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ABSTRACT 
We are looking for a mathematical model of monophonic sounds with independent time and phase dimensions. With 
such a model we can resynthesise a sound with arbitrarily modulated frequency and progress of the timbre. We propose 
such a model and show that it exactly fulfils some natural properties, like a kind of timeinvariance, robustness against 
non-harmonic frequencies, envelope preservation, and inclusion of plain resampling as a special case. The resulting 
algorithm is efficient and allows to process data in a streaming manner with phase and shape modulation at sample 
rate, what we demonstrate with an implementation in the functional language Haskell. It allows a wide range of appli-
cations, namely pitch shifting and time scaling, creative FM synthesis effects, compression of monophonic sounds, ge-
nerating loops for sampled sounds, synthesise sounds similar to wavetable synthesis, or making ultrasound audible. 
 
Keywords: Pitch Shifting, Time Stretching, Wave Table Synthesis 

1. Introduction 
An example of our problem is illustrated in Figure 1. 
Given is a signal of a monophonic sound of a known con-
stant pitch. We want to alter its pitch and the progression 
of its waveshape independently, possibly time-dependent, 
possibly rapidly. The sound must not contain noise por-
tions such as speech does. We also do not try to preserve 
formants, that is, like in resampling, we accept that the 
spectrum of harmonics is stretched by the same factor as 
the base frequency. E.g. a square waveform shall remain 
squarem and so on. For some natural instruments this is 
appropriate (e.g. guitar, piano) whereas for other natural 
sounds this is inappropriate (e.g. speech). 

With the paper we like to contribute the following: 
1) In Subsection 2.1 we specify our problem. In Subsec-

tion 2.2 we propose a mathematical model for monophonic 
sounds given as real functions. This model untangles 
phase and time and allows us to describe frequency mod-
ulation and waveshape control. In Subsection 2.3 we show 
how we utilize this model for phase and time modification 
and we formulate natural properties of this process. 

2) Section 3 is dedicated to theoretical details. To this 
end we introduce some notations and definitions in Sub-
section 3.1 and Subsection 3.2. We investigate the prop-
erties (Subsection 3.3.7), and we prove that our model  

 
Figure 1. A typical use case of our method: From the above 
signal of a single tone we want to compute the signal below. 
That is, we want to alter the pitch while maintaining the 
progression of its waveshape and without knowing, how the 
signal was generated.  
 
satisfies these properties exactly. That is, our method is 
altogether theoretically sound. (I could not resist that 
pun!) 

3) The problems of handling discrete signals are treated 
in Section 4, including notes on the implementation in the 
purely functional programming language Haskell. 

4) We suggest a range of applications of our method in 
Section 5. 

5) In Section 6 you find a survey of related work and 
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in Section 7 we compare some results of our method with 
the ones produced by the similar wavetable synthesis. 

6) We finish our paper in Section 8 with a list of issues 
that we still need to work on. 

2. Continuous Signals: Overview 
2.1. Problem 
If we want to transpose a monophonic sound, we could 
just play it faster for higher pitch or slower for lower 
pitch. This is how resampling works. But this way the 
sound becomes also shorter or longer. For some instru-
ments like guitars this is natural, but for other sounds like 
that of a brass, it is not necessarily so. The problem we 
face is that with ongoing time both the waveform and the 
phase within the waveform change. Thus we can hardly 
say what the waveshape at a precise time point is. 

If we could untangle phase and shape this would open 
a wide range of applications. We could independently 
control progress of phase (i.e. frequency) and progress of 
the waveshape. 

2.2. Model 
The wish for untangled phase and shape leads us straight 
forward to the model we want to propose here. If phase 
and shape shall be independent variables of a signal, then 
our signal is actually a two-dimensional function, map-
ping from phase and shape to the (particle) displacement. 
Since the phase ϕ  is a cyclic quantity, the domain of 
the signal function is actually a cylinder. For simplicity 
we will identify the time point t in a signal with the shape 
parameter. That is, in our model the time points to the 
instantaneous shape. 

However, we never get signals in terms of a function 
on a cylinder. So, how is this model related to real-word 
onedimensional audio signals? According to Figure 2 the 
easy direction is to get from the cylinder to the plain au-
dio signal: We move along the cylinder while increasing 
both the phase and shape parameter proportionally to the 
time in the audio signal. This yields a helical path. The 
phase to time ratio is the frequency, the shape to time 
ratio is the speed of shape progression. The higher the 
ratio of frequency to shape progression, the more dense 
the helix. For constant ratio the frequency is proportional 
to the speed with which we go along the helix. We can 
change phase and shape non-proportionally to the time, 
yielding non-helical paths. 

When going from the one-dimensional signal to the 
twodimensional signal, there is a lot of freedom of inter-
pretation. We will use this freedom to make the theory as 
simple as possible. E.g. we will assume, that the one- 
dimensional input signal is an observation of the cylin-
drical function at a helical path. Since we have no data 

for the function values beside the helix, we have to guess 
them, in other words, we will interpolate.  

This is actually a nice model that allows us to perform 
many operations in an intuitive way and thus it might be 
of interest beyond pitch shifting and time scaling. 

2.3. Interpolation Principle 
An application of our model will firstly cover the cylind-
er with data that is interpolated from a one-dimensional 
signal x  by an operator F  and secondly it will choose 
some data along a curve around that cylinder by an oper-
ator S. The operator that we will work with here has the 
structure 

( ) ( ) ( ),
k

Fx t x k t kϕ ϕ κ ϕ
∈

= + ⋅ − −∑


 

where κ  is an interpolation kernel such as a hat func-
tion or a sinus cardinalis (sinc). Intuitively spoken, it lays 
the signal on a helix on the cylinder. Then on each line 
parallel to the time axis there are equidistant discrete data 
points. Now, F  interpolates them along the time direc-
tion using the interpolation kernel κ . You may check 
that ( ),Fx t ϕ  has period 1 with respect to ϕ . This is 
our way to represent the radian coordinate of the cylinder 
within this section. 

The observation operator S  shall sample along a he-
lix with time progression v and angular speed α : 

( ) ( ) .Sy t y v t tα= ⋅ ⋅ ⋅  

Interpolation and observation together, yield 

( ) ( )( )
( ) ( )( ) .

k

Mx t S Fx t

x t k k v t kα α
∈

=

= ⋅ + ⋅ − ⋅ −∑


 

This operator turns out to have some useful properties: 
1) Time-invariance 
In audio signals often the absolute time is not impor- 

tant,but the time differences. Where you start an audio 
recording should not have substantial effects on an oper-
ation you apply to it. This is equivalent to the statement, 
that a delay of the signal shall be mapped to a delayed 
result signal. In particular it would be nice to have the 
property, that a delay of the input by v t⋅  yields a delay 
by t of the output. However this will not work. To this 
end consider pure time-stretching ( )1α =  applied to 
grains, and we become aware that this property implies 
plain resampling, which clearly changes the pitch. What 
we have at least, is a restricted time invariance: You have  
a discrete set of pairs of delays of input and output signal 
that are mapped to each other wherever the helices in 
Figure 2 cross, that is wherever ( )v tα− ⋅ ∈ . 

However, the construction F  of our model is time 
invariant in the sense:  
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( ) ( )
( ) ( )

1 0

1 0, ,

x t x t x

Fx t Fx tϕ τ ϕ τ

= −

⇒ = − −
     (1) 

2) Linearity 
Since both F  and S  are linear, our phase and time 

modification process is linear as well. This means that 
physical units and overall magnitudes of signal values 
are irrelevant (homogeneity) and mixing before interpo-
lation is equivalent to mixing after interpolation (additiv-
ity). 

