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ABSTRACT 

In a newsvendor inventory system, demand observations often get right censored when there are lost sales and no 
backordering. Demands for newsvendor-type products are often forecasted from censored observations. The Kap-
lan-Meier product limit estimator is the well-known nonparametric method to deal with censored data, but it is unde-
fined beyond the largest observation if it is censored. To address this shortfall, some completion methods are suggested 
in the literature. In this paper, we propose two hypotheses to investigate estimation bias of the product limit estimator, 
and provide three modified completion methods based on the proposed hypotheses. The proposed hypotheses are veri-
fied and the proposed completion methods are compared with current nonparametric completion methods by simulation 
studies. Simulation results show that biases of the proposed completion methods are significantly smaller than that of 
those in the literature. 
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1. Introduction 

In a newsvendor inventory system, a decision maker 
places an order before the selling season with stochastic 
demand. If too much is ordered, stock is left over at the 
end of the period, whereas if too little is ordered, sales 
are lost. The optimal order quantity is often set based on 
the well-known critical ratio [1], therefore demand ob-
servations often get right censored when there are lost 
sales and no backordering. Because lost sales cannot be 
observed, the available sales data actually reflect the 
stock available for sale, rather than the true demand. 
Demands for newsvendor-type products are often fore-
casted from censored observations.  

The problem of demand forecasting in the presence of 
stockouts is a well-known problem of handling censored 
observations, which was recognized by [2]. Approaches 
of handling censored observations can be divided into 
two classes: (1) parametric method, which often assumes 
that the observations come from specific theoretical dis-
tribution and then estimate parameters of the assumed 
distribution by applying maximum likelihood estimation 
or some updating procedures [3]; This method is often 
used in density forecasting [4]; (2) nonparametric method, 
which is often established based on the product limit es-
timator [5], and attempts to address the problem of the 
“undefined region” beyond the largest observation when 

it is censored [6].  
Parametric methods for demand forecasting from cen-

sored observations have been investigated in [7−14]. 
These works have been briefly reviewed in [15], and it 
has been indicated in [15] that it is difficult to determine 
the shape or family of demand distribution in advance 
when demand observations are censored.  

The product limit (PL) estimator is a nonparametric 
maximum likelihood estimator of a distribution function 
based on censored data. If the largest observation is cen-
sored, the PL estimator is developed to estimate the 
left-hand side of demand distribution, but it is undefined 
for the right-hand side of distribution function. Under the 
assumption that there are more information besides the 
censored observations, Lau and Lau [3] and Zhang et al. 
[15] have investigated the problems of estimating the 
right-hand side of demand distributions.  

Without additional information besides the censored 
observations, truncation techniques or completion meth-
ods are usually employed to define the whole distribution 
function. Truncation techniques are based on the 
data-driving rules, which include two common truncation 
rules: (1) truncating at the largest observation if it is 
censored, and (2) truncating at (n−l)th order statistics [6]. 
These truncation rules may intuitively appear to have 
good properties by avoiding problems in tail, but they 
will incur large bias because the location of the ignored 
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region is a random event. Completion methods aim to 
redefine the PL estimator beyond the largest observation 
if it is censored. We will briefly review nonparametric 
completion methods in the next section.  

In this paper, we propose two hypotheses to investi-
gate estimation bias of the PL estimator, and provide 
three modified completion methods based on the pro-
posed hypotheses. The proposed hypotheses are verified 
and the proposed completion methods are compared with 
current nonparametric completion methods in the litera-
ture by simulation studies. 

The remainder of this paper is structured as follows. 
We briefly introduce the PL estimator and review current 
nonparametric completion methods suggested in the lit-
erature. Then we propose two hypotheses to investigate 
estimation bias of the PL estimator, and provide three 
modified completion methods. We further verify the two 
hypotheses and compare the proposed completion meth-
ods with current nonparametric completion methods by 
simulation studies. The paper ends with some concluding 
remarks. 

2. Nonparametric Completion Methods 

In this section, we first introduce the PL estimator in the 
context of an inventory system, and then we review cur-
rent nonparametric completion methods for the PL esti-
mator suggested in the literature. 

