +                (14) 

Similarly, contradiction degrees as a function of inclination angle ψα  of the State 
Vector P(ψ) of unitary module in the PQL Lattice are expressed as 

( ) ( ), sinct x tD ψα=                        (15) 

According to Equation (8) and Equation (9), the certainty degree can satisfy the con-
dition 2ψα φ=  by factoring the inclination angle ψα  of the State Vector P(ψ) of 
unitary module into evidence degrees equations. These can be written as  

( ) ( ) ( ) ( )1 1 1, 1 cos sin sin
2 2 2

x t Kx wtψ ψ ψµ α α α    = − − + + +             (16) 

( ) ( ) ( ) ( )1 1 1, 1 cos sin sin
2 2 2

x t Kx wtψ ψ ψλ α α α    = − − − + + +            (17) 

Thus, each pair of evidence degrees defined by wave equations of the quantum in the 
2W region corresponds to one of the superposed logical states ψsu found in its trajectory 
at the vertex of the State Vector P(ψ) of unitary module in the PQL Lattice. 

2.2. Complete Model for PQL-Based Quantum 

For a complete one dimensional space model, we must consider that a particle, or 
quantum has its inflationary expansion represented in four directions (up, down, right, 
left) on the geometric plane. This complete geometric representation generates identic-
al pulses for both directions of the slits in the double slit experiment. As a result, two 
additional 2W regions will be formed where Type I and Type II Interference phenome-
na occur simultaneously. Figure 2 shows this condition where the two 2W regions are  



J. I. Da Silva Filho 
 

187 

 
Figure 2. 2W regions where Type I and Type II Interference phenomena occur simultaneously within the four quadrants of the PQL Lat-
tice. 

 
divided, thus forming evidence degrees for the correlation with the four quadrants in 
the PQL Lattice. 

With the representation of the PQL Lattice in complex numbers, contradiction de-
grees, which are arranged along the vertical axis, will be represented by imaginary 
numbers (i); and certainty degrees, which are arranged along the horizontal axis, will be 
represented by real numbers. 

Any Paraquantum logical state ψ located in Quadrant I of the PQL Lattice is 
represented by the complex number: 

( ) ( ) ( ), ,PQ C ctD D iµ λ µ λψ = +                          (18) 

Through Equation (5), we can obtain the Logic negation of a Paraquantum logical 
state in Quadrant I, such that it will be located in Quadrant II: 

( ) ( ) ( ), ,PQ C ctD D iλ µ λ µψ¬ = − +                        (19) 

The complex conjugate operator can be introduced in the Paraquantum Logical Model. 
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Therefore, for a Paraquantum logical state in Quadrant I ( ) ( ) ( ), ,PQ C ctD D iµ λ µ λψ = + , its 
conjugated complex will be ( ) ( ) ( ), ,PQ C ctD D iµ λ µ λψ ∗ = − , located in Quadrant IV. 

The Vector of State P(ψ)I in Quadrant I has its intensity components on the hori-
zontal axis ( )( ),1 CX D µ λ= −



 and on the vertical axis ( ),ctY D iµ λ=


, and its module will 
be given by: 

( )( ) ( )

2 2

, ,1PQL C ctM D Dµ λ µ λψ    = − +                     (20) 

With: ( ) ( ) ( ), cos sinC x tD Kx wtψ ψα α = − +   and ( ) ( ), sinct x tD ψα=  

The norm is ( )( ) ( )( )2 2

| | , ,1Z C ctPQL D Dµ λ µ λ= − +  

Following the same reasoning, the representation of complex numbers of the logical 
state on the Vector of State P(ψ)IV vertex, in Quadrant IV, is given by its conjugated 
complex: 

( ) ( ) ( ), ,PQL C ctP IV D D iµ λ µ λψ = −                      (21) 

Using Dirac’s notation [20] combined with a nomenclature closer to that of quantum 
mechanics [21] [22], we can consider for the four state vectors: 

( ) ( ) ( ), ,PQL C ctP I D D iµ λ µ λψ ψ ψ= → = +  is the logical state on the vertex of the State 
Vector P(ψ)I of unitary module ψ , called Ket. 

( ) ( ) ( )
* *

, ,PQL C ctP IV D D iµ λ µ λψ ψ ψ= → = −  is the logic state on the vertex of the Vec-
tor P(ψ)IV of unitary module φ , called Bra. 

( ) ( ) ( ), ,PQL C ctP II D D iµ λ µ λψ ψ ψ= →¬ = − +  is the logical state on the vertex of the 
State Vector P(ψ)II of unitary module ψ¬ , called ⌐Ket. 

( ) ( ) ( )
* *

, ,PQL C ctP III D D iµ λ µ λψ ψ ψ= ¬ →¬ = − −  is the logical state on the vertex of 
the State Vector P(ψ)III of unitary module φ¬ , called ⌐Bra. 

Figure 3 shows triangles in all four quadrants of the PQL Lattice and the Paraquan- 
tum logical states at the vertices of the four Vectors of State correlated to the 2W region 
through the two wave equations. 

In a full model, the two information sources that appear simultaneously and with 
identical characteristics will create four modular State vectors P(ψ) in the PQL Lattice. 
In this study, we will initially highlight the Vector of State P(ψ)I in Quadrant I, which is  
characterized by a positive certainty degree of variation ( ),0 1CD µ λ≤ ≤ , and a positive 

contradiction degree of variation ( ),0 1ct x tD≤ ≤ . 

Vector of State P(ψ)I moves around the origin of a True (t) logical state. This is de-
scribed by 2 functions, the certainty degree function in Equation (19) and the contrad-  

iction degree function in Equation (20), with inclination angle gradient of π0
4ψα≤ ≤ . 

Given the equality in Equation (12), the lag angle ϕ of waves in 2W region will vary 
from 0 to π/2. Due to the unitary module of State Vector P(ψ), their vector components 
have amplitudes constrained to the maximum values of Certainty (DC) and Contradic-
tion (Dct) Degrees. As the values depend on the lag angle ϕ of the two wave functions, 
consequently they also depend on the inclination angle αψ. From the variation of αψ, we 
will have variations for DC ( ) ( ),0 1 1 2C x tD≤ ≤ −  and Dct ( ),0 1 2ct x tD≤ ≤ . Thus,  
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Figure 3. Triangles within the 2W regions and Vectors of State locations in the PQL Lattice. 

 
the horizontal component, which is related to the certainty degree, will vary 

( ),
1 1 2

C x tDX≥ ≥


, and the vertical component, which is related to the contradiction 
degree, will vary 

( ),
0 1 2

ct x tDY≤ ≤


. 
The increase of frequency f for wave functions implies a decreased in lag angle ϕ and, 

consequently, the maximum inclination angle αψmax of State Vectors will be lower than 
the fundamental’s angle. This increase in frequency of wave functions causes State 
Vectors to vibrate closer to the equidistant vertex point of PQL Lattice—the Undefined 
logical state (I). Thus, the smaller the inclination angle αψmax—meaning, the closer the 
state vector P(ψ) vertex is to the Undefined Logical state I represented in the PQL Lat-
tice—the greater energy E—however, the lower its definition represented by the lowest 
certainty degree (DC). Therefore, we can relate energy E and momentum M by the fol-
lowing equation: 

( ),1 ctE D µ λ= −                           (22) 

And the relationship between Momentum and certainty degree is given by: 

( ),CM D µ λ=                            (23) 

3. Energy Levels Represented by the Paraquantum Logical Model 

The Paraquantum Logical Model has two Quantum-characteristic wave functions. De-
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pending on the lag angle ϕ, functions establish a corresponding logical state in the PQL 
Lattice. Lag angle ϕ is represented in the PQL Lattice by the inclination angle αψ of the 
State Vector P(ψ) of unitary module. The Paraquantum logical state ψ(x, t) is 
represented in the lattice of the PQL at the vertex of the State Vector P(ψ) of unitary 
module. This will establish a trajectory with the gradient of the inclination angle αψ, 
which varies within certain limits of both components: certainty degrees (DC) on the 
horizontal axis; and contradiction degree (Dct) on the vertical axis. 