( )Homogeneity M x Mxλ λ⋅ = ⋅       (2) 

( )Additivity M x z Mx Mz+ = +       (3) 

3) Resampling as special case 
We think, that pitch shifting and time scaling by factor 

1 should leave the input signal unchanged. We also think, 
that resampling is the most natural answer to pitch shift-
ing and time scaling by the same factor vα =  For in-
terpolating kernels, that is  

( ) { } ( )0 1, \ 0 : 0k j k j= ∀ ∈ =  this actually holds. 

( ) ( )Mx t x v t= ⋅  

4) Mapping of sine waves 
Our phase and time manipulation method maps sine 

waves to sine waves if the kernel is the sinus cardinalis 
normalized to integral zeros. 

( ) ( )
1 : 0

sin
: otherwise

t
k t t

t
π

π

=
= ⋅
 ⋅

 

Choosing this kernel means WHITTAKER interpola-
tion. Now we consider a complex wave of frequency α  
as input for the phase and time modification. 

( ) ( )exp 2

1 1,
2 2

x t i a t
a b n
n

b

π= ⋅ ⋅

= +
∈

 ∈ − 
 



           (4) 

( ) ( )( )M exp 2x t i b v + n a tπ= ⋅ ⋅ ⋅ ⋅        (5) 

Note that for 1
2

frac a = , the WHITTAKER interpo-  

lation will diverge. If 0b = , that is the input frequency 
a  is integral, then the time progression has no influence 
on the frequency mapping, i.e. the input frequency a  is 
mapped to aα ⋅ . We should try to fit the input signal as 
good as possible to base frequency 1 by stretching or 
shrinking, since then all harmonics have integral fre-
quency. 

The fact, that sine waves are mapped to sine waves, im- 

 
Figure 2. The cylinder we map the input signal onto (black 
and dashed helix) and where we sample the output signal 
from (grey). 
 
plies, that the effect of M  to a more complex tone can 
be described entirely in frequency domain. An example 
of a pure pitch shift is depicted in Figure 3. The peaks 
correspond to the harmonics of the sound. We see that 
the peaks are only shifted. That is, the shape and width of 
each peak is maintained, meaning that the envelope of 
each harmonic is the same after pitch shifting. 
5). Preservation of envelope 

Consider a static wave x, i.e. ( ) ( )1t x t x t∀ = + ,that is 
amplified according to an envelope f. If interpolation 
with k is able to reconstruct f and all of its translates from 
their respective integral values, then on the cylinder wave 
and envelope become separated 

( ) ( ) ( ),Fx t f t xϕ ϕ= ⋅  

and the overall phase and time manipulation algorithm 
modifies frequency and time separately: 

( ) ( ) ( )Mx t f v t x tα= ⋅ ⋅ ⋅  

Examples for κ  and f are: 
1) κ  being the sinus cardinalis as defined in item 4 and 
f being a signal bandlimited to ( )1 1

2 2,− , 
2) ( ]= 1,0κ χ −  and f  being constant,  
3) ( ) ( )= max 0,1t tκ −  and f  being a linear func-

tion,  
4) κ  being an interpolation kernel, that preserves 

polynomial functions up to degree n and f being such a 
polynomial function. 
 

 
Figure 3. The first graph presents the lower part of the ab-
solute spectrum of a piano sound. Its pitch is shifted 2 oc-
taves down (factor 4) in the second graph. 
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3) κ  being an interpolation kernel, that preserves 
polynomial functions up to degree n  and f  being 
such a polynomial function. 

3. Continuous Signals: Theory 
In this section we want to give proofs of the statements 
found in Section 2 and we want to check what we could 
have done alternatively given the properties that we 
found to be useful. You can safely skip the entire section 
if you are only interested in practical results and applica-
tions. 

3.1. Notation 
In order to give precise, concise, even intuitive proofs, 
we want to introduce some notations. 

In signal processing literature we find often a term like 
( )x t  being called a signal, although from the context 

you derive, that actually x is the signal and thus ( )x t  
denotes a displacement value of that signal at time t. We 
like to be more strict in our paper. We like to talk about 
signals as objects without always going down to the level 
of single signal values. Our notation should reflect this 
and should clearly differentiate between signals and sig-
nal values. This way, we can e.g. express a statement like 
“delay and convolution commute” by 

( ) ( )=t x y x ty∗ ∗  

(cf. (22)) which would be more difficult in a pointwise 
and correct (!) notation.  

This notation is inspired by functional programming, 
where functions that process functions are called high-
er-order functions. It allows us to translate the theory 
described here almost literally to functional programs 
and theorem prover modules. Actually some of the theo-
rems stated in this paper have been verified using PVS 
[1]. For a more detailed discussion of the notation, see 
[2]. 

In our notation function application has always higher 
precedence than infix operators. Thus Qx t→  means 
( )Qx t→  and not ( )Q x t→ . Function application is 
left associative, that is, ( )Qx t  means ( )( )Qx t  and not 

( )( )Q x t . This is also the convention in Functional 
Analysis. We use anonymous functions, also known as 
lambda expressions. The expression x Y  denotes a 
function f  where ( ) =x f x Y∀  and Y  is an ex-
pression that usually contains x . Arithmetic infix oper-
ators like “ + ” and “ ⋅ ” shall have higher precedence than 
the mapping arrow, and logical infix operators like “ = ” 
and “ ∧ ” shall have lower precedence. That is, 
( ) =tf t fτ τ−  means  

( ) ( )( )( ) ( )( )=t f t g t f gτ τ τ− + − + . 

1) Definition (Function set). With 
A B→  

we like to denote the set of all functions mapping from 
set A  to set B . This operation is treated right associa-
tive, that is, A B C→ →  means ( )A B C→ → , not 
( )A B C→ → . This convention matches the convention 
of left associative function application.  

3.2. Basic functions 
For the description of the cylinder we first need the no-
tion of a cyclic quantity. 

2) Definition (Cyclic quantity). Intuitively spoken, 
cyclic (or periodic) quantities are values in the range 
[ )0,1  that wrap around at the boundaries. More precisely, 
a cyclic quantity ϕ  is a set of real numbers that all have 
the same fractional part. Put differently, a periodic quan-
tity is an equivalence class with respect to the relation, 
that two numbers are considered equivalent when their 
difference is integral. In terms of a quotient space this 
can concisely be written as 

.ϕ ∈


 

3) Definition (Periodisation). Periodisation c means 
mapping a real value to a cyclic quantity, i.e. choosing 
the equivalence class belonging to a representative. 

( )
{ }:

c

p c p p

q q p

∈ →

∀ ∈ = +

= − ∈







 



 

It holds ( )0c =  . We define the inverse of c  as 
picking a representative from the range [ )0;1 . 

( ) [ )

1

1 0,1

c

cϕ ϕ ϕ

−

−

∈ →

∀ ∈ ∈ ∩











 

In a computer program, we do not encode the elements 
of 



 by sets of numbers, but instead we store a rep-
resentative between 0 and 1, including 0 and excluding 1. 
Then c is just the function, that computes the fractional part, 
i.e. c t = t floor t.−  

A function y on the cylinder is thus from  

( ) V× →





, where V  

denotes a vector space. E.g. for V =   we have a mono 
signal, for V = ×   we obtain a stereo signal and so on.  