2.1 Product Limit Estimator 

Let iX , , be iid (independent identi-

cally-distributed) demand from distribution F, and in-
ventory level ,  be iid from distribution 

G. It is often to assume that both F and G are continuous 
and defined on the interval . In an inventory sys-

tem, demand 

1, 2, ,i  

iY 1, 2i 

i

n

n, ,

0, 
X  is censored on the right by the avail-

able inventory level , and we observe iY iZ   

 min ,iX Yi i and  i iI X  Y , , where 1, 2, ,i   n

 I   stands for the indicator function, and i  indicates 

whether demand observation iZ  is censored ( 0i  ) or 

not ( 1i  ). 

Kaplan and Meier [5] introduced the PL estimator for 
the survival function , which is esti-

mated as follows:  

   1S t F t 

 
 :

:
1

ˆ 1
1

i nI Z t

n i n
iS t

n i

 


      

        (1) 

where :i nZ  denotes the ith ordered observation 

among all iZ , and :i n  corresponds to :i nZ . From the 

above definition, it is observed that the PL estimator is 
undefined beyond the largest observation, i.e., for 

 and :n nt Z : 0n n  .  

2.2 Review of Current Completion Methods 

To overcome the shortfall of the PL estimator that it is 
undefined beyond the largest observation, some comple-
tion methods are suggested in the literature. Efron [16] 
introduced the notion of self-consistency, i.e., 

 ˆ
ES t 0 , for .            (2) :n nt Z

Gill [17] defined the survival function by 

   
 :

:
: 1

ˆ 1 1
1

i nI Z t

i n
i n i

 
      

n
G n n 



S t

 

for (3) :n nt Z

Chen and Phadia [18] modified it as 


 :

1 :
: 11 1

1

i nI

ˆ
Z t

i n
n ic

n i

 


     

n
C n S t for (4) :n nt Z

where  0,1

  2

F t d

c

ˆE

  is determined by minimizing the mean 

squared error loss 

          
2

0 0

ˆF t F t E S t S t dS t
 

    (5) 

Clearly, the extreme values of scalar c yield Efron’s and 
Gill’s versions, respectively. 

Besides the above three constant completion methods, 
there are two curve completion methods suggested in the 
literature. Brown et al [19] suggested an exponential 
completion method as follows: 

 ˆ BteBS t  , for .          (6) :n nt Z

The parameter B  is set by solving   :
:

ˆ B n nZ
n nS Z e   , 

where  :n n n nZ: 0, 0
limZ

 


 
  . Let ( )iZ , , de-

note the m ordered uncensored demand observations, the 
remaining 

1,i m 

n m  observations are censored ones. 
Moeschberger and Klein [20] attempted to complete 

 Ŝ t  by a two-parameter Weibull function as follows: 

 ˆ
MS t 

k
M te  , for           (7) :n nt Z

The two parameters M  and k in Equation (7) are de-

termined by solving     
k

M mt

mS Z e


ˆ  and 

     1
k

M mt
e

 

1
ˆ

mS Z  . 

When a completion method is used, the bias of  Ŝ t , 

      ˆB t E S t S t , is entirely determined by the 

completion method [21]. For a completion method, it is 
clear that the “undefined region” has the most contribu-
tion to the bias of the PL estimator. One might think that 
this region could be in some sense ignored, as it is sug-
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gested in truncation techniques. Because the location of 
this region is a random event, simply ignoring the “unde-
fined region” will result in a large bias [6]. 

The bias of  is negative and asymptotically 

zero as , whereas the bias of 

 ˆ
ES t

t   ˆ
GS t

ˆ
CS

t 

 S t

 is positive 

and increasing as . The bias using any other 
completion method will be bounded by the biases of 

 and  [6]. The bias of  changes 

from negative to positive and it is increasing as . 
If an estimator is asymptotically zero as , we say 
that it has completeness, which is necessary for estimat-
ing moments of distribution. , 

t

 t



 ˆ
ES t ˆ

GS  t
t 

ˆ
E  tˆ

BS , and 

 ˆ
MS t

 ˆ
BS t

 have completeness since they are asymptotically 

zero as t , whereas  and  do not 

have the completeness. The curve completion methods, 
, and 

  tˆ
GS  tˆ

CS

 ˆ
MS t

ˆ
ES t

 satisfy the downward sloping 

monotonicity of survival function, but the constant com-

pletion methods, ,   ˆ
GS t  and  do not.  ˆ

CS t

3. New Completion Methods 

In this section, we first propose two hypotheses to inves-
tigate estimation bias of the PL estimator at two special 
points, and provide three modified completion methods 
based on the proposed hypotheses. Then we simplify 
show the nonparametric completion methods by an ex-
ample.  