The Equation for Determining Energy Levels 

In the complete Paraquantum Model of one spatial dimension, the two simultaneous 
and identical information sources will create four State Vectors P(ψ) of unitary module 
in the PQL Lattice. This study highlights the State vector P(ψ)I in Quadrant I, characte-
rized by a positive certainty degree of variation ( ),0 1C x tD≤ ≤ , and a positive contradic-
tion degree of variation ( ),0 1ct x tD≤ ≤ . 

Consider the representation of State vector P(ψ)I, as shown in Figure 4, which indi-
cates a Paraquantum logical state ψ located on the trajectory and on point 

( ) ( ) ( )( ), , ,,x t C x t ct x tD Dψ = .  
 

 
Figure 4. Tangent line r at the point where the Paraquantum logical state is located on the vertex of State Vector P(ψ)I, 
where it meets B, on the contradiction degree axis. 
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A mathematical analysis is conducted in Figure 4 to determine the level of contra-
diction degree for each logical state ψ. 

Firstly, the trajectory of the State vector P(ψ)I vertex can be described by a circle of 
unitary radius around a True (t) logic state. In the PQL Lattice, contradiction degree 
values are on the vertical axis (y) and certainty degree on the horizontal axis (x). 
Therefore, any point on the circle is given by: ( ) ( ) ( )( ), , ,1 ,x t C x t ct x tD Dψ = − . Line r is 
drawn tangentially to the trajectory of contradiction degrees’ vertical axis, in point B, 
where the Paraquantum logical state is located ( ),x tψ .  

As shown in Figure 4, point B, for a certain wave number K and location x, can be 
represented by: ( ) ( ) ( ), sin cosct x tB D Kx wt= =    . 

In relation to the inclination angle αψ of the Vector of State P(ψ)I, we have vertical 
( ) ( )sin sin cosKx wtψα =     and horizontal ( ) ( )cos cos sin Kx wtψ ψ ψα α α = − +   

components. 
Point B, where tangent line r meets contradiction degree’s vertical axis, establishes 

the intensity of the Paraquantum logical ( ),x tψ  through the contradiction degree and 
can be found by the analysis shown below. 

The circle equation, with its origin on the right corner of the PQL Lattice 
representing the True (t) logic state, is given by: 2 2 2x y R+ = . 

Given that the radius and the state vector P(ψ)I module coincide, R = 1 and the cir-
cle’s equation is given by: 

2 2 1x y+ = . For the components of the State Vector P(ψ)I of 
unitary module, the circle equation is given as follows: 

( ) ( )
2 2

, ,1 1C x t ct x tD D   − + =                          (24) 

Equation (22) expresses values as a function of the state vector’s inclination angle αψ, 
such that: 

( ) ( ) ( ) ( )
2 2

1 cos sin sin cos 1Kx wt Kx wtψ ψα α    − − + + =               (25) 

Given any point on the circumference, the tangent line r to this point is perpendicu-
lar to the line passing through that same point and the circle’s origin. 

Figure 4 shows that, in the analysis of the PQL Lattice, the point defining the tan-
gent line r is a Paraquantum logical state ( ),x tψ , with the Vector of State P(ψ)I defined 
by its components, such that: ( ) ( ) ( ), ,PQL C ctP I D Dµ λ µ λψ = + . Moreover, the angular 
coefficient of tangent line r is given by the derivative of the function at point ( ),x tψ .  

Deriving the circle’s Equation (24) in relation to x, we have: 

( ) ( ), ,2 d 2 d 0C x t ct x tD x D y   + =     

which is expressed by ( ) ( ), ,d dct x t C x tD y D x   = −    .  

As a result, the angular coefficient of tangent line r that passes through the Para- 
quantum logical state ( ),x tψ  in relation to axis x, is given by 

( )

( )

,

,

d
d

C x t

ct x t

Dy
x D

−
=                            (26) 
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With ( ) ( ) ( ), 1 cos sinC x tD Kx wtψ ψα α = − − +   and ( ) ( ) ( ), sin cosct x tD Kx wt=     we 
can write: 

( ) ( )
( ) ( )

1 cos sind
d sin cos

Kx wty
x Kx wt

ψ ψα α  − + − +  = −
    

                (27) 

Equation (27) indicates that, for any variation of the inclination angle ψα  of the 
state vector P(ψ)I—in this case varies from 0 to π 4 —the derivative of contradiction 
degree (on axis y) in relation to the complement of the certainty degree (on axis x) is 
equal to the angular coefficient m1 of tangent liner that passes through the point de-
fined as the Paraquantum logical state ( ),x tψ . 

The equation of tangent line r is given by ( ) ( )1, ,Y x t m X x t B= + ; with certainty and  

contradiction degrees, we have: ( )
( )

( )
( )

,
, ,

,

C x t
ct x t C x t

ct x t

D
D A D B

D

−
 = +  . As B is the linear coef-  

ficient of tangent line r, its value corresponds, in Figure 4, to the point where tangent 
line r meets the contradiction degrees axis. Isolating B in the equation above, we have:  

( )

( )
( ) ( )

,
, ,

,

C x t
C x t ct x t

ct x t

D
B D D A

D

−
 = +  , which considering the functions’ values becomes: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1 cos sin
cos sin

sin cos

sin cos

Kx wt
B Kx wt

Kx wt

Kx wt

ψ ψ
ψ ψ

α α
α α

 − + − +   = − +   
+   

      (28) 

We can consider B as the Paraquantum logical state intensity ( ),x tψ , which tangent 
line r crosses, and expressed by the contradiction degrees through PQL equations. B is, 
thus, the contradiction intensity standard value ( ),ct x tD Bψ , obtained by the equation: 

( )
( ) ( )
( ) ( ) ( ) ( )

( ) ( )

,

1 cos sin
cos sin

sin cos

sin cos

ct x t

Kx wt
D B Kx wt

Kx wt

Kx wt

ψ ψ
ψ ψψ

α α
α α

 − + − +   = − +   
+   

    (29) 

With: ( ),ct x tD Bψ  as the standard intensity associated to the Paraquantum logical 
state energy ( ),x tψ  determined by the lag angles of quantum wave functions. 

