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Abstract 
Localization is the basic requirement for network management in Wireless Sensor Networks as it 
helps nodes find their absolute position coordinates and in gathering information relevant to their 
locations. A localization algorithm has to be dynamic, scalable and should not impose high com- 
putation or communication overhead. The localization systems are also prone to attacks. We tar- 
get a localization scheme for mobile sensor networks called Monte-Carlo Localization, which study 
its behavior under the most dangerous attack on localization called Wormhole Attack, also known 
as Collusion Attack and propose a modified algorithm that can help the localization system retain 
its accuracy level even in the presence of attacks. Our algorithm has communication cost almost 
equal to that of original localization algorithm (in this case MCL) in the absence of attacks. 
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1. Introduction 
Localization is a process by which the nodes in a sensor network find their location coordinates Global Posi- 
tioning System (GPS) attached to an object determines the object’s location. But nodes in a sensor network may 
be deployed in a GPS denied environment or the cost constraints may not allow every sensor node to possess a 
GPS device. In such cases, the nodes not knowing their location coordinates calculate their locations with the 
help of a few GPS enabled nodes (also called Anchor Nodes) or nodes that are strategically deployed at specific 
and known locations. Localization also helps nodes gather information relevant to their locations. A localization 
scheme has to be low cost, dynamic, feasible and considerably accurate for finding out the locations of the sen- 
sor nodes. Localization can be either range-based or range-free depending upon whether the algorithm uses the 
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approximate range between the normal nodes and GPS enabled nodes or not respectively. The Monte-Carlo Lo- 
calization (also called SMC based localization or MCL) based on Sequential Monte-Carlo Method [1] is widely 
studied for localizing mobile sensor nodes in a sensor network. The localization systems are prone to attacks and 
so is SMC-based localization. The attacks affect the expected accuracy level of the Localization Algorithms and 
the sensor nodes therefore believe that they are at some other position than they actually are or are supposed to 
be. So the aim of this paper is to study the behavior of MCL under attacks and propose a modified algorithm for 
securely localizing nodes in a sensor network using SMC method. Our algorithm has communication overhead 
equal or comparable to that in original MCL in the absence of attacks. 

1.1. Introduction to MCL 
In MCL, the localization problem is modeled as a non-linear stochastic process and the problem is to converge 
the probability distribution of the node being at a particular position given the previous positions  
( )1 1

1 2 3
1 1, , , ,

t t

n
t tl l l l

− −− −   of the node itself and the beacon signals observed in this step ( )1 2 3, , , , no o o o . The al- 
gorithm consists of three steps namely Initialization, followed by iterative Prediction and Filtering. In initializa- 
tion step, nothing is known about the position of the nodes (except their maximum velocities) and hence the dis- 
tribution of nodes is supposed to be completely random in the whole region. Then in the next step prediction, the 
samples of the nodes positions are calculated depending upon the previous samples, i.e., we calculate  

filtered |i i
t tR l l=  where i

tl Є R  and ( )| 0i
t tp o l > . Here N is the number of samples (size of the sample set) re- 

quired for drawing the final position estimate. Now, filtering is done as the last step in which the invalid samples 
are eliminated from the set of samples depending upon whether the samples receive any one hop or two hop 
beacon signals or not. That is, now we calculate the complete set of samples by considering the filtered sample 
set until we get enough samples for that position (set to 50 out of total 80 by Hu and Evans). The weighted av- 
erage of the samples is calculated and the result is the final position estimate of each node. If the algorithm is not 
able to calculate enough samples in one go, the same steps are repeated for the relaxed speed condition. If the 
algorithm still fails to calculate the samples, the algorithm does not try further to get the valid samples. 

1.2. Introduction to Wormhole Attacks 
This type of attack involves relay of the beacon messages from one place and replay of the same at some other 
part of the network giving the sensor nodes in the latter region an illusion that they are in the former region. This 
type of attack arises when the attacker cannot compromise the shared secret key. In this, the two wormhole 
endpoints are deployed in the two distant parts of the network. One to capture the beacon signals broadcasted in 
one region and the other to replay the relayed messages in its region. All the nodes that fall in the communica- 
tion range of the end-point receive the signal and localize themselves incorrectly. Obviously, the number of 
neighbors of a node increase due to attacks some papers like in [2] take this as a basis for detecting the presence 
of attacks using connectivity information. 