3.1 Estimation Bias of the PL Estimator 

If demand observations iX , , are observ-

able, then its empirical survival function 

1, 2, ,i   n

 S t  can be 

expressed as follows:  

  
1

1
1

n

i
i

S t I X t
n 

   

:

          (8) 

Since :n n n nX Z  , the value of  S t  at point :n nZ   can 

be rewritten as 

   
 : :

: :
1

1
1

1
1

1
1

1

i n n n

n

n n i n n
i

I X Z
n
i

S Z I X Z
n
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









  

      






       (9) 

According to Equation (1), the estimation value of the PL 
estimator at point :n nZ   is 

 
1

1 :
: 1

ˆ 1
1

n i n
n n iS Z

n i

 

     


        (10) 

To compare  :n nS Z 

 
1

1
: 1

1
1

1
n

n n iS Z
n i

 

      

 



         (11) 

From Equations (9–11),  can be viewed as a 

modification of 

 :
ˆ

n nS Z 

 :n nS Z   by replacing  

by 1 (from Equation (9–11)), and then replacing 1 by 

 : :i n n nI X Z 

:i n  (from Equation (11,10)). By introducing these two 

replacements, it is clear that    : :n n n nS Z S Z   and 

   :
ˆ

n n n nS Z  :
 S Z . This indicates that  will 

underestimate 

 :n nS Z 

 :n nS Z  ,  will overestimate  :
ˆ

n nS Z  
 :n n

S Z , but  :
ˆ

n nS Z   will underestimate or overesti-

mate  :n nS Z  .  

The sign of bias   :
ˆ

n n n nS Z S Z  :
  is completely de-

termined by  : :i n n nI X Z   and :i n , . 

Since 

1, 2, , 1i n 

 : :n nZ i nI X  and :i n  are random variables 

determined by iX  and , , the bias is 

also a random variable and its sign also depends on 
iY 1, 2,i ,n

i

 
X  

and , iY 1, 2, ,i n  . In the case when 1: :n n n nX Z 
    

is satisfied and there is at least one censored observation 

among :i nZ , 1, 2, , 1i n  ,  must overesti-

mate 

 :n nS Z  ˆ

 :n nS Z  . We argue that :i n  has more important 

influence on the estimation bias than  

does, i.e., the PL estimator will statistically overestimate 
at point 

 : :i n n nI X Z 

:n nZ  . Based on this perception, we present the 
following hypothesis: 

Hypothesis 1:  

Denote by     : :
ˆ

n n n n n nB Z S Z S Z   :
 , then  :n nB Z   

is statistically larger than zero.  

Since the PL estimator is a piecewise right continuous 

function, and the largest uncensored observation  mZ  is 

a right continuous piecewise point, so the relative esti-

mation bias of the PL estimator at point  mZ  should be 

statistically smaller than that at point :n nZ  . That is, the 

PL estimator statistically provide more accurate estima-

tion at point  mZ  than at :n nZ  . Therefore, we have the 

following hypothesis:  

Hypothesis 2:  

Denote by        ˆR t S t S t S t  , then   mR Z  is 

statistically smaller than  :n nR Z  and , we introduce  :
ˆ

n nS Z   . 
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34, 34, 37*, 38, 44*, 45*, 47*, 50, 50, 50, 60, 60*, 65* (8 
times), where asterisk indicates a censored observation, 
e.g., the third entry ‘37*’ means that  was ob-

served on a day when 
3 37Z 

3 37Y  , implying that .  3 37X

3.2 Modified Completion Methods 

In the spirit of the exponential curve completion method 
suggested by [19], we provide three modified completion 
methods based on the proposed hypotheses.  

For this example, the various aforementioned comple-
tion methods are plotted in Figure 1. From Figure 1 it can 
be observed that, the five curve completion methods sat-
isfy the downward sloping monotonicity of survival 
function, and that the five curve completion methods and 
Efron’s self-consistent completion have the complete-
ness. 

Hypothesis 1 implies that the PL estimator will statis-
tically overestimate at point :n nZ  . Therefore bias can be 

reduced if parameter of the exponential curve is set by solv-

ing   :
:

ˆ D n nZ
n nd S Z e    instead of   :

:
ˆ B n nZ

n nS Z e   , 

where  0,1d   is an adjusted factor for overcoming 

the overestimation of the PL estimator at point :n nZ  . 