The function value related to the vertical component of the modular State vector 
P(ψ) at point A is ( ) ( ) ( ), sin cosct x tD A Kx wtψ =    . π 4ψα =  is the maximum inclina-
tion angle of Vector of State P(ψ)I for the Paraquantum state to remain within the PQL 
Lattice. Applying Equation (29) under this assumption:  

( )
( )

( ) ( ) ( ),

1 cos π 4
cos π 4 sin π 4

sin π 4ct x tD Bψ

− +   = +        
, 

where we find: ( ), 2 1ct x tD Bψ = − . 

In Part I of this work, the same value was found by a different method and is con-
nected to quantum leaps in relation to certain wave function frequencies in the 2W re-
gion. 
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The intensity of the contradiction degree associated to the energy of Paraquantum 
logical state ( ),x tψ  is equal to ( ) ( ), 2 1ct x tD Bψ = − , which is called the Paraquantum 
Logical Factor hψ. This value can be related Planck’s constant, as shown in [14] and 
[15]. 

By locating the quantumenergy values along the contradiction degree axis of the PQL 
Lattice, we obtain the delta between their intensities, which is related to the tangent line 
r passing through this Paraquantum logical state. 

As is seen in Figure 4, point B is the linear coefficient of the tangent line and indi-
cates the intensity of the contradiction degree ( ),ct x tD Bψ  to which energy is attached.  

At point A, the intensity of the contradiction degree equals that of the State vector 
P(ψ)I vertical component, which has the Paraquantum logical state ψ at its vertex 
crossed by tangent line r. Therefore, for point A, Intensity is related to the energy 
represented by the contradiction degree ( ) ( ) ( ), sin cosct x tD A Kx wtψ =    .  

The delta between contradiction degrees is equal to the difference of corresponding 
Energies and is given by ( ) ( ) ( ), , ,x t ct x t ct x tU D A D Bψ ψ= − , where the contradiction degree 
intensity ( ),ct x tD Bψ  at point B is expressed by Equation (29). Therefore, one can obtain 
an equation to calculate the intensity delta of contradiction degrees. The difference be-
tween normalized energy levels results in: 

( )
( ) ( )
( ) ( ) ( ) ( ),

1 cos sin
cos sin

sin cosx t

Kx wt
U Kx wt

Kx wt
ψ ψ

ψ ψ

α α
α α

 − + − +   = − +   
    (30) 

For the inclination angle of State Vector P(ψ)I at its maximum value π 4ψα = , the 
difference between the intensities of the contradiction degree is given by: 

( )
( )

( ) ( )
( )

,

1 1 21 cos π 4 1cos π 4 1 2 1
sin π 4 1 2 2x tU

− +− +       = = = −          
 

A decrease in the inclination angle of State Vector P(ψ)I below π 4ψα =  will reduce 
the intensity of the contradiction degree from ( )2 1−  to zero. In this variation we 
observe the occurrence of infinite superposed logical states. For inclination angle 

0ψα = , intensity values would be identical and null. Therefore, the difference between 
their intensities would also be null. In contrast, an increase in the inclination angle of 
State Vector P(ψ)I above π 4ψα =  will lead to the appearance of logical states that are 
not allowed by the Paraquantum Logical Model, given that they would be located out-
side the PQL Lattice. In the Paraquantum Model, ( ),x tU , obtained by Equation (30), is 
associated to the energy potential of Schrödinger’s Equation [23]. 

4. Schrödinger’s Equation in Paraquantum Analysis 

To relate Schrödinger’s equation to PQL representation based on Young’s experiment 
(Double Slit), it is initially assumed that the energy intensity related to the quantum in 
the 2W region has two Observable measurements in the physical environment [1].  

These two Observables are analyzed together, with their values conforming to the 
principles of indeterminacy. This returns a Paraquantum logical state ψ located in the 
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PQL Lattice, represented in the vertex of the state vector P(ψ) of unitary module. This 
paper considers a non-relativistic analysis that begins by relating the energy levels in 
Schrodinger’s equation in the PQL Lattice to values of Contradiction and certainty de-
grees. 

4.1. Time-Independent Schrödinger’s Equation 

For stationary states in quantum mechanics, Schrödinger’s equation is solved for ob-
taining a wave function ( ),x tψ  at a given potential ( ),V x t . Schrödinger’s Equation 
[17] [23] is postulated as a differential type: 

( ) ( ) ( ) ( )22

2

, ,
, ,

2
x t x t

V x t x t i
m tx

∂ Ψ ∂Ψ−
+ Ψ =

∂∂


               (31) 

where   is Planck’s standard constant, m the particle mass, and V the potential in-
volved. 

This differential equation can be solved by the variable separation method, thus 
through product solution of simple equations that can be represented by: 

( ) ( ) ( ),x t x tψ ϕΨ =  

where: ( )xψ  is a function only for x, and ( )tϕ  a function only for t. 

For separable solutions we have: ( ) d,
d

x t
t
ϕψΨ =  and 

( )2 2

2 2
d
d

x
x x

ψ ϕ
∂ Ψ

=
∂

 

Equation (31) thus becomes: 
2 2

2
d d

2 dd
V i

m tx
ψ ϕϕ ψϕ ψ−

+ =


                     (32) 

Dividing Equation (32) by ψϕ , we have: 
2 2

2
d d

2 dd
iV

m tx
ψ ϕ

ψ ϕ
−

+ =
                       (33) 

With the right side being a function only of t and the left only of x2, the equality can 
only be real if both sides are truly constant. If this premise is false, then t variation 
(right side) could modify the equality’s other side (left side) without variations in x—or 
the two sides would no longer be equal. Based on these considerations, each side is 
matched to a separation constant called E. 

The first equation refers to the equality’s right side of Equation (33): 
d
d

i E
t
ϕ

ϕ
=



 or 

d
d

iE
t
ϕ ϕ=



                           (34) 

which is a common differential equation solved by: 

( ) e
iE t

tϕ
−

=                            (35) 

Equation (35) can be written as 

( ) cos sinE Et t i tϕ    = −   
    

                   (36) 
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Since the angular frequency is the energy divided by Planck’s constant Ew =


, then: 

( ) ( ) ( )cos sint w t i w tϕ = −                       (37) 

The second equation refers to the equality’s left side of Equation (33): 
2 2

2
d

2 d
V E

m x
ψ

ψ
−

+ =
                           (38) 

Or 
2 2

2
d

2 d
V E

m x
ψ ψ ψ−

+ =
                          (39) 

Equation (39) is known as the time-independent Schrödinger’s equation whose res-
olution requires a potential V to be specified. 

4.2. Representation of Schrödinger’s Equation in the PQL 

For an analysis that allows the representation of Schrödinger’s equation in the PQL Lat-
tice, we initially relate it [17] [23] to the Paraquantum Logical equations (PQL) [8] [15] 
[17]. 

4.2.1. Relation between Schrödinger’s Equation and PQL Equations 
In Figure 4 we observe that the analysis will be considered through the circumference’s 
equation as represented by the trajectories of Paraquantum logical states, which occur 
at the vertex of State Vector P(ψ)I of unitary module. 