The conversion S  from the cylinder to an audio sig-
nal is entirely determined by given phase control curve g 
and shape control curve h. It consists of picking the val-
ues from the cylinder along the path that corresponds to 
these control curves. 



Untangling Phase and Time in Monophonic Sounds 

Copyright © 2010 SciRes.                                                                                 JSIP 

5 

( )( ) ( ),h gS V V∈ × → → →

 



   (6) 

( ) ( ) ( )( ), ,h gS y t y h t g t∈             (7) 

For the conversion F from a prototype audio signal to 
a cylindrical model we have a lot of freedom. In Section 
2.3 we ave seen what properties a certain F has, that we 
use in our implementation. we will going on to check 
what choices for F wehave, given that these properties 
hold. For now we will just record, that 

( ) ( )( )F V V∈ → → × →

 



 

3.3. Properties 
3.3.1. Time-Invariance 

4) Definition (Translation, Rotation). Shifting a signal x 
forward or backward in time or rotating a waveform with 
respect to its phase shall be expressed by an intuitive 
arrow notation that is inspired by [3,4] and was already 
successfully applied in [2]: 

( )( ) ( )x t x tτ τ→ = −           (8) 

( )( ) ( )x t x tτ τ→ = +           (9) 

For a cylindrical function we have two directions, one 
for rotation and one for translation. We define analo-
gously 

( )( )( ) ( ), , ,y t y tτ α ϕ τ ϕ α→ = − −      (10) 

( )( )( ) ( ), , ,y t y tτ α ϕ τ ϕ α→ = + +      (11) 

The first notion of time-invariance that comes to mind, 
can be easily expressed using the arrow notation by 

( ) ( )( ), 0t F x t Fx t c∀ → = → . However, this will not 
yield any useful conversion. Shifting the time always 
includes shifting the phase and our notion of 
time-invariance must respect that. We have already given 
an according definition in (1) that we can now write us-
ing the arrow notation. 

5) Definition (Time-invariant cylinder interpolation). 
We call an interpolation operator F time-invariant when-
ever it satisfies 

( ) ( )( ),x t F x t Fx t c t∀ ∀ → = →      (12) 

Using this definition, we do not only force F to map 
translations to translations, but we also fix the factor of 
the translation distance to 1. That is, when shifting an 
input signal x, the according model Fx is shifted along 
the unit helix, that turns once per time difference 1. 

Enforcing the time-invariance property restricts our 
choice of F considerably. 

( )
( )( )( ) ( )( )

( ) ( )( )

,

, 0,

0,

Fx t

Fx t c t c t

F x t c t

ϕ

ϕ

ϕ

= ← −

= ← −

 

We see, that actually only a ring slice of ( )F x t←  
time point zero is required and we can substitute 

( ) ( )0,Ix Fxϕ ϕ=  I is an operator from 

( ) ( )V V→ → →





, that turns a straight signal into  

a waveform. Now we know, that time-invariant interpo-
lations can only be of the form 

( ) ( ) ( )( ),Fx t I x t c tϕ ϕ= → −        (13) 

or more concisely 

( ) ( ) ( ),Fx t I x t c tϕ ϕ = → →       (14) 

The last line can be read as: In order to obtain a ring 
slice of the cylindrical model at time t, we have to move 
the signal, such that time point t becomes point 0, then 
apply I to get a waveform on a ring, then rotate back that 
ring correspondingly.  

We may check, that any F defined this way is indeed 
timeinvariant in the sense of (12). 

( )( )
( )( ) ( )

( )( ) ( )( )
( )( )( ) ( )( ) ( )

( )( )
( )( )( )( )

,

,

, ,

Fx x t

I x t c

I x t c

I x t t c t c t

Fx t c t

Fx t c t

τ ϕ

τ ϕ τ

τ ϕ τ

τ τ τ τ

τ ϕ

τ ϕ

→

= → ← −

= ← − −

= ← − − − − −

= − −

= →

 

3.3.2. Linearity 
We like that our phase and time modification process is 
linear (as in (2) and (3)). Since sampling S from the cy-
linder is linear, the interpolation F to the cylinder must 
be linear as well. 

( )
( )

Homogeneity

Additivity

F x Fx

F x z Fx Fz

λ λ⋅ = ⋅

+ = +
 

The properties of F are equivalent to 

( )
( )

I x Ix

I x z Ix Iz

λ λ⋅ = ⋅

+ = +
 

3.3.3. Static wave preservation 
Another natural property is, that an input signal consist-
ing of a wave of constant shape is mapped to the cylinder 
where each ring contains that waveform. A static wave-
form can be written concisely as w c . It denotes the 
function composition of w  and c , that is, w  is applied 
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to the result of c , for example ( )( ) ( )( )2.3 = 0.3w c w c . 
Thus w  and w c  both represent periodic functions, 
but w  has domain 



 and thus is periodic by its 
type, whereas w c  is an ordinary real function, that 
happens to satisfy the periodicity property 
( ) = 1( )w c w c  . We can write our requirement as 

( )( ) ( ), = .t F w c t wφ ϕ ϕ∀ ∀   

As an example we have a constant interpolation 

( )
( ) ( )( )( )

1

1,

I x x c

Fx t x t c c tϕ ϕ

−

−

=

= + −



 

We illustrate the constant interpolation in Figure 4, 
but with a sine wave, that does not have frequency 1, and 
thus looks for the interppoow it preserves static waves. 

We can consider an input signal of the form w c  as 
a wave with constant envelope and we will generalise 
this to other envelopes in Subsection 3.3.6. 

3.3.4. Mapping of Pure Sine Waves 
We like to derive, how frequencies are mapped when 
converting from an audio signal to the cylindrical model 
and observing the signal along a different but uniform 
helix. To this end, we need an interpolation that maps 
sine waves to sine waves. Actually, the Whittaker inter-
polation has this property. 

( )

( )

sin
sin 1 lim

1 : 0
sin

: otherwise

t
c t

t
t

t

τ

τ π
τ π

π
π

→

⋅
=

⋅
=

= ⋅
 ⋅

 

 

 
Figure 4. Constant interpolation (below) of a sine wave 
(above) that is out of sync. The interpolation picture repre- 
sents the surface ( ), 1y t ϕ = −  and a white dot repre- sents 
1. The sine wave can be found in the interpolation image at 
the right border of each of the skew stripes. Along the ver-
tical line from bottom to top you find the first period of the 
input signal, where “first” is measured from time point 0. 

( ) ( ) ( ), sin 1Fx t x c t
τ ϕ

ϕ τ τ
∈

= ⋅ −∑      (15) 

Since ϕ ∈


, when τ ϕ∈  then τ  assumes all 

values that differ from ( )1c ϕ−  by an integer. The infi-

nite sum ( )fτ ϕ τ
∈∑  shall be understood as 

[ ] ( ),limn n n fτ ϕ τ→∞ ∈ −∑ .  

The proof of F  being time-invariant according to 
time-invariance is deferred to kernel-interpolation-time- 
invariant, where we perform the proof for any interpo-
lating kernel, not just 1sinc . 

We will now demonstrate, that 1sinc -interpolation 
preserves sine waves and how frequencies are mapped. 