Chen and Phadia [18] proposed an optimal constant 

completion by setting . Similarly, we 

set . This parameter setting is presented 

because scalar d should not be larger than one in solving 

 :
ˆ

n n   :
ˆ

n nZ S Z

 min 2 ,1d c

cS

D . 

4. Simulation Studies 

In this section, we verify the two proposed hypotheses 
and compare the aforementioned completion methods by 
simulation studies.  

4.1 Simulation Experiments 

In our simulation studies, we design two experiments 
under an inventory system with some specific distribu-
tions as follows:  

Hypothesis 2 indicates that the relative estimation bias 
of the PL estimator at point  mZ  is statistically smaller 

than that at point :n nZ  . Therefore bias can be reduced if 

parameter of the exponential curve is set by solving 

 instead of     ˆ L mZ

mS Z e


   :
:

ˆ B n nZ
n nS Z e  

 

. Since 

the exponential curve may approximately pass the two 

points  and  
ˆ,  mZ S   mZ   : :

ˆ,  n nZ d S Z n n , the pa-

rameter of the exponential curve can also be set as 

  2A L D    . 

Experiment 1: Following [22−23], we take demand 
dis t r ibut ion F  to  be  a  Weibul l  d is t r ibut ion, 

   1 exp aF x x    for  with a=1 and 2. To 

reflect a variety of censoring distribution patterns, we 
also follow [23] to take Weibull distribution, 

0x 

 G y   

 1 exp
b

uy    for  with 0x  2b a , b a , and 

2b a , as our censoring inventory distribution. This 
gives the hazard rate   b bu t  ah t , which is decreasing 

for 1b a  , constant for 1b a  , and increasing 

1b a  . The scale factor u in  is adjusted in such 

a way so that the expected stockout probability (ESP) 
G y

3.3 An Illustrative Example 

In a case study of a newsvendor inventory system, Lau 
and Lau [3] presented 20 ordered daily sales observations:  
 
 
 

 
Figure 1. Comparison of the eight completion methods for the PL estimator 
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Table 1. Statistical results of  :n nB Z   in Experiment 1 

b/a =0.5 b/a =1 b/a =2 
 

a=1 a=2 a=1 a=2 a=1 a=2 

Mean of   :n nB Z 
0.0082 0.0102 0.0269 0.0259 0.0300 0.0312 

Std. Dev. of   :n nB Z 
0.0667 0.0681 0.1075 0.1098 0.1487 0.1511 

Lower 0.0041 0.0060 0.0202 0.0191 0.0208 0.0218 
95% C.I. of  :n nB Z 

 
Upper 0.0123 0.0145 0.0335 0.0327 0.0392 0.0406 

Table 2. Statistical results of  :n nB Z   in Experiment 2 

ESP =1/3 ESP =1/2 ESP =2/3 
 

1  2  1  2  1   2   

Mean of  :n nB Z 
 0.0758 0.0893 0.1637 0.1839 0.2758 0.3144 

Std. Dev. of   :n nB Z 
0.0607 0.0705 0.1053 0.1181 0.1419 0.1464 

Lower 0.0720 0.0849 0.1572 0.1766 0.2670 0.3053 
95% C.I. of   :n nB Z 

Upper 0.0796 0.0936 0.1703 0.1912 0.2846 0.3235 

 

is 1/3, 1/2, or 2/3. These values thus completely specify 
the hazard rate. The reader is referred to [23] for further 
details. This experiment is applied for investigating the 
case when hazard rate is decreasing, constant or increas-
ing. 

Experiment 2: Analogous to [8], we express the rela-
tion between demand X and sales Z by writing sales as a 
random proportion of demand, i.e., i i iZ W X

1iW 

, where 

 is a random variable taking values on the interval 

[0.5,1]. For periods with no stockout, , and there-
fore sales and demand are equal; for periods in which a 
stockout has occurred, sales will be less than demand 
with . We assume that stockouts occur in each 
period (independently) with probability ESP and when a 
stockout occurs, sales 

iW

1iW 

iZ  is a random (uniformly dis-

tributed) proportion of demand iX . In our case studies, 
we take F to be a lognormal distribution with location 
parameter 4, and shape parameter 1   and 2, and we 
also set ESP=1/3, 1/2, and 2/3. This experiment is de-
signed for investigating the case when hazard rate 
changes from increasing to decreasing.  