We shall discuss detailed analysis of the attacks in the later sections. In the presence of wormhole attacks, the 
scenario in Figure 1 and Figure 2 would apparently be like scenario in Figure 3. So, the one-hop neighbor at 
the other end of the wormhole link will always have same orientation with respect to the node under attack ir- 
respective of the actual orientation. 

2. Related Work 
Several improvements were done on MCL in both sampling efficiency and accuracy. Some attempted to im- 
prove the accuracy of MCL even for static networks making the algorithm and more generally, the Monte-Carlo 
technique, more versatile. Monte-Carlo Boxed (MCB) proposed in [3] improves the sampling efficiency of the 
MCL algorithm by constraining the area to sample from, to a sample and a more accurate sample box. The 
Anchor Box is a region where the beacon ranges of beacon nodes overlaps and the sample box is the square of 
side 2 vmax. The sample box comes into picture only if the location estimates are highly consistent. The sample 
box resets to the anchor box even upon slight location inconsistencies. The anchor box resets to the whole dep- 
loyment area when such location inconsistencies arise with respect to beacons. Attempting to increase the accu- 
racy level of the Monte-Carlo localization algorithm for mobile sensor networks, [4] includes two algorithms 
that outclass each other in different scenarios. 
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Figure 1. Possible scenario 1.                                 

 

 
Figure 2. Possible scenario 2.                                 

 

 
Figure 3. Apparent scenario.                            

 
The researchers in [4] proposed many improvements over the MCL simulator. First, both MSL and MSL* 

modify the sampling procedure enabling the nodes to work for even the static networks. Any node draws sam- 
ples from the three classes of nodes namely one hop beacons, two hop beacons and one hop neighboring normal 
nodes. Second, the node uses the location estimates of those nodes (one hop normal nodes) whose location esti- 
mates are more consistent than it. The node does this by calculating its closeness value and comparing it with 
the closeness values of neighbors. The closeness values are calculated by calculating the weighted deviation of 
all the samples of the nodes location from the current location of the node. This gives the quality of location es- 
timates of a node which is broadcasted by each normal node along with the packets containing the location of it. 
Third, they modified the sampling procedure such that the weights had values greater than a threshold which 
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meant fast convergence of probability. However, they clearly specify the limitations of both the schemes. MSL* 
can work accurately even when the node speeds are very low but it involves high communication over-head. 
MSL is an optimal solution to the mobile sensor localization with high accuracy. The algorithm proposed in [5] 
works for both sampling efficiency and accuracy simultaneously. SecMCL [6] uses asymmetric key signature 
scheme for authenticating the nodes in the network. The scheme however does not address the Wormhole At- 
tacks where even these signed messages (direct and indirect beacon signals) can be relayed from one part of the 
network to another and then replayed to create an unauthorized effect and can further affect the localization ac- 
curacy. The paper therefore proposes a scheme for securely discovering the neighbors that does not detect 
Wormhole Attacks. All the above approaches have been implemented, tested and analyzed by modifying the 
MCL simulator provided by Hu and Evans. Now we briefly review the existing Secure Localization algorithms 
and some Secure Neighbor Discovery approaches. There is a rich literature on secure localization in wireless 
sensor networks [7] [8]. All these approaches do not match up with the dynamic and unpredictable nature of 
Random Waypoint Mobility Model as they impose all or some of these requirements on the nodes in the net- 
works fast processor for doing XOR operation efficiently, exact location estimates before attacks, tight clock 
synchronization, directional antennas [9]. All these assumptions do not hold with the system model for which 
MCL was developed. Use of directional antennas (as in [9]) can avoid wormhole attacks alone but their cost 
limits the scalability of the sensor networks. Secure Neighbor Discovery Algorithm in [2] makes the network 
nodes search for the forbidden substructures in the unit-disk graph (UDG) around a node. Finding a forbidden 
substructure flags the presence of a wormhole in the network. The verification of the results shows that the algo- 
rithm is 100 percent accurate with 0 percent false positives. But when the nodes move randomly, the algorithm 
has been shown to have deterioration in accuracy. Also, the UDG model is quite simple as compared with the 
requirements in RWP motion of nodes in the networks. The problem is common in almost all kinds of localiza- 
tion schemes in presence of adversaries. What would happen if a wormhole end-point claims to be a legitimate 
one hop neighbor? The error multiplication is even more dangerous when in MSL’s modified sampling proce- 
dure because the node to be localized trusts comparatively more nodes (moreover normal nodes) to compute its 
location. So, the problem has to be solved a priori sampling. MCL is a localization method in which the attacker 
succeeds in introducing substantial error in location estimates only as long as the attacks persist, meaning that 
once the nodes to be localized escape the area under attacks, the accuracy level can be retained. But the attack 
has to be detected and avoided well before the stable step (set to 50 in [1]) to improve overall accuracy of the 
sensor network under attack. 