Mapping a complex sine wave to the cylinder Since 
exponential laws are much easier to cope with than addi-
tion theorems for sine and cosine, we use a complex 
wave defined by ( )1 = exp 2 .cis t i tπ ⋅  

For the following derivation we need the Whittaker- 
Shannon interpolation formula [5] in the form  

( )1 1,
2 2

b∀ ∈ −  

( ) ( ) ( ) ( )

( )

1 1 = 1 1

1
k

cis b k sinc t k cis b t sine t k

cis b t
∈

⋅ ⋅ − ⋅ ⋅ −

= ⋅

∑
  (16) 

We choose a complex wave of frequency a  as input 
for the conversion to the cylinder. The fractional fre-
quency part b  and the integral frequency n  are cho-
sen as in decompose-frequency n  are chosen as in (4) 

( ) ( )

( )1 1
2 2

1

,

x t cis a t
with a b n
n
b

= ⋅

= +
∈

∈ −



 

This choice implies the following interpolation result 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )
( )

( ) ( )( )1

, 1 sin 1

, 1 1 sin1

because
1 1 sin1

1 1

1

, 1

k

k

Fx t cis a c t

Fx t cis a cis a k t k

a b
cis a cis b k t k

cis a cis b t

cis b t n

Fx t cis b t n c

τ

ϕ τ τ

τ ϕ
ϕ τ τ

τ τ

τ τ

τ

ϕ ϕ

∈

∈

∈

−

= ⋅ ⋅ −

∀ ∈

= ⋅ ⋅ ⋅ ⋅ − −

− ∈

= ⋅ ⋅ ⋅ ⋅ − −

= ⋅ ⋅ ⋅ −

= ⋅ + ⋅

= ⋅ + ⋅

∑

∑

∑









  (17) 

The result can be viewed in Figure 5. We obtain, that 
for every t the function on a ring slice ( ),Fx tϕ ϕ  is a  
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Figure 5. The sine wave as in Figure 4 is interpolated by 
WHITTAKER interpolation. Along the diagonal lines you 
find the original sine wave. 
 
sine wave with the integral frequency n that is closest to 
a. That is, the closer a is to an integer, the more harmon-
ics of a non-sine wave are mapped to corresponding 
harmonics in a ring slice of Fx . 
 

Mapping a complex wave from the cylinder to an 
audio signal For time progression speed v and frequency 
α  we get 

( ) ( )( )
( )( )( )

( )( )
( )
( )

1

1

,

1

because

1

1

z t Fx v t c a t

cis b v t n c c a t

c c

cis b v t n a t

cis b v n a t

τ τ τ

−

−

= ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅

∀ ∈ − ∈

= ⋅ ⋅ + ⋅ ⋅

= ⋅ + ⋅ ⋅

   

This proves (5). 

3.3.5. Interpolation using kernels 
Actually, for the two-dimensional interpolation F we can 
use any interpolation kernel κ , not only sinc1 as in (15). 

( ) ( ) ( ),Fx t x t
τ ϕ

ϕ τ κ τ
∈

= ⋅ −∑         (18) 

The constant interpolation corresponds to ( ]1,0κ χ −=   

Linear interpolation is achieved using a hat function. 6 
Lemma (Time invariance of kernel interpolation). The 
operator F defined with an interpolation kernel as in (18) 
is time-invariant according to Definition 5. 
Proof. 

( )( ) ( )( ) ( )

( ) ( ) ( )( )

( )
( )( )

( )

( )( )( )( )

,

, ,

c d

F x d t x d t

x d t d d

x t d

Fx d c d t

τ ϕ

τ ϕ

τ ϕ

ϕ τ κ τ

τ κ τ

τ κ τ

ϕ

∈

∈

∈ −

→ = → ⋅ −

= − ⋅ − − −

= ⋅ − −

= →

∑

∑

∑
 

Conversely, we like to note, that kernel interpolation is 
not the most general form when we only require time- 
invariance, linearity and static wave preservation. 

The following considerations are simplified by rewrit-
ing general kernel interpolation to a more functional style 

using a discretisation operator and a mixed discrete/con- 
tinuous convolution. 

7) Definition (Quantisation). With quantisation we 
mean the operation that picks the signal values at integral 
time points from a continuous signal. 

( ) ( )
( ) ( )
Q V V

n Qx n x n

∈ → → →

∀ ∈ =

 



  (19) 

Here is, how quantisation operates on pointwise mul-
tiplied signals and on periodic signals: 

( )Q x z Qx Qz⋅ = ⋅             (20) 

( )( ) ( )( )0n Q w c n w c∀ ∈ =       (21) 

8) Definition (Mixed Convolution). For u V∈ →  
and x∈ →   then mixed discrete/continuous convo-
lution is defined by  

( )( ) ( ) ( )
k

u x t u k x t k
∈

∗ = ⋅ −∑


 

We can express mixed convolution also by purely dis-
crete convolutions: 

( )( ) ( )Q u x t u Q x t∗ ← = ∗ ←  

It holds 

( ) ( )u x t u x t∗ → = ∗ →          (22) 

because translation can be written as convolution with a 
translated DIRAC impulse and convolution is associative 
in this case (and generally when infinity does not cause 
problems). Thus we will omit the parentheses. We like to 
note, that this example demonstrates the usefulness of the 
functional notation, since without it even a simple state-
ment like (22) is hard to formulate in a correct and un-
ambiguous way. 

These notions allow us to rewrite kernel interpolation 
(18): 

( ) ( ) ( )( )
( ) ( )

,

,
k

Fx t x k t k

t Fx t Q x

τ ϕ ϕ τ κ τ

τ ϕ ϕ τ κ τ
∈

∀ ∈ = + ⋅ − +

∀ ∈ = ← ∗ →

∑




  (23) 

The last line can be read as follows: The signal on the 
cylinder along a line parallel to the time axis can be ob-
tained by taking discrete points of x and interpolate them 
using the kernel κ . 

3.3.6. Envelope preservation 
We can now generalise the preservation of static waves 
from Subsection 3.3.3 to envelopes different from a con-
stant function. 

9) Lemma. Given an envelope f from →   and an 
interpolation kernel κ  that preserves any translated 
version of f, i.e. 
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( ) ,t Q f t f tκ∀ ← ∗ = ←         (24) 

then and only then, a wave of constant shape w enve-
loped by f is converted to constant waveshapes on the 
cylinder rings enveloped by f in time direction: 

( )( )( ) ( ) ( ),F f w c t f t wϕ ϕ⋅ = ⋅       (25) 

Proof. 

( )( )( )
( )( )( )

( ) ( )( )( )
( ) ( )

,t F f w c t

Q f w c

Q f w c

w Q f

τ ϕ ϕ

τ κ τ

τ ϕ κ τ

ϕ τ κ τ

∀ ∈ ⋅

= ⋅ ← ∗ →

= ← ⋅ ← ∗ →

= ⋅ ← ∗ →

 





 

Now the implication (24) ⇒  (25) should be obvious, 
whereas the converse (25) ⇒  (24) can be verified by 
setting ( ) 1wϕ ϕ∀ = .This special case means that the 
envelope f used as input signal is preserved in the sense 

( ) ( ),Ff t f tϕ =  

10) Corollary When we convert back to a 
one-dimensional audio signal under the condition (24), 
then the time control only affects the envelope and the 
phase control only affects the pitch: 

( )( )( ) ( ) ( ),h gS F f w c f h w g⋅ = ⋅    

3.3.7. Special Cases 
As stated in item 3 of Section 2.3 we like to have resam-
pling as special case of our phase and time manipulation 
algorithm. It turns out, that this property is equivalent to 
putting the input signal x on the diagonal lines as in Fig-
ure 4 and Figure 5. We will derive, what this imposes on 
the choice of the kernel κ  when F is defined via a ker-
nel as in (23). 