4.2.2. Analysis of the Particle Equation under the Influence of Potential V 
As in the Lattice of the PQL the vertical axis y represents the Contradiction Degrees, in 
the circumference represented representation in Figure 4, the angular coefficient m1 of 
the tangent line r in relation to x, in Equation (24), can be expressed by: 

( )

( )

( ), ,

,

d
d d

C x t ct x t

ct x t

D Dy
x D x

−
= = . 

Hence, the angular coefficient m1 of the tangent line r in relation to x, in terms of the 
derivative of the contradiction degree function is 

( ) ( ) ( ),d d sin cos
d d
ct x tD Kx wt
x x

  =                     (40) 

Applying the first derivative to x in the function of Equation (40), we have: 

( ) ( ) ( ),d
cos cos

d
ct x tD

K Kx wt
x

= −     

Applying the second derivative to x in the function of Equation (40), we have: 

( ) ( ) ( )2 2
,

2 2

d d sin cos
d d

ct x tD Kx wt
x x

  =  

Solving only the right side of the contradiction degree function, we obtain: 
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( ) ( ) ( ) ( )
2

2
2

d sin cos
sin cos

d
Kx wt

K Kx wt
x

   = −                 (41) 

Rearranging, we have: 

( ) ( ) ( ) ( )
2

2
2

d sin cos
sin cos 0

d
Kx wt

K Kx wt
x

   + =               (42) 

We can make an analogy between Mechanics and (Hamilton) Optics, in which we  

include a refractive index 1 Vn
E

= −  and wave number oK nK= , obtaining K as 

1 o
VK K
E

 
= −  
 

 subdivision is made afterwards, such that: 
2

1
o

K V
K E

 
= − 

 
. 

22 2
2 2 2

2 21 o
o o

o

KK V V pK K K
E E EK

= − → = − → =


, results in the equation for K squared: 

2 2
2

2 2 .p p VK
E E

= −
 

 

Its application to Equation (40) results in: 

( ) ( ) ( ) ( )
2 2

2 2

d sin cos
1 sin cos 0

d
Kx wt V p Kx wt

Ex
     + − =      

 

Multiplying the denominator and divider by twice the mass m, Energy is entered by: 

( ) ( ) ( ) ( )
22

2 2 2

d sin cos 2 2 sin cos 0
2 d

Kx wtp mE mEVE Kx wt
m x E

    = → + − =      

 

( ) ( ) ( ) ( ) ( ) ( )
2

2 2 2

d sin cos 2 2sin cos sin cos 0
d

Kx wt mE mVKx wt Kx wt
x

     + − =         

 

Finally, the entire equation is multiplied by 
2

2m
 
 
 

 , such that: 

( ) ( ) ( ) ( ) ( ) ( )
22

2

d sin cos
sin cos sin cos 0

2 d
Kx wt

E Kx wt V Kx wt
m x

   + − =      
  

Thus resulting in: 

( ) ( ) ( ) ( ) ( ) ( )
22

2

d sin cos
sin cos sin cos

2 d
Kx wt

E Kx wt V Kx wt
m x

  = − +      
    (43) 

A comparison between Equation (43) and Equation (39) shows that this is Schrödin-
ger’s equation, time-independent, represented through PQL concepts. It proves that the 
wave function ψ of Schrödinger’s equation equals the contradiction degree function 

( ) ( ) ( ), sin cosct x tD Kx wt=    , which is exposed on the vertical axis of the PQL Lattice. 
The contradiction degree function ( ) ( ) ( ), sin cosct x tD Kx wt=     constitutes the axis 

of imaginary numbers in the complex numbers realm. The result of Equation (43) is 
thus a complex number represented by: 

( ) ( )
( ) ( )

( ) ( )
22

2

d sin cos
sin cos sin cos

2 d
Kx wt i

E Kx wt i V Kx wt i
m x

  = − +      
   (44) 
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The second derivative of the function in relation to x is given by: 

( ) ( ) ( ) ( ) ( ) ( )
2

2sin cos sin cos sin cos
2

E Kx wt i K Kx wt V Kx wt i
m

= +          
  

( ) ( ) ( ) ( ) ( ) ( )
2

2 sin cos sin cos sin cos
2

K Kx wt E Kx wt i V Kx wt i
m

= −          
    (45) 

4.2.3. Analysis of the Free Particle Equation 

For the ratio pK =


, where p is the particle’s momentum and   is reduced Planck 

constant, Equation (39) can be written as 

( ) ( )
( ) ( )

2 2

2 2

d sin cos
sin cos 0

d
Kx wt p Kx wt

x
   + =  



 

Multiplying factor 
2

2

p 
 
 

 by 2 times the mass m, both in the numerator and deno-

minator, the equality corresponding to energy E can be separated: 
2

2
p E
m
= . 

The equation thus becomes 
( ) ( )

( ) ( )
2

2 2

d sin cos 2 sin cos 0
d

Kx wt m E Kx wt
x

   + =  


, 

from which we obtain: 

( ) ( ) ( ) ( )22

2

d sin cos
sin cos

2 d
Kx wt

E Kx wt
m x

  = −  
           (46) 

Equation (46) is Schrödinger’s equation for free particles, which means, Equation 
(45) with potential V zeroed. In this case, the Paraquantum Logical Model represented 
by complex numbers indicates a wave function with values exposed in the vertical axis 
of the PQL Lattice. The result, which is a Contradiction degree function, is in the set of  

complex numbers and can be written as ( )
( ) ( )22

2

d sin cos
2 dPQL

Kx wt i
E

m x
  = −

 . Solving  

the equation’s second derivative, we have: 

( ) ( ) ( ) ( )
2

2sin cos sin cos
2

E Kx wt K Kx wt
m

=      


. Or, by Equation (45), without po-

tential V: 

( ) ( ) ( ) ( )
2

2 sin cos sin cos
2

K Kx wt E Kx wt i
m

=      
            (47) 

4.2.4. Determination of Normalized k 
The wave number K is obtained by applying the derivative of x only in the function of 
the contradiction degree in Equation (40), where: 

( ) ( )
( ) ( )

d sin cos
cos cos

d
Kx wt

K Kx wt
x

   = −                 (48) 

Equating the result to Equation (26) or Equation (27) we have: 

( ) ( )
( ) ( )
( ) ( )

1 cos sin
cos cos

sin cos

Kx wt
K Kx wt

Kx wt
ψ ψα α  − + − +  − = −       
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Suiting the signs: 

( ) ( )
( ) ( )
( ) ( )

1 cos sin
cos cos

sin cos

Kx wt
K Kx wt

Kx wt
ψ ψα α  − + − +  =       

 

From where we obtain K with normalized values through the PQL Lattice, as 

( ) ( )
( ) ( ) ( ) ( )

1 cos sin

sin cos cos cos

Kx wt
K

Kx wt Kx wt
ψ ψα α − − + =

      
               (49) 

For example, Equation (49) gives us K for the State vector P(ψ)I maximum inclina-
tion angle π 4ψα = :  

( )
( ) ( ) ( )

1 1 21 cos π 4
1 2 1

sin π 4 cos π 4 1 2 1 2
K

 −−     = = = − −
              

 

With the Paraquantum logical factor 2 1hψ = − , K can be written as 1K hψ= −  
or ( )2

K h hψ ψ= + . Therefore, for K squared we have: ( ) 2
2 1 2 1K  = − −  . 