3. Assumptions 
3.1. Network Model 
There are normal nodes and beacon nodes. Both the normal nodes and beacon nodes may be mobile. The nodes 
in the network do not know anything except their maximum velocity, current velocity, current time-stamp (up to 
hundreds of microsecond’s precision) and their transmission ranges. The nodes need not have tightly synchro- 
nized clocks, the clocks are required to be loosely synchronized (i.e. having a time difference of not more than 1 
sec). How this loose synchronization is achieved between the clocks is achieved is out of scope of the paper. 
Every node has a shared secret key for Symmetric Encryption. All these nodes are distributed randomly in a 500 
× 500 cm2 region and travel according to RWP mobility model in successive steps. 

3.2. Attacker Model 
We assume a scenario in which the two wormhole end-points (A and B) are placed in two distant regions in the 
network. We assume a wired connection between A and B. The end-point A collects all the signals (from both 
beacon nodes and normal nodes) and relays them through the wired connection to B and then B replays all of 
them in its region. We assume that the attacker is not able to compromise the key. Also, we confine ourselves to 
false neighborhood generation capability of the wormholes, i.e. we assume that the attacker does not wish to 
gain by selectively delaying or discarding the packets. The communication ranges of the wormhole end-points 
are finite. The reason behind selecting this model particularly is that the nodes following RWP model tend to 
move from the corners of the deployment area to its center [10]. So, when there is a sparse density of legitimate 
beacon signals, nodes are more likely to be localized incorrectly. The robustness of the secure localization algo- 
rithm we propose here will be tested even in the presence of small number of beacons. Also, our purpose of 
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analyzing area under attacks and proposing a solution independent of the nodes outside the hostile area would be 
fulfilled with this. 

4. Proposed Work 
The algorithm presented here is of resilient type and enforces no or little extra communication overhead in the 
absence of attacks. For achieving this, the node has to initiate discovery of collusion only when an attack exists. 
As mentioned in [3], a node in a network can maintain both anchor box and sample box. We observe that upon 
encountering collusion, the node is no more capable of building bounding box less than the deployment area. 
Clearly upon, receiving the location information from the node at (x4; y4) and applying the following relations: 

( ) ( )max 1 max 1max , minn n
j j j jx x r x x r− == − = +                          (1) 

( ) ( )max 1 max 1max , minn n
j j j jy y r y y r− == − = +                         (2) 

n and r being the number of anchor signals received and communication range of the nodes, we get from 
Figure 4 xmin > xmax and/or ymin > ymax. Now the node resets its anchor-box to the whole deployment area. This 
triggers a series of checks for neighborhood verification that we discuss in the upcoming sections. In the rest of 
the paper, we would refer to this preprocessing step as anchor-box-resetting test. 

4.1. Overview of the Algorithm 
Anchor Box(last_step) = Anchor_Box(this_step);  
Synchronize Clocks;  
Request Beacon nodes their Locations;  
Collect Response;  
while all the response messages are processed do  
    Calculate Range;  
     end  
Build Anchor _Box(this step);  
if Anchor _Box(this _step)==Deployment Area then  
while all one-hop anchors are not processed do 

Apply Preliminary Checks; 
end 
Discard links that fail Preliminary Checks; Categorize beacons into 2 groups; 
while i # 2 do 