11) Lemma. For F defined by 

( ) ( ),t Fx t Q xτ ϕ ϕ τ κ τ∀ ∈ = ← ∗ →  

it holds 

( ) ( )( ),x t x t Fx t c t∀ ∀ ∈ =        (26) 

if and only if 
,Qκ δ=  

that is, κ  is a so called interpolating kernel. 
Here, δ  is the discrete DIRAC impulse, that is 

( )
1 : 0
0 :

k
k k

otherwise
δ

=
∀ ∈ = 


  

Proof. “⇒ ” 

( ) ( )( )
( )( )( )

,x t x t Fx t c t

Q x t t tκ

∀ ∀ ∈ =

= ← ∗ →



 

consider only t∈  and rename it to k 

( ) ( )( )( )
( )( )
( )

( )

x k x k Q x k k k

Qx k

x Qx Q Qx

Qx Q discrete convolution

κ

κ

κ

κ

∀ ∀ ∈ = ← ∗ →

= ∗

∀ = ∗

= ∗



 

“⇐ ” 
Conversely, every interpolating kernel _ asserts (26): 

( ) ( )( )( )
( ) ( )

( )( )( )
( )( )( )
( )( )( )

( )( )
( )

0

0

0

0

0

x k x k Q x k k k

Q x t

Q Q x t

Q x t Q

Q x t

x t

x t

κ

κ

κ

κ

δ

∀ ∀ ∈ = → ∗ →

= ← ∗

= ← ∗

= ← ∗

= ← ∗

= ←

=



 

Now, when our conversion from the cylinder to the 
onedimensional signal does only walk along the unit he-
lix, we get general time warping as special case of our 
method: 

( ) ( ) ( )( )( )
( )( )

, ,h c hS Fx t Fx h t c h t

t x h t

x h

=

=

=









 

For idh =  we get the identity mapping, for 
( )h t v t= ⋅  we get resampling by speed factor v. 

4. Discrete Signals 
For the application of our method to sampled signals we 
could interpolate a discrete signal u containing a wave 
with period T, thus getting a continuous signal x with 
( ) ( )n

Tx u n=  and proceed with the technique for con-
tinuous signals from Section 2. However, when working 
out the interpolation this yields a skew grid with two al-
ternating cell heights and a doubled number of parallelo-
gram cells, which seems to be unnatural to us. Additional-
ly it would require three distinct interpolations, e.g. two 
distinct interpolations in the unit helix direction and one 
interpolation in time direction. Instead we want to propose 
a periodic scheme where we need two interpolations with 
the same parameters in unit helix (“step”) direction and 
one interpolation in the skew “leap” direction. This in-
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terpolation scheme is also time-invariant in the sense of 
item 1 in Subsection 2.3 and Definition 5 when we re-
strict the translation distances to multiples of the sam-
pling period.  

The proposed scheme is shown in Figure 6. We have a 
skew coordinate system with steps s and leaps l. We see, 
that this scheme can cope with non-integral wave periods, 
that is, T can be a fraction (in Figure 6 we have 11

3T = ). 
Whenever the wave period is integral, the leap direction 
coincides with the time direction. The grid nicely matches 
the periodic nature of the phase. The cyclic phase yields 
ambiguities, e.g. a leap could also go to where l′  is 
placed, since this denotes the same signal value. We will 
later see, that this ambiguity is only temporary and will 
vanish at the end (29). Thus we use the unique represent-
ative ( )1c ϕ−  of ϕ . To get ( ),l s  from ( )1,t c ϕ−  we 
have to convert the coordinate systems, i.e. we have to 
solve the simultaneous linear equations 

( )1

11
1

troundT l
croundT T sT ϕ−

    
⋅ ⋅ =     −     

 

where round is any rounding function we like. E.g. in 
Figure 6 it is round T = 4. Its solution is 

( )1l t c
s t T l roundT

ϕ−= −

= ⋅ − ⋅
          (27) 

Using the interpolated input x we may interpolate y li-
nearly 

( )( ) ( )

( ) ( ) ( )( )( )

round

frac

, lerp , fract roundTR
T T

r l s

lerp

y t x x l

η ξ λ ξ λ η ξ

λ λ λ

ϕ +

= ⋅ +  
− = + ⋅ −

= −   

=

 (28) 

or more detailed 

( )( ) ( )( )( )
( )( ) ( )

( )
( ) ( )( )

round

lerp , 1 frac

lerp u n round , round 1

fracs

, lerp ,

n l T + s

a u n u n s

b T u n T

y t a b fraclϕ

= ⋅      

= +

= + + +

=

 

Actually, we do not even need to compute s since by 
expansion of s the formula for r can be simplified and it 
is frac s = frac r. From l we actually only need frac l. 
This proves, that every representative of ϕ  could be 
used in (27). 

frac roundr = t T  l  T⋅ − ⋅            (29) 

 
Figure 6. Mapping of the sampled values to the cylinder in 
our method. The variables s and l are coordinates in the 
skew coordinate system. 

( ) ( )( )( )
( ) ( )( )( )

lerp

lerp round  round 1

n = r

a = u n ,u n + 1 frac r

b = u n +  T , u n +  T + frac r

  
 

4.1. General Interpolations 
Other interpolations than the linear one use the same 
computations to get frac l and r, but they access more 
values in the environment of n, i.e. 
( )roundu n j k T+ + ⋅  for some j and k. E.g. for linear 

interpolation in the step direction and cubic interpolation 
in the leap direction, it is { } { }0,1 , 1,0,1,2j k∈ ∈ − . 

4.2. Coping with Boundaries 
So far we have considered only signals that are infinite in 
both time directions. When switching to signals with 
finite time domain we become aware that our method 
consumes more data than it produces at the boundaries. 
This is however true for all interpolation methods.  

We start considering linear interpolation: In order to 
have a value for any phase at a given time, a complete 
vertical bar must be covered by interpolation cells. That 
happens the first time at time point 1. The same consid-
eration is true for the end of the signal. That is, our me-
thod always reduces the signal by two waves. Analo-
gously, for k node interpolation in leap direction we lose 
k waves by pitch shifting.  

If we would use extrapolation at the boundaries, then 
for the same time but different phases we would some-
times have to interpolate and sometimes we would 
extrapolate. In order to avoid this, we just alter any 

[ )0,1t∈  to 1t =  and limit t accordingly at the end of 
the signal. 

4.3. Efficiency 
The algorithm for interpolating a value on the cylinder is 
actually very efficient. The computation of the interpola-
tion parameters and signal value indices in (29) needs 
constant time, and the interpolation is proportional to the 
number of nodes in step direction and the number of 
nodes in leap direction. Thus for a given interpolation 
type, generating an audio signal from the cylinder model 
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needs time proportional to the signal length and only 
constant memory additional to the signal storage. 

4.4. Implementation 
A reference implementation of the developed algorithm 
is written in the purely functional programming language 
Haskell [6]. The tree of modules is located at http://code. 
haskell.org/synthesizer/core/src/. In [7] we have already 
shown, how this language fulfils the needs of signal 
processing. The absence of side effects makes functional 
programming perfect for parallelisation. Recent progress 
on parallelisation in Haskell [8] and the now wide avail-
ability of multi-core machines in the consumer market 
justifies this choice. 