This value is equivalent to the normalized energy value calculated through Equation 
(22). The value of K, after its normalization in the Lattice of the PQL, will be used in 
Schrödinger’s equation represented in the PQL Lattice. 

4.2.5. Planck’s Constant h and the Reduced Paraquantum Logical Factor hψ 
The intensity of contradiction degrees will shape both Planck’s units for the PQL Lat-
tice as well as its relation to Schrödinger’s equation. Therefore, for the PQL Lattice 
analysis, it is possible to verify the value of its approximate value to the equivalent Pa-
raquantum Logical factor hψ, such that 2 1hψ = − . 

For a Planck’s constant [15]-[18] equal to 346.6260693 10 J sh −= × ⋅ , its reduced val-
ue is 

341.05457168 10 J s
2π
h −= = × ⋅ . 

In electrovolt x seconds we have: 

166.582119 10 eV s
2π
h

e
−= = × ⋅ , 

where e is the particle’s elementary charge. Assuming that the axis of contradiction de-
grees in the PQL Lattice is the value associated to the energy of the elementary charged 
particle 191.60217653 10 Ce −= × , the corresponding electrovolt x seconds value of the 
Paraquantum Logical factor hψ is thus obtained: 

( ) ( ) 34
34

2 1 10
2 1 10 J s J s

2π 2π
h

h ψ
ψ ψ

−

−
− ×

= − × ⋅ → = = ⋅  

derives its normalized value 340.065924141 10 J sψ
−= × ⋅  which, converted to elec- 

trovoltx seconds by 

( ) 34

19

2 1 10 J s
2π C2π 1.60217653 10
h

e
ψ

ψ

−

−

− × ⋅
= =

× ×
 , 
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we find the equivalent of Planck’s reduced constant in the PQL Model as 

( ) 16 18
2 1

10 eV s 6.5924135 10 eV s
2πψ ψ

− −
−

= × ⋅ → = × ⋅  . 

And the relation between   and ψ  is given by: 

6.582119 99.8438
0.065924141ψ

= ≈




. 

Therefore, the value of ψ  can be found from the value of  , such that: 

99.8438418ψ =


  and 99.8438418 ψ=  . 

4.3. Schrödinger’s Equation Represented in the PQL Lattice 

For the analysis that allows the representation of Schrödinger’s equation in the PQL 
Lattice, we will consider the equation in Quadrant I and the circumference represented 
in the trajectories of Paraquantum logical states, as previously shown in Figure 4. 

4.3.1. Representation Using a Time-Independent Schrödinger’s Equation 
To represent Schrödinger’s equation as time-independent [17] [23] in the Lattice of the 
PQL, we will begin our analysis by taking Equation (43) as a reference, such that: 

( ) ( ) ( ) ( ) ( ) ( )
2

2sin cos sin cos sin cos
2

E Kx wt K Kx wt V Kx wt
m

= +          
  

Since all terms are related to the sine of the inclination angle ψα  of the modular 
State vector P(ψ)I, all values may be referenced to the axis of imaginary numbers in the 
PQL Lattice. This relation is given by: 

( ) ( ) ( ) ( ) ( ) ( )
2

2sin cos sin cos sin cos
2

E wt i K wt i V wt i
mψ ψ ψα α α     = +     
   (50) 

Relating the energy intensity of Equation (39) to the term containing the Para- 
quantum logical factor hψ, we have: ( )2 1ψ= = −  . Thus, we can write the contra-  

diction degree in point B of Figure 4 as ( ) ( ) ( )
2

2
, sin cos

2ct x tD K Kx wt i
m
ψ

ψ =   


.  

Because contradiction degree represents energy, ( ),x tU  can be considered the poten-
tial involving the energy differences in Schrödinger’s equation. Potential V of the ener-
gy difference in Schrödinger’s equation can thus be obtained in Paraquantum analysis 
and represented in the PQL Lattice. For this, consider Equation (30) to calculate the 

( ),x tU  of intensity differences so that ( ) ( ) ( ), sin cosx tU V Kx wt i=    . Equation (50) es-
tablishes the energy values through the contradiction degrees axis, and is described as 

( ) ( ) ( ) ( ), ,sin cos ct x t x tE wt i D i U iψ ψα  = +                 (51) 

In Figure 5 we observe the terms of Equation (50) and their equivalent intensities 
along the axis of contradiction degrees, where standard values are referenced by relat-
ing the energy levels obtained by the PQL to those of quantum mechanics. 
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Figure 5. Representation of equivalent intensity terms, along the axis of contradiction degrees, related to energy levels in quantum 
mechanics. 

 
For the maximum inclination angle π 4ψα =  of State Vector P(ψ)I, Equation (51) 

will be equal to: 

( ) ( ) ( ) ( ) ( )
2

21sin π 4 cos 2 1 1 sin π 4 2 1
22

E wt i i i K
m
ψ 

= − + − → = −       
 



 

Given that: ( ) 1sin π 4
2

= , ( )2 1ψ = −  and ( )1 2 1K = − − , thus, for this 

condition: 

1E =  and ( )
2

2 1 2 1
2 2

K
m
ψ   = − 

 



 

→ 
( )

( )
( ) ( )( )

2
2 2

2
2 1

1 2 1 0.05
2 2 2 1 2 2 2 1

m Kψ
−

= = − − ≅
− −



 

For an inclination angle π 4ψα =  and a particle under 0 potential, Equation (47) 
can be represented in the PQL Lattice. Therefore, ( ) ( ) ( ), sin cos 0x tU V Kx wt i= =  
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( ) ( ) ( ),sin cos ct x tE wt i D iψ ψα  =   

Given that: ( ) 1sin π 4
2

= , ( )2 1ψ = −  and ( )1 2 1K = − − ; thus, for this 

condition: 

( ) ( )2 sin costotalE wt iψα =    and 
2

2 1 1
2 2 2

K
m
ψ    =   

   



 

( ) ( )( )
2

2 2
2

2 1
1 2 1 0.02944

1 12 2 2 2
2 2

m Kψ
−

= = − − ≅
   
   
   



 

4.3.2. Representation Using a Time-Dependent Schrödinger’s Equation 
For representing a time-dependent Schrödinger’s equation, we must initially study the 
condition shown in Figure 6, where Vector of State P(ψ) has a certain inclination angle 
αψ. 
 

 
Figure 6. Representation of energy function values related to a time-dependent Schrödinger’s equation along the axis of the contra-
diction degrees. 