In the above two experiments, we have four different 
cases in terms of hazard rate: decreasing, constant, in-
creasing, and changing from increasing to decreasing. In 
comparison with Experiment 1, Experiment 2 makes an 
additional assumption on the relation between demand 
and sales, i.e., sales is a random (uniformly distributed) 
proportion of demand. 

Considering the combination of the parameters in the 
above two experiments, under each of four cases of haz-
ard rate, we have 6 different combinations of the pa-
rameters. Under each parameters’ combination, we set 
the number of observations n=20, and randomly generate 
1000 simulation runs. To ensure the applicability of the 
completion method suggested by Moeschberger and 
Klein [20], the number of uncensored observations in 
each simulation run is restricted to be larger than 3. For 
the convenience of comparison, the largest observation in 
each simulation run is restricted to be a censored one. 

4.2 Hypotheses Verification  

Under each of four cases of hazard rate, we calculate 

 :n nB Z   under 1000 simulation runs for verifying Hy-

pothesis 1. Statistical results of  :n nB Z   are reported in 

Tables 1 and 2. In these tables, 95% C.I. is short for 95% 
confidence level. 

Results shown in Tables 1 and 2 verify Hypothesis 1, 
i.e., the PL estimator statistically overestimates at point 

:n nZ  . Table 1 also illustrates that  increases 

with the increase of b/a, this implies that the estimation 
bias of the case with increasing hazard rate is larger than 
that of the case with decreasing hazard case. Table 2 also 

illustrates that 

 :n nB Z  

 :n nB Z   increases as the expected 

stockout probability increases.  
To verify the correctness of Hypothesis 2, we calculate 

 :n nR Z   and   mR Z  under each of four cases of hazard 
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rate. Statistical results of  :n nR Z   and  in the 

two experiments are reported in Tables 3 and 4, respec-
tively. The last two rows of these two tables present re-
sults of paired 2-tailed t-tests on 

  mR Z 

     :n nR Z 

m

, mR Z



. From 

Tables 3 and 4, it is observed that the relative estimation 
bias of the PL estimator of point Z  is statistically 

smaller than that of point :n nZ   at the 0.01 significance 
level. Table 4 also implies that the relative estimation 
biases of the PL estimator at points  mZ  and :n nZ   in-

crease with the increase of the expected stockout prob-
ability. 

4.3 Comparison with Current Completion Methods 

In this subsection, we assess performance of the pro-
posed completion methods in terms of integral absolute 

bias,      dS t
0

ˆIAB E S t


   S t . In our simulation 

results, Efron and Gill denote Efron’s and Gill’s comple-
tion methods respectively; CP, BHK and MK stand for 
the completion methods of Chen and Phadia [18], Brown 
et al [19], and Moeschberger and Klein [20], respectively; 
Left, Down and Ave represent the proposed exponential 

curve completion methods with parameter L , D  and 

A , respectively.  

Results of paired 2-tailed t-tests on IAB among the 
compared eight completion methods under each of four 
cases of hazard rate are shown in Tables 5–8, respec-
tively. These tables report t-statistics on IAB between the 
row method and column method. One negative t-statistic 
in these tables means that the row method is better than 
the corresponding column method in terms of IAB, 
whereas positive t-statistic implies that the column 
method is better than the corresponding row method. 
t-statistic in parentheses represents that the comparison is 
at the 0.05 significance level; t-statistic in square brack-
ets implies that there is no significant difference between 
the row and column methods; t-statistic without paren-
theses or square brackets expresses that the comparison 
is at the 0.01 significance level.  

According to the following results shown in Tables 
5–8, we come to the following conclusions in terms of 
IAB: (1) Ave is the leading completion method; (2) Left 
performs better than the optimal constant completion 
method CP; (3) CP is always better than the current 
curve completion methods (i.e., BHK and MK); (4) 
Efron and Gill are the two worst completion methods.  