We can generate the cylindrical wave function with 
the function Synthesizer.Basic.Wave.sampledTone given 
the interpolation in leap direction, the interpolation in 
step direction, the wave period of the input signal and the 
input signal. The result of this function can then be used 
as input for an oscillator that supports parametrised 
waveforms, like Synthesizer.Plain.Oscillator.shapeMod. 
By the way, this implementation again shows how func-
tional programming with higher order functions supports 
modularisation: The shape modulating oscillator can be 
used for any other kind of parametrised waveform, e.g. 
waveforms given by analytical functions. This way, we 
have actually rendered the tones with morphing shape in 
the figures of this paper. In an imperative language you 
would certainly call the waveform being implemented as 
callback function. However due to aggressive inlining 
the compiled program does not actually need to callback 
the waveform function but the whole oscillator process is 
expanded to a single loop. 

4.5. Streaming 
Due to its lazy nature, Haskell allows simple implemen-
tation of streaming, that is, data is processed as it comes 
in, and thus processing consumes only a constant amount 
of memory. If we apply our pitch shifting and time stret-
ching algorithm to an ascending sequence of time values, 
streaming is possible. This applies, since it is warranted, 
that r

T  is not too far away from t. Since [ )0,1frac l∈  
it holds  

round0,r Tt
T T

 − ∈  
             (50) 

Thus we can safely move our focus to roundt T T⋅ −  
in the discrete input signal u, which is equivalent to a 
combined translation and turning of the wave function on 
the cylinder. 

What makes the implementation complicated is the 
handling of boundaries. At the beginning we limit the 

time parameter as described in Subsection 4.2. How-
ever at the end, we have to make sure that there is 
enough data for interpolation. It is not so simple to 
limit t to the length of input signal minus size of data 
needed for interpolation, since determining the length 
of the input signal means reading it until the end. In-
stead when moving the focus, we only move as far as 
there is enough data available for interpolation. The 
function is implemented by Synthesizer.Plain. Oscil-
lator.shapeFreqModFromSampledTone. 

5. Applications 
5.1. Combined Pitch Shifting and Time Scaling 

With a frequency control curve f and a shape control g 
we get combined pitch shifting and time scaling out of 
our model using the conversion ,f gS∫  (see (7)). 

5.2. Wavetable synthesis 
Our algorithm might be used as alternative to wavetable 
synthesis in sampling synthesisers [9]. For wavetable 
synthesis a monophonic sound is reduced to a set of 
waveforms that is stored in the synthesiser. On replay the 
synthesiser plays those waveforms successively in small 
loops, maybe fading from one waveform to the next one. 
If we do not reduce the set of waveforms, but just chop 
the input signal into wave periods, then apply wavetable 
synthesis with fading between waveforms, we have 
something very similar to our method. In Figure 7 we 
compare wavetable synthesis and our algorithm using the 
introductory example of Figure 1. In this example both 
the wavetable synthesis and our method perform equally 
well. If not stated otherwise, in this and all other figures 
we use linear interpolation. This minimises artifacts from 
boundary handling and the results are good enough. 

5.3. Compression 
Wavetable synthesis can be viewed as a compression 
scheme: Sounds are saved in the compressed form of a 
few waves in the wavetable synthesiser and are decom-
pressed in realtime when playing the sound. Analogously 
we can employ our method for compression of mono-
phonic sounds. For compression we simply shrink the 
time scale and for decompression we stretch it by the 
reciprocal factor. An example is given in Figure 8. 

The shrinking factor, and thus the compression factor, 
is limited by non-harmonic frequencies. These are al-
ways present in order to generate envelopes or phasing 
effects. Consider the frequency a that is decomposed into 
b n+  in (4), no pitch shift, i.e. 1α = , and the shrinking 
factor v. According to (5), the frequency b n+  is 
mapped to b v n⋅ +  In order to be able to decompose 
b v n⋅ +  into b v⋅  and n  again on decompression, it  
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Figure 7. Pitch shifting performed on the signal of Figure 1 
using linear interpolation in both directions. Above is the 
result of wavetable synthesis, below is the result of our me-
thod. 

 

 
Figure 8. We show how a piano sound is altered by com-
pression and decompression. The top-most graph is the 
original sound. The graphs below are the results of com-
pression and decompression with cubic interpolation by the 
associated factors in the left column. Because the interpola-
tion needs a margin at beginning, we have copied the first 
two periods when compressing and decompressing. 

must be ( )1 1
2 2,b v⋅ ∈ − . This implies, that if b is the 

maximum absolute deviation from an integral frequency, 
that you want to be able to reconstruct, then it must be 

1
2 bv ⋅< . 

The mapping of frequencies can be best visualised using 
the frequency spectrum as in Figure 9. Note how the 
peaks become wider by the compression factor while 
their shape is maintained. The resolution is divided by 
the compression factor, and this is why the compressed-
data actually consumes less space. The shape of a peak 
expresses the envelope of the according harmonic and 
widening it, means a time shrunken envelope. 

If we compress too much, then peaks will overlap and 
we get aliasing effects on decompression. Aliasing can 
be suppressed by smoothing across the same phase of all 
waves. That is, for the monophonic sound x with period 
T and a smoothing filter window w, we should compress 

( )roundx w T∗ ↑  instead of x. We use the up arrow for 
the upsampling operator where  

    /
: 0 mod

,
0 : 0 mod
k c

k

w k c
k c w c

k c

      
  

Actually, we could use the frequency spectrum not only 
for visualising the compression (or pitch-shifting), but we 
could also use the frequency spectrum itself for compres-
sion. The advantages would be simpler anti-aliasing (we 
would just throw away values outside bands around the 
harmonics) and we could also strip high harmonics, once 
they fall below a given threshold. The advantage of com-
puting in the time-domain is, that it consumes only linear 
time with respect to the signal length, not liear-logarithmic 
time like the FOURIER transform, that it can be applied in 
a streaming way and allows to adapt the compression fac-
tor to local characteristics of a sound. For instance, you 
may use a shrinking factor close to 1 for fast varying por-
tions of the signal and use a larger shrinking factor on 
slowly modulated portions. 

 

 
Figure 9. The first graph presents the lower part of the ab-
solute spectrum of a piano sound. This is then compressed 
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by a factor 4 in the second graph. 

5.4. Loop Sampled Sounds 

Another way to save memory in sampling synthesisers is 
to loop sounds. This is especially important in order to get 
infinite sounds like string sounds out of a finite storage. 
Looping means to repeat portions of a sampled sound. The 
problem is to find positions of matching sound characteris-
tics: A loop that causes a jump or an abrupt change of the 
waveform is a nasty audible artifact. Especially in samples 
of natural sounds there might be no such matching posi-
tions, at all. Then the question is, whether the sample can 
be modified in a way that preserves the sound but provides 
fine loop boundaries. Several solutions using fading or 
time reversal have been proposed.  

Our method offers a new way: We may move the time 
forth and back while keeping pitch constant. In Figure 
10 we show two reasonable time control curves. Both 
control curves start with exactly reproducing the sampled 
sound and then smoothly enter a cycle. Actually, we 
copy the first part verbatim instead of running time 
stretching with factor 1, since our method cannot repro-
duce the beginning of the sound due to interpolation 
margins. The cycle of the first control curve consists of a 
sine, that warrants smooth changes of the time line. 
However with this control, interferences are prolonged at 
the loop boundaries, which is clearly audible. It turns out 
that the second control curve, namely the zig-zag curve, 
sounds better. It preserves any chorus effect and the 
change of the time direction is not as bad as expected. 