J. I. Da Silva Filho 
 

202 

In the contradiction degrees’ axis for the condition shown in Figure 6, we observe 
that: 

( ) ( ) ( ) ( ), sin cosx t totalX E E Kx wt= −                       (52) 

h2 is the line segment above the unitary gain State Vector P(ψ). It is, thus, the hypo-
tenuse of the right triangle ( ) ( ) ( )sin costotalE E Kx wt A↔ ↔   , therefore: 

( ) ( ) ( ){ }2, sin cosx tX h Kx wt=                         (53) 

where: 

( ) ( )
( ) ( )2

1 cos sin

cos sin

Kx wt
h

Kx wt
ψ ψ

ψ ψ

α α

α α

 − − + =
  − + 

                  (54) 

Turning Equation (54) into Equation (53) we have: 

( )
( ) ( )

( ) ( )
( ) ( ){ },

1 cos sin
sin cos

cos sinx t

Kx wt
X Kx wt

Kx wt
ψ ψ

ψ ψ

α α

α α

 − − + =     − + 
        (55) 

Or: 

( ) ( ) ( )
( ) ( ),

1 1 sin cos
cos sinx tX i Kx wt i

Kx wtψ ψα α

 
 = −      − +  

        (56) 

In complex numbers: 

( )
( ) ( )

( ) ( )
( ) ( ),

sin cos
sin cos

cos sinx t

Kx wt i
X i Kx wt i

Kx wtψ ψα α

  = −     − + 
         (57) 

For the total energy along the contradiction degree axis ( ) ( )sin costotalE wt iψα   , 

Equation (51) becomes: 

( ) ( ) ( ), , ,total ct x t x t x tE i D i U i X iψ= + +                      (58) 

where: 

( ) ( ) ( ) ( ) ( ),sin cos sin costotal x tE Kx wt i wt i X iψα = +      

Or also: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

2
2sin cos sin cos sin cos

2
sin cos

sin cos
cos sin

totalE Kx wt i K wt i V wt i
m

wt i
Kx wt i

Kx wt

ψ ψ

ψ

ψ ψ

α α

α

α α

   = +      

    + −      − +  



 

In Figure 6 we observe that the angular coefficient of line r2 that crosses over the 
state vector P(ψ) of unitary module is given by: 

( )

( )

( ) ( )
( ) ( )

,
2

,

sin cos

cos sin
ct x t

C x t

D Kx wt
m

D Kx wtψ ψα α

  = =
  − + 

              (59) 
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The angular coefficient of straight line r2 is given by the derivative of function 
( ) ( )cos sin Kx wtψ ψα α  − +   in relation to time t: 

( ) ( ) ( ) ( )d cos sin cos cos
d

Kx wt w Kx wt
t ψ ψ ψ ψα α α α   − + = − +     

( ) ( ) ( ) ( ) ( ), cos cos sin cosx tX i w Kx wt i Kx wt iψ ψα α = − + −                    (60) 

( )
( ) ( ) ( ),

,

d
sin cos

d
ct x t

x t

D
X i E i

t ψ ψα α = −    

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2sin cos sin cos sin cos

2
cos cos sin cos

totalE Kx wt i K wt i V wt i
m
w Kx wt i Kx wt i

ψ ψ

ψ ψ

α α

α α

   = +      

 + − + −    



 

( ) ( ) ( ), , ,total x t ct x t x tE i X i D i U i− = +  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2

2

sin cos cos cos sin cos

sin cos sin cos
2

totalE Kx wt i w Kx wt i Kx wt i

K wt i V wt i
m

ψ ψ

ψ ψ

α α

α α

 − − + +       

   = +   


 (61) 

Making: EE w w= → =



 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2

2

sin cos cos cos sin cos

sin cos sin cos
2

total
EE Kx wt i Kx wt i Kx wt i

K wt i V wt i
m

ψ ψ

ψ ψ

α α

α α

 − − + +       

   = +   





 

Hence: 

( ) ( ) ( ) ( ) ( ), cos cos sin cosx t
EX i Kx wt i Kx wt iψ ψα α = − − + +    


      (62) 

Figure 7 shows values extracted from Schrödinger’s equation represented along the 
axis of Contraction Degrees of the PQL Lattice.  

It’s shown that once the inclination angle of the modular state vector reaches its 
maximum π 4ψα = , ( ),x tX i  equals ( )1 1 2− . Through Equation (60) we can cal-
culate wi, such that:  

( ) ( ) ( ) ( )1 1 2 cos π 4 cos π 4 sin π 4w− = −       , 

2w =  and ( )2 1= − , which results in ( )2 2 2 1E = = −  and 2totalE = . 
The equations show that in Paraquantum analysis, Schrödinger’s equation can be 

studied and represented in the PQL Lattice by Contradiction (Dct) and Certainty (DC) 
Degrees. The latter are related to two wave functions, which are representatives of the 
quantum in the physical world. 

5. Probabilistic Analysis in the Paraquantum Logic Model 
through Bonferroni’s Inequalities 

A comparative analysis between values obtained by Schrödinger’s equation [17] [23] 
and those found by Paraquantum analysis allows a new approach to the discussion of  
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Figure 7. Values extracted from Schrödinger’s equation and exposed along the axis of contradiction degrees of the PQL Lattice. 

 
results obtained in the PQL lattice. Such considerations shall be based in values corres-
ponding to the physical world, obtained by the two equations of wave functions cha-
racteristic of the quantum, linked to factors that can be expressed by Schrödinger’s eq-
uation. With this approach we can conduct studies on the quantum energy levels and 
compare results obtained with those found by Schrödinger’s equation while expanding 
these concepts to probabilistic analyzes, shown as follows. 

Max Born’s investigations [2] [9] in quantum mechanics stood out for their statistical 
interpretation of the wave function and rules’ usage for probabilistic calculation [10]. 
We now present a probabilistic interpretation in the PQL lattice through Bonferroni 
Inequality [10] [11]. 

5.1. Fundamental Concepts of Probabilistic Analysis 

We start by presenting some fundamental concepts used in probability theory [10]. 

5.1.1. Basic Notions of Probability 
When an experiment is performed, the realization of the experiment is an outcome in 
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the sample space. If the experiment is performed a number of times, different outcomes 
may occur each time or some outcomes may repeat. The frequency of occurrence of an 
outcome can be thought of as a probability, in which more probable outcomes occur 
more frequently. If the outcome of an experiment can be described probabilistically, we 
can analyze the experiment statistically. 

5.1.2. Axiomatic Foundations 
Definition 1.1. A set of subsets of S is called a sigma algebra (or Borel field), denoted 
by B, if it satisfies the following three properties: 

a) B∅∈  (the empty set is an element of B).  
b) If A B∈ , then CA B∈  (B is closed under complementation).  
c) If 1 2, ,A A B∈ , then 1 ii

A B∞

=
∈



 (B is closed under countable unions). 
Definition 1.2 Given a sample space S and an associated sigma algebra B, a probabil-

ity function is a function P with domain B that satisfies: 
1) ( ) 0P A ≥  for all .A B∈  
2) ( ) 1.P S =  
3) If 1 2, ,A A B∈  are pairwise disjoint, then ( ) ( )11

.i iii
P A P A∞ ∞

==
= ∑

 
The three properties given in the above definition are usually referred to as the 

Axioms of Probability or the Kolmogorov Axioms. Any function P that satisfies the 
Axioms of Probability is called a probability function. The following gives a common 
method for defining a legitimate probability function. 