Table 3. Statistical results of  :n nR Z   and   mR Z  in Experiment 1 

b/a =0.5 b/a =1 b/a =2 
 

a=1 a=2 a=1 a=2 a=1 a=2 

Mean of  :n n
R Z  0.6077 0.6348 0.8337 0.7906 0.7842 0.7854 

Std. Dev. of  :n n


 

R Z  0.6497 0.6999 1.0403 1.0034 1.2163 1.1004 

Mean of  m

 

R Z  0.4161 0.4077 0.3987 0.3914 0.3592 0.3609 

Std. Dev. of  mR Z  0.3011 0.3367 0.3524 0.3743 0.3295 0.3158 

t-statistics 9.4889 10.3945 13.1338 12.6988 11.1364 12.0961 

P-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 4. Statistical results of  :n nR Z   and   mR Z  in Experiment 2 

ESP =1/3 ESP =1/2 ESP =2/3 
 

1   2   1   2   1   2   

Mean of  :n n
R Z  1.3879 1.6892 2.8948 3.4150 4.6486 5.7690 

Std. Dev. of  :n n


  m

 

R Z

R Z

 1.1267 1.3526 2.0145 2.3014 2.8261 2.9991 

Mean of  0.7473 0.9011 1.3246 1.5836 1.7312 2.0446 

Std. Dev. of  mR Z  0.5737 0.6427 0.9715 1.0729 1.2893 1.3821 

t-statistics 17.8034 18.6759 23.6086 23.1638 29.4864 33.4833 

P-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 5. Results of paried 2-tail t-test on IAB in Experiment 1 with b/a=0.5 

 Gill CP BHK MK Left Down Ave 

Efron 6.1797 55.3806 30.5818 29.3516 45.4545 42.4871 47.1257 

Gill  28.3342 34.3206 7.2690 27.5968 29.7606 29.1192 

CP   (-2.0951) -35.4652 3.6572 6.7757 9.1816 

BHK    -19.0436 4.2341 8.7696 7.6550 

MK     32.7036 30.0723 35.1446 

Left      2.7375 11.0712 

Down       (2.4231) 

Table 6. Results of paried 2-tail t-test on IAB in Experiment 1 with b/a=1 

 Gill CP BHK MK Left Down Ave 

Efron -13.6287 65.0251 21.7673 31.3227 51.5355 44.4413 52.3274 
Gill  44.8327 51.0237 27.3941 45.5583 47.4534 46.4081 
CP   -15.5159 -34.5069 6.0864 (2.5103) 11.0425 
BHK    -5.5002 19.4179 24.3510 22.8946 
MK     32.5922 27.1247 34.7498 
Left      -3.4243 9.5686 
Down       10.3352 

Table 7. Results of paried 2-tail t-test on IAB in Experiment 1 with b/a=2 

 Gill CP BHK MK Left Down Ave 

Efron -19.4571 91.0080 32.3403 41.2147 65.5794 65.9205 68.7712 

Gill  57.9369 68.1601 37.2278 60.1003 62.0498 61.1882 

CP   -16.7540 -39.6581 7.4145 14.3985 15.1355 

BHK    -7.6101 23.9762 31.2396 28.7295 

MK     36.1403 39.3110 41.0343 

Left      7.4387 17.7037 

Down       [1.6798] 

Table 8. Results of paried 2-tail t-test on IAB in Experiment 2 

 Gill CP BHK MK Left Down Ave 

Efron -43.8358  (2.3348)  -18.9354 (-2.3319) 19.2388 -3.3448  16.5648  

Gill  48.8904  45.7360  44.1637  46.6532 45.9931  47.0639  

CP   -33.3675 -4.8638  18.7680 -12.9462 19.9046  

BHK    19.8107  31.3266 35.5785  34.2751  

MK     21.2063 [-1.7481] 19.4924  

Left      -21.9985 (-2.4131)  

Down       26.5872  

 

5. Conclusions 

Demands for newsvendor-type products are often fore-
casted from censored observations. The Kaplan-Meier 
product limit estimator is the well-known nonparametric 
method to deal with censored data, but it is undefined 
beyond the largest observation. In this paper, we propose 
two hypotheses to investigate estimation bias of the PL 
estimator, and provide three modified completion meth-
ods based on the proposed hypotheses.  

Simulation results show that biases of the proposed 
completion methods are significantly smaller than that of 
the completion methods in the literature. According to  

these results, we know that the proposed completion 
methods can improve demand forecasting with right 
censored observations. We also show that simulation is a 
useful way to verify probability result which is difficult 
to be proved by using classical statistical theory and 
methods.  

The developed methods are easy to implement in 
software packages. Many forecasting techniques have 
been integrated into enterprise software packages such as 
management information systems, enterprise resources 
planning systems, decision support systems. The pro-
posed forecasting techniques in this paper are simple and 
easily implemented in enterprise software packages. 
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