A nice property of this approach is that the loop dura-
tion is doubled with respect to the actually looped data. 
In contrast to that, a loop body generated by simple 
cross-fading of parts of the sound, say, with a VON 
HANN window, would half the loop body size and 
sounds more hectically.  

Since the time control affects only the waveform, it is 
warranted that at the cycle boundaries of the time control 
the waveforms of the time manipulated sound match, too. 
In order to assert the also the phases match you have to 
choose a time control cycle length that is an integral mul-
tiple of the wave period. 

5.5. Making Inaudible Harmonics Audible 
Remember, that our model does not preserve formants. 
Another application, where this is appropriate, is to 
process sounds, where formants are not audible anyway, 
namely ultrasound signals. Our method can be used, to 
make monophonic ultrasound signals audible by de-
creasing the pitch and while maintaining the length. In 
Figure 11 we show an echolocation call of a bat. It is a 
chirp from about 35 kHz to 25 kHz sampled at 441 kHz. 

The chirp nature does not match the requirements of our 
algorithm, so it is not easy to choose a base frequency. 
We have chosen 25 kHz and divide the frequency by 
factor 5 while maintaining the length. Unfortunately the 
waves have no special form that we can preserve. So this 
example might serve a demonstration of the robustness 
of our algorithm with respect to non-harmonic frequen-
cies and the preservation of the envelope. In the same 
way our method might be used to increase the pitch of 
infrasound. 

5.6. FM synthesis 
Since we can choose the phase parameter per sample, we 
can not only do regular pitch shifting, but we can also 
apply FM synthesis effects [10]. An FM effect alone 
could also be achieved with synchronised time warping, 
however with our method we can perform pitch shifting, 
time scaling and FM synthesis in one go. See Figure 12 
for an example. 

5.7. Tone Generation by Time Stretching 

The inability to reproduce noise can be used for creative 
effects. By time stretching we can get a tone out of every 
sound. This is exemplified in Figure 13. If we stretch 
time by a factor n for a specific period T (source and tar-
get period shall be equal), then in the spectrum the peak 
for each harmonic of frequency 1

T  is narrowed by a 
factor n. 
 

 
Figure 10. Two possible time control curves for generating 
a loopable portion of a sampled sound. 
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Figure 11. Echolocation call of Nyctalus noctula. The time 
values are seconds. 

 
Figure 12. Above is a sine wave that is distorted by 

sgn pv v v ⋅  for p running from 1
2

 to 4. Below we 

applied our pitch shifting algorithm in order to increase the 
pitch and change the waveshape by modulating the phase 
with a sine wave of the target frequency.  
 

6. Related Work 
The idea of separating parameters (here phase and shape) 
that are in principle indistinguishable is not new. For 
example it is used in [11] for separation of sine waves of 
considerably different frequencies. This way a numeri-
cally problematic ordinary differential equation is turned 
into a well-behaved partial differential equation.  

Also the specific tasks of pitch shifting and time scal-
ing are addressed by a broad range of algorithms [12]. 
Some of them are intended for application on complex 
music signals and are relatively simple, like “Overlap 
and Add” (OLA), “Synchronous Overlap and Add” 
(SOLA) [13,14], or the three-phase overlap algorithm 
using cosine windows presented in [15]. They take seg-
ments of an audio signal as they are, rearrange them and 
reduce the artifacts of the new composition. Other me-
thods are based on a model of the sound. E.g. 
“pitch-synchronous overlap-add” (PSOLA) is roughly 
based on the excitation + filter model for speech [16-18], 
sinusoidal models interpret sounds as mixture of sine 
waves that are modulated in amplitude and frequency 
[19], even more sophisticated models treat sounds as mix 
of sine waves, transients and a residual [20]. There are 
also methods specific to monophonic sig-nals, like wa-
vetable synthesis [9] and advanced methods, that can 
cope with frequency modulated input signals [21]. 

In the following two sections we like to compare our 
method with the two methods that are most similar to the 
one we introduced here, namely with wavetable synthesis 
and PSOLA. 

6.1. Comparison with Wavetable Synthesis 

When we chop our input signal into wave periods and  

use the waves as wavetable, then wavetable synthesis be- 
comes rather similar to our method [9]. Wavetable syn-
thesis also preserves waveforms, rather than formants, it 
allows frequency and shape modulation at sample rate. 
However, due to the treatment of waveforms as discrete 
objects, the wavetable synthesis cannot cope well with 
non-harmonic frequencies (Figure 16). Thus, in waveta-
ble synthesisers, phasing is usually implemented using 
multiple wavetable oscillators. A minor deficiency is, 
that fractional periods of the input signal are not sup-
ported. The wavetables always have to have an integral 
length. We consider this deficiency to be not so impor-
tant, since when we do not match the wave period exact-
ly, this will appear to the wavetable synthesis algorithm 
as a shifting waveform. But that algorithm must handle 
varying waveshapes anyway. 

The wavetables in a wavetable synthesiser are usually 
created by a more sophisticated preprocessing than just 
chopping a signal into pieces of equal length. However, 
for comparison purposes we will just use this simple 
procedure. 

Chopping and subsequent wavetable synthesis can also 
be interpreted as placing the sample values on a cylinder 
and interpolating between them. It yields the pattern 
shown in Figure 14. The variable s denotes the “step” 
direction, which coincides with the direction of the phase 
in this scheme. The variable l denotes the “leap” direc-
tion, which coincides with the time direction. In order to 
fit the requirement of a wave period of 1 we shrink the 
discrete input signal. Say, the discrete input signal is u, 
the wave period is T, that must be integral, and the real 
input signal is x, that we define at some discrete fraction-
al points by ( ) ( )n

Tx u n=  and at the other ones by in-
terpolation. In Figure 14 it is 4T =  and for example 

( )( )1.7, 0.6y c  is located in the rectangle spanned by the 
time points 6; 7; 10; 11. For simplicity let us use linear 
interpolation as in (28). We would interpolate 

( ) ( )( )
( ) ( )( )( ) ( ) ( )( )( )( )

1.7 0.6 =

lerp lerpu 6 ; u 7 0:4 ; lerp u 10 ; u 11 0.4 0.7

y c
 

In general for ( ),y t ϕ  we get  

( ) ( ) ( )( )
( )

( ) ( ) ( )( )( )

1

frac

lerp , 1 frac

, lerp , 1 frac

r
T

r r r r

r x u r u r r

t c

y t x x t

τ ϕ

ϕ τ τ

−

∀ ∈ = −   
∀ ∈ = +      

= +  
= +





 

or more detailed 
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Figure 13. A tone generated from pink noise by time stret-
ching. The source and the target period are equal. The time 
is stretched by factor 4. 

 

( )

( ) ( )( )( )
( ) ( )( )( )

( ) ( )( )

1

lerp , 1 fracs
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, lerp , frac .

s T c

n T t s

a u n u n

b u n T u n T s

y t a b t

ϕ

ϕ

−= ⋅

= ⋅ +      
= +

= + + +

=

 

The handling of waveform boundaries points us to a 
problem of this method: Also at the waveform boundaries 
we interpolate between adjacent values of the input signal 
u. That is, we do not wrap around. This way, waveforms 
can become discontinuous by interpolation. We could as 
well wrap around the indices at waveform boundaries. 
This would complicate the computation and raises the 
question, what values should naturally be considered 
neighbours. We remember, that we also have the ambi-
guity of phase values in our method. But there, the am-
biguity vanishes in a subsequent step. 