Build Anchor_Boxi(this step); 
if Anchor Boxi(this step) # Deployment Area then 

Apply Final Checks; 
end 

end 
end 
MCLocalization(); 
Algorithm 1 : Overview of the Proposed Scheme 

4.2. Communication Protocol 
In Figure 5, we present the location request and response messages broadcast by normal and beacon nodes re- 
spectively. Along with broadcasting location request and response, the nodes also store their transmission times 
that help nodes synchronize their clocks later, if required. Now if the node carries out the Anchor-Box-Reset- 
ting test and the test does not hold true, the node will initiate the Preliminary Checks followed by Final Checks. 
For carrying out the preliminary checks, the node has to calculate the approximate range between the node and 
the corresponding set of neighboring beacon nodes. For calculating the range the nodes employ the timestamps 
stored in the previous step and the timestamps in the ranging step. Our ranging step is inspired by [11]. The use 
of the random nonce here ensures the freshness of the reply. The REQ and RES messages help the nodes in the 
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Figure 4. Resetting of anchor box (shaded region) due to colluding node (x4; y4).    

 

 
Figure 5. Normal node requests for beacon messages and beacon nodes re- 
spond back.                                                       

 
network loosely synchronize their clocks. Now, the range between the nodes can be calculated using the follow- 
ing relation: 

( ) ( )( )RNG REQ RNG REQRange S S N N
i t t t t s= − − − ×                             (3) 

For maintaining range between two normal nodes, the node will do: 

( ) ( )( )( ) ( )RNG REQ RNG REQRange Range ,S S N N
i t t t t s M S= − − − × −                    (4) 

where, s is the speed of the signal propagation. The radio waves used as transmission media between sensors 
travel with speed of light. So, the distance shortening attacks are not possible. Now the nodes receiving the bea- 
con signals initiate a test which involves checking for links that have ranges exceeding the nodes communica- 
tion range, i.e., Ri > NRNG + Є (where 2 is the ranging error + processing delay). Ranges as long as 2 × NRNG may 
be produced by the wormhole endpoints. A practical approach would be to include both processing and commu- 
nication delay while measuring ranges between nodes. Now all the nodes M listening to the beacons that pass 
the above test broadcast the beacon message received by it as shown in Figure 6. Also the beacons that fail the 
above test are not considered by the node for estimating the nodes own position. Easily detectable colluding 
links are blacklisted by this preliminary check. Now, even if the presence of attacks is flagged by the anchor- 
box-resetting test, meaning that the colluding links are producing ranges less than or equal to the nodes commu- 
nication range plus the constant 2, we initiate the final checks. 

4.3. Final Checks 
Since in the presence of attacks, a node has its anchor-box (comprising both one-hop and two-hop anchor nodes) 
equal to the deployment area, the box can be divided into several smaller anchor boxes (possibly equal in num- 
ber to that of the total number of wormhole end-points i.e. two in our case). This categorization of anchor boxes 
is easy for one-hop anchors but difficult for two-hop anchor nodes. For a two-hop anchor node to be able to fall 
in a group of anchors, its distance from all the anchors in the box has to be less than or equal to 3 × Node_Range. 
The MCB is run for the two boxes so obtained. Now, the positions that are calculated, in the current step, if not 
equal to (250, 250) is broadcasted by the node using the following message: 
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Figure 6. Nodes broadcast the beacon signals received in current step.        

 

( )1 1 2Region : CHECK || , es_pos ,es_posK SN E N→  

where NS1 is another nonce for ensuring data freshness and es_pos1 and es_pos2 are the position estimated over 
two bounding boxes calculated previously. Figure 7 illustrates the messages exchanged and the time stamps. If 
two such communications occur successively between a normal node-beacon node pair, the beacon nodes now 
consider the position that is closer to them and perform classical scaling (a variant of Multidimensional Scaling) 
giving the following input distance matrix to it: 

1 1 1
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Here, At−1 and At are the apparent position of the nodes (as calculated by the MCB performed over the two 
boxes previously), Bt−1 and Bt are the known positions of the beacon nodes performing MDS (see Figure 3). The 
classical scaling gives all the coordinates as output. Based on these coordinates, the distance between each point 
is calculated as shown in Figure 8. Now, as stated earlier, in any case, due to the presence of wormhole link, the 
scenario would look like Figure 2. In the input distance matrix which we use for MDS, the ranging information 
may violate the triangle inequality required for MDS to work. 