5.1.3. The Calculus of Probabilities 
Theorem 1: If P is a probability function and A is any set in B, then; 

a) ( ) 0P ∅ = , where ∅  is an empty set. 
b) ( ) 1P A ≤ . 
c) ( ) ( )1 .CP A P A= −  
Theorem 2: If P is a probability function and A and B are sets in B, then; 
a) ( ) ( ) ( ).CP B A P B P A B= −   
b) ( ) ( ) ( ) ( ).P A B P A P B P A B= + −   
c) If A B⊂  then ( ) ( ).P A P B≤

 
5.2. Bonferroni’s Inequality and the Paraquantum Logical Model 

In theorem 2, formula (b) shows an inequality which may be useful for the probability 
of an intersection. Given that ( ) 1P A B ≤ , we have a particular inequality case, 
known as the Bonferroni Inequality [10] [11]: 

( ) ( ) ( ) 1P A B P A P B= + −                      (63) 

This equation translates the relationship between values of Bonferroni’s inequality 
and the Paraquantum Logical Model. Therefore, in the Paraquantum analysis of Equa-
tion (63) and considering the origin of item b of Theorem 2, we have the following rela-
tionships: 

( )P A µ=  ↔ is associated with the favorable evidence degree given by Equation 
(16) and the Probability of event A. 
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( )P B λ=  ↔ is associated with the unfavorable evidence degree given by Equation 
(17) and the Probability of event B. 

The contradiction degree is associated with the Paraquantum Probability of an event 
A related to the vertical axis of the PQL Lattice: ( ) ( ) ( ) 1P A B P A P B= + −  

( ) ( ) ( ), 1ct x tD P A P B= + −                       (64) 

where: ( ) ( ), sin .ct x tD ψα=  
The certainty degree is associated with the Paraquantum Probability of an event A 

related to the horizontal axis of the PQL Lattice: 

( ) ( ) ( ),C x tD P A P B= −                        (65) 

where: ( ) ( ) ( ), 1 cos sin .C x tD Kx wtψ ψα α = − − +   
The complement of the certainty degree is associated with the Paraquantum Proba-

bility of nonoccurrence of an event A related to the horizontal axis of the PQL Lattice: 

( )( ) ( ) ( )( ),1 1C x tD P A P B− = − −                   (66) 

Unit ( ) 1P A B ≤  is associated with the State vector P(ψ) of unitary module, 
therefore: 

( ) ( ) ( )( ) ( )( )2 2

, ,1 1C x t ct x tMP P A B D Dψ = = − + =  

( ) ( ) ( )( ) ( ) ( )
2 2

1 1MP P A P B P A P Bψ  = − − + + −            (67) 

We associate the complex number with the Paraquantum Probabilities and with the 
modular State Vector P(ψ) in Quadrant I, which establishes event’s A probability of 
occurrence on the vertical axis and the nonoccurrence of event A on the horizontal 
axis, such that: 

( )( ) ( )( ) ( ) ( )( ) ( ) ( ), ,1 1 1C x t ct x tD D i P A P B P A P B i − + = − − + + −         (68) 

With those considerations in mind, an increase in probability of an event A on the 
vertical axis decreases its probability of nonoccurrence on the horizontal axis. Con-
versely, as the probability of event A on the vertical axis decreases, its probability of 
nonoccurrence on the horizontal axis increases. 

The complex value in the Paraquantum Logical Model in one spatial dimension can 
be determined if the quantum is in its elementary state. If so, the inclination angle of 
the state vector P(ψ) is maximum π 4ψα =  and we have: ( ) 1P A µ= =  and 
( ) 1 2P B λ= = . Through Equation (68): 

( ) ( )1 1 1 2 1 1 2 1 1 2 1 2i i   − − + + − = +    

which represents the maximum Paraquantum probability of Event A. 
In its fundamental state, the event associated with the vertical axis ( )ctD i  may de-

crease 1 2  probability of occurrence of event A until it reaches zero; while the asso-
ciation to the horizontal axis ( )CD  may increase 1 1 2−  in its probability of non-
occurrence of event A, and reach 1.  
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Under this condition, the quantum will be in an undefined state, with the Para- 
quantum logical state represented by a point equidistant from the four vertices of the 
PQL lattice. The complex value of the Paraquantum Logical Model in one spatial di-
mension can be determined if the quantum is in Undefined state. 

If so, the inclination angle of the State Vector P(ψ) of unitary module is maximum 
π 4ψα = , and we have: ( ) 0.5P A µ= =  and ( ) 0.5P B λ= = . Through Equation (68):  

( )1 0.5 0.5 0.5 0.5 1 1 0i i     − − + + − = +  

which represents the minimum Paraquantum probability of Event A. 
In Figure 8 we observe the Paraquantum Probability in Quadrant I of the PQL Lat-

tice related to Bonferroni’s inequality, and its values for the fundamental state. 
Therefore, wave functions represented by evidence degrees are probability functions 

hereby proven by Bonferroni’s inequality. 

5.3. Probability Density with Analysis in the PQL Lattice 

Quantum mechanics uses an interpretation initially proposed by Max Born [3] [9], in  
 

 
Figure 8. Paraquantum probability in quadrant I of the PQL Lattice related to Bonferroni’s inequality. 
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which a squared norm of the wave function provides the probability density of finding 
a particle within a certain region, in a measured position. If ( ),x tΨ  represents a single 
particle, then ( )

2

, dx t xΨ  is the probability of finding it within interval (x, x + dx), at 
time t. Because particles exist at any point on axis x, the sum of probabilities of all x 
values must equal 1. In contrast, a total probability of zero would deny the particle’s ex-
istence [9] [23]. 

The standardized condition can be expressed by ( )xψ  since time variation is ex-
cluded from the calculation of the absolute square of the wave function: 

( ) ( ) ( ) ( ) ( ) ( ), , e eiEt iEt
x t x t x x x xψ ψ ψ ψ∗ ∗ + − ∗Ψ Ψ = =   

Thus: ( ) ( )d 1.x x xψ ψ
+∞

∗

−∞

=∫  

Wave amplitude associated with a particle, or the probability amplitude, is called 
wave function and is represented by ( )xψ . Generally, wave function ( )xψ  is a complex 
variable function and the absolute square is the probability density: 

( ) ( ) ( )
2

x x xψ ψ ψ∗=                          (69) 

where ( )xψ ∗  is the complex conjugate of ( )xψ . 
As seen previously through Bonferroni’s inequality we connect the Probability theory 

to PQL theory; this relation is expressed through evidence degrees that represent the 
two wave functions obtained through studies of the interference phenomena in the 2W 
region that characterize the quantum. Thus, the probability amplitude, or Paraquantum 
wave function, is related to the Paraquantum logical state ( )PQψ  and to the State Vec-
tor P(ψ)I of unitary module represented in the PQL Lattice.  