6.1.1. Boundaries 
If we have an input signal of n wave periods, then we 
have only 1n −  sections where we can interpolate li-
nearly. Letting alone that this approach cannot recon-
struct a given signal, it loses one wave at the end for li-
near interpolation. If there is no integral number of 
waves, then we may lose up to (but excluding) two 
waves. For interpolation between k nodes in time direc-
tion we lose 1k −  waves. Of course, we could extrapo-
late, but this is generally problematic.  

That is, the wavetable oscillator cuts away between 
one and two waves, whereas our method always reduces 
the signal by two waves. Thus the wavetable oscillator is 
slightly more economic. 

6.2. Comparison with PSOLA 
Especially for speech processing, we would have to pre-
serve formants rather than waveshapes. The standard 
method for this application is “(Time Domain) Pitch- 
Synchronous Overlap/Add” (TDPSOLA) [16,17]. PSO-
LA decomposes a signal into wave atoms that are rear-
ranged and mixed while maintaining their time scale. 
The modulation of the timbre and the pitch can only be 
done at wave rate. As for wavetable synthesis it is also  

 
Figure 14. Mapping of the sampled values to the cylinder in 
the wavetable-oscillator method. The grey numbers are the 
time points in the input signal. 
 
true for PSOLA, that due to the discrete handling of 
waveforms, non-harmonic frequencies are not handled 
well.  

Incidentally, time shrinking at constant pitch with our 
method is similar to PSOLA of a monophonic sound. For 
time shrinking with factor v and interpolating with kernel 
κ  our algorithm computes: 

( ) ( )( )
( ) ( )( )

( ) ( )( )

( )( ) ( )

,

1

with

k

k

z t y v t c t

x t k v t t k

x t k v t k

d t d t

κ

κ

κ κ

∈

∈

= ⋅

= + ⋅ ⋅ − +

= + ⋅ − ⋅ −

↓ = ⋅

∑

∑




 

( ) ( ) ( )( )1
k

z x k k vκ
∈

= ← ⋅ → ↓ −∑


 

We see that the interpolation kernel _ acts like the 
segment window in PSOLA, but it is applied to different 
phases of the waves. For v = 1, only the non-translated x 
is passed to the output. 

Intuitively we can say, that PSOLA is source oriented 
or push-driven, since it dissects the input signal into 
segments independent from what kind of output is re-
quested. Then it computes where to put these segments in 
the output. In these terms, our method is target oriented 
or pull-driven, as it investigates for every output value, 
where it can get the data for its construction from. 

Actually, it would be easy to add another parameter to 
PSOLA for time stretching the atoms. This way one 
could interpolate between shape preservation and for-
mant preservation. 

7. Results and Comparisons 

Finally we like to show some more results of our method 
and compare them with the wavetable synthesis. 

In Figure 15 we show, that signals with band-limited 
amplitude modulation can be perfectly reconstructed, 
except at the boundaries. Although we do not employ 
WHITTAKER interpolation but simple linear interpola-
tion the result is convincing. 
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In Figure 16 we apply our method to a sine with a 
frequency that is clearly distinct from 1. To a mono-
phonic pitch shifter this looks like a rapidly changing 
waveform. As derived for WHITTAKER interpolation in 
(17) our method can at least reconstruct the sine shape, 
however the frequency of the pitch shifted signal differs 
from the intended one. Again, the used linear interpola-
tion does not seem to be substantially worse. 

We also like to show how phase modulation at sample 
rate can be used for FM synthesis combined with pitch 
shifting. In Figure 17 we use a sine wave with changing 
distortion as input, whereas in Figure 18 the sine wave is 
not distorted, but detuned to frequency 1:2, which must 
be treated as changing waveform with respect to fre-
quency 1.  

As a kind of counterexample we demonstrate in Fig-
ure 19, how the boundary handling forces our method to 
limit the time parameter to values above 1 and thus it 
cannot reproduce the beginning of the sound properly. 
For completeness we also present the same sound trans-
posed by PSOLA in Figure 20. 

Please note that the examples have a small number of 
periods (7 to 10) compared to signals of real instruments 
(say, 200 to 2000 per second). On the one hand, graphs  
 

 
Figure 15. Pitch shifting performed on a periodically am-
plitude modulated tone using linear interpolation. The fig-
ures show from top to bottom: The input signal, the signal 
recomputed with a different pitch (that is, the ideal result of 
a pitch shifter), the result of wavetable oscillating, the result 
of our method. 

 
Figure 16. Pitch shifting performed on a sine tone with a 
frequency that deviates from the required frequency 1. The 
graphs are arranged analogously to Figure 15. 

 

 
Figure 17. Above is a sine wave that is distorted by 

sgn pv v v⋅  for p running from 1
2  to 4. Below we ap-

plied our pitch shifting algorithm in order to increase the 
pitch and change the waveshape by modulating the phase 
with a sine wave of the target frequency. The graphs are 
arranged analogously to Figure 15. 
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Figure 18. Here we demonstrate FM synthesis where the 
carrier sine wave is detuned. The graphs are arranged ana-
logously to Figure 15. 

 

 
Figure 19. Pitch shifting performed on a percussive tone. 
The graphs are arranged analogously to Figure 15. 
 
of real world sounds would not fit on the pages of this 
journal at a reasonable resolution. On the other hand,  

 
Figure 20. Pitch shifting with the tone from Figure 19 that 
preserves formants performed by PSOLA. 
 
only for those small numbers of periods we get a visible-
difference between the methods we compare here. How-
ever, if you are going to implement a single tone pitch 
shifter from scratch you might prefer our method, be-
cause it handles the corner cases better and the complex-
ity is comparable to that of the wavetable oscillator. Also 
for theoretical considerations we recommend our method 
since it exposes the nice properties presented in Section 
2. 

7.1. Conclusions 
We shall note that despite the differences between our 
method and existing ones, many of the properties dis-
cussed in Section 2.3 hold approximately also for the 
existing methods. Thus the worth of our work is certainly 
to contribute a model where these properties apply ex-
actly. This should serve a good foundation for further 
development of a sound theory of pitch shifting and time 
scaling. It also pays off, when it comes to corner cases, 
like FM synthesis as extreme pitch shifting. 

8. Outlook 
In our paper we have omitted how to avoid aliasing ef-
fects in pitch shifting caused by too high harmonics in 
the waveforms. In some way we have to band-limit the 
waveforms. Again, we should do this without actually 
constructing the two-dimensional cylindrical function. 
When we use interpolation that does not extend the fre-
quency band, that is imposed by the discrete input signal, 
then it should be fine to lowpass filter the input signal 
before converting to the cylinder. The cut-off frequency 
must be dynamically adapted to the frequency modula-
tion used on conversion from the cylinder to the audio 
signal. 

We could also handle input of varying pitch. We 
would then need a function of time describing the fre-
quency modulation which is used to place the signal 
nodes at the cylinder. This would be an irregular pattern 
and renders the whole theory of Section 3 useless. We 
had to choose a generalised 2D interpolation scheme. 
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