With the Paraquantum logical state represented in a set of complex numbers, as 
shown by Equation (18), we have: 

( ) ( )( ) ( ), ,1 CPQ ctD D iµ λ µ λψ = − + . 

where its complex conjugate is ( ) ( )( ) ( ), ,1 CPQ ctD D iµ λ µ λψ ∗ = − − . 
As references in the PQL Lattice, we have: ( )1 cosCD ψα = −    and ( )sinctD ψα= , 

and as a reference to the origin of the State Vector P(ψ) of unitary module, its module 
is calculated by: 

( ) ( )( ) ( )( )2 2
cos sin 1MP ψ ψψ α α= + =  

For the maximum inclination angle π 4ψα =  of the State Vector P(ψ) we have:  

( ) ( )( ) ( ), 1 cos 1 1 2CD ψµ λ α= − = − , ( ) ( ) ( ), sin 1 2ctD i iψµ λ α= =  

and 

( ) ( ) ( )2 2
1 2 1 2 1MP ψ = + = . 

The wave function of Paraquantum probability is given by the complex number: 

( ) ( ) ( )1 2 1 2PQ iψ = + . 
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Given the Conjugate Complex: ( ) ( ) ( )1 2 1 2PQ iψ ∗ = −  

The Paraquantum probability density will be  

( ) ( ) ( ) ( ) ( ) ( ) ( ), 1 2 1 2 1 2 1 2PQ PQp x t i iψ ψ ∗    = ⋅ = + −     

( ) ( ) ( ), 1PQ PQp x t ψ ψ ∗= ⋅ =  

Hence, the Elementary state is identified through Probability rules in the PQL Lat-
tice. 

5.4. Representation of Complementarity in the PQL Lattice 

The representation of the two wave functions and their variation in the physical envi-
ronment, related to the trajectory of vertices of the State vector P(ψ)I of unitary module 
in the PQL Lattice, indicates that the Ket vector becomes a Bra vector when its vertex 
passes through an Undetermined logic state. Thus, it can be represented as a single 
vector with a inclination angle ψα  variation of 0 to π/2. Furthermore, for a better re-
presentation, we can consider that the State Vector P(ψ)I of unitary module called 
Ket—represented with its origin at the vertex of the True Logical State (t) of the PQL 
Lattice—has a Paraquantum inclination angle pψα  given by: 

π
4pψ ψα α= +                          (70) 

where the inclination angle αψ of the State Vector P(ψ)I of unitary module now has a  

variation from π
4

−  to π
4

+ . Thus, when the inclination angle αψ of the State vector 

P(ψ)I of unitary module is π
4ψα = − , the Paraquantum inclination angle will be 

0pψα = ; the Paraquantum inclination angle will be π
4pψα = +  when 0=ψα ; and for 

π
4ψα = + , the Paraquantum inclination angle will be π

2pψα = + .  

Considering point B, at the contradiction degrees axis shown in Figure 4, as the 
meeting point of the axis of contradiction degrees with tangent line r, the value of the 
contradiction degree ( ),ct x tD Bψ  computed by Equation (29) may reach the unit for a 
maximum inclination angle π 4ψα = . For this maximum value, the intensity differ-
ence would be null and indicate a fundamental state with minimum frequency, mini-
mum energy and maximum probability for event A. 

As shown in Figure 8, if the probability favors the occurrence of event A, or of find-
ing the particle, the certainty degree is maximum and the probability of not finding it is 
null. Likewise, when the inclination angle of the modular State Vector P(ψ) reaches its 
lowest π 4ψα = − , ( ),ct x tD Bψ  is null and indicates the state of maximum frequency, 
maximum energy and greatest likelihood of nonoccurrence of event A. If the probabili-
ty is of not finding the particle, the Certainty Degree is minimal and the probability of 
not finding it would be total. 

With the Paraquantum inclination angle pψα  obtained through Equation (70), we 
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can determine the amount of energy (E) represented by the complemented value of the 
contradiction degree in Equation (22), and the probability of event A’s occurrence, or 
finding the particle, as the actual contradiction degree value represented in Equation 
(63). Thus: 

( ),1 ct x tE D Bψ= −  

And 

( ) ( ) ( ) ( ), 1ct x tD B P A B P A P Bψ = = + − . 

Figure 9 shows this variation, in which the contradiction degree’s intensity increases 
with the increase of the inclination angle of State Vector P(ψ)I, until it reaches 

π 2pψα = ; and then decreases once the angle is lower than π 2pψα = , until it reaches 
zero. 

In the analysis of the wave function of Paraquantum probability, State Vector P(ψ)I 
of unitary module can be represented with its origin at the equidistant point of the ver-
tices of the PQL Lattice, where the undefined logical state occurs. Thus, with the con-
tradiction degree at its maximum ( ) ( ), 1 2ctD iµ λ = , the quantum’s energy will be 
minimum, or fundamental frequency, as will the Certainty Degree’s complement, 

( ), 1 2CD µ λ = . This is the maximum probability for locating the quantum. 
 

 
Figure 9. Variation in intensity with variations in the inclination angle of the modular State vector P(ψ)I. 
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A reduced inclination angle αψ corresponds to maximum energy E and momentum 
M, which is symbolized by the Certainty degree. Thus, the probability of finding the 
particle at a given location decreases until it reaches zero. Figure 10 depicts this wave 
function of Paraquantum probability in the PQL-based model. 

With State Vectors and inclination angles as shown in Figure 10, visualization is ob-
tained with a method that facilitates the definition of logic states within the PQL Lat-
tice. Formalization can then be conducted by concepts close to that of quantum me-
chanics, such as Hilbert space, for example. Future work may thus develop into new 
approaches which will consider the quantum model in PQL equated in geometric space 
and research the effect of their interactions on particles. 

6. Conclusion 

This work established the concepts and formulas based on Paraquantum Logic (PQL) 
fundamentals, applied to the wave-particle theory. The calculations and values found 
through PQL analysis factored all of Schrödinger’s equation terms, which are one of the  

 

 
Figure 10. Representation of wave function probability in the Paraquantum Logical Model. 
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main equations of particle wave theory. These procedures involving PQL concepts 
demonstrated that values found by Schrödinger equation exist within the Paraquantum 
Universe, as well as wave functions in this context that define quantum mechanics 
theories. At the end we presented the equations for quantum energy levels based on the 
Paraquantum Logical Model, which demonstrated that this work’s approach allowed a 
comparative study between Observable measurements in the physical environment and 
the behavior of logic states of pulses or particles associated to with the PQL Lattice, also 
called Paraquantum universe. We demonstrated the probabilistic study of the particle 
wave theory adapted to the Paraquantum Logical Model of the quantum, in one spatial 
dimension, using concepts of probability theory and Bonferroni’s Inequality. Given the 
vastness of quantum mechanics theory, we highlighted only its main topics—those 
deemed crucial to the development of more detailed PQL-based concepts. They re-
vealed that the representation of the two quantum wave functions opened a wide field 
for new discoveries and considerations given that the model can be applied to new de-
velopments in the field of Physics. Our next work will be to develop algorithms for 
quantum computing based on this Paraquantum logical model proposed. These new 
PQL-algorithms will cover the phenomena of symmetry and entanglement as well as 
other quantum phenomena, which will allow the investigation of transmission capacity 
of cryptographic signals based on Paraquantum Logic PQL. 
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