This is done by MDS by adjusting its stress factor. In case of an attack, the ranging information is longer than 
expected. So, the MDS would adjust the distance between successive positions of the nodes and provide a dis- 
tance longer than the maximum velocity of the nodes (provided that the node estimates the apparent location 
with good closeness value). Since the distance travelled by a node cannot be greater than the maximum velocity 
of the node, the beacon node checks if both the distances (obtained by MDS and given as distance matrix entry) 
are less than the maximum velocity of the node. If the obtained distances and input distances both are less than 
the maximum velocity, or if the obtained distances and input distances both are greater than maximum velocity, 
the beacon node passes the test. The beacon nodes that fail the above test broad casts the message of the type: 

( )1Region : || || BlacklistS K NS N E ID→  

Upon receiving this message, the node IDN will blacklist the seed S, i.e. it will not consider the location esti- 
mate of beacon node S in further steps. After the node stops getting location response from the blacklisted bea- 
con node, it removes the beacon node from the list of blacklisted nodes. Now, since we use the estimated posi- 
tions for giving input to MDS, the rise in the number of false positives is obvious. In [4], a closeness parameter 
is defined as under: 

( ) ( )2 2

1Closeness

N

i i i
i

p

w x x y y

N
=

− + −
=
∑

 

The node’s estimated position from the samples it draws is a measure of the quality of the location estimate of 
the node. Lesser the closeness value is, better the quality of location estimate is. Now the nodes that receive the 
blacklist signals from their respective one-hop beacon neighbors broadcast the same blacklist signals with their 
respective closeness values added in the beginning of the message. Now the nodes receiving the message com- 
pare their closeness values with the closeness value in the message. Nodes now consider only those messages 
that have closeness values less than the node’s own closeness value, find the links that are blacklisted by the 
node but not by its neighbor with lower closeness value (false positives) and the links not blacklisted by the 
node but blacklisted by its neighbors with lower closeness value (false negatives). This way, the nodes with poor 
location estimates will also be able to secure the overall localization process and further improve the overall lo- 
calization accuracy. 



V. R. Kumari et al. 
 

 
55 

 
Figure 7. Ranging operation.                                              

 

 
Figure 8. Ranging operation between two normal nodes.                        

5. Simulation Results 
We modified the simulator by Hu and Evans and implemented Wormhole Attacks to analyze the performance of 
MCL. As stated earlier the following is the behavior of MCL under attacks in terms of increase in number of 
neighbors, fraction of nodes unable to fill their sample set with valid samples and rise in estimation error. We 
also modified the same simulator and implemented the proposed scheme and found that on an average, most of 
the colluding links were detected using preliminary checks. Rest of the attacks can be detected by using the final 
checks with high accuracy and less false negatives. 

5.1. Results of Attacks 
5.1.1. Increase in Number of Neighbors 
Due to the attacker model assumed for experimental verification of the WRMCL algorithm, the number of 
neighbors that fall in the communication range of a node increases. The additional neighbors contain both one- 
hop anchor and normal nodes. The colluding links may also give rise to the increase in number of two-hop anc- 
hor neighbors. The graph in Figure 9 shows the increase in number of neighbors of every node in the area under 
attack (on an average) in each step. 

5.1.2. Rise in Fraction of Nodes Not Having Enough Valid Samples 
Since the importance sampling strategy generates samples based on the node’s previous location as well as the 
location of one-hop and two-hop beacons in the current step, the node will not be falsely localized until it has at 
least one legitimate anchor node in its one-hop two-hop neighbor list. However, the nodes will not be able to 
generate the samples that will localize the node at a particular position. So, in the absence of enough valid sam- 
ples, the node will localize itself somewhere near the center of the region. And the algorithm will report: “Not 
Enough Valid Samples”. Figure 10 is the comparison of average fraction of nodes in the attacked area having 
such “inconsistencies” in position estimations in the presence of attacks and without attacks respectively. 

5.1.3. Rise in Estimation Error 
Estimation error is the distance between the estimated and actual positions of the nodes in the network. As stated 
earlier, the nodes encounter the condition of inconsistencies which contributes much to the average estimation 
error of each step. Also, the nodes that started estimating their positions in the attacked region, may get falsely 
localized at some other part of the region. Figure 11 is the comparison of average estimation error in the at- 
tacked region in presence of attacks and without attacks. 

5.2. Results on Applying the Proposed Algorithm (WRMCL) 
Now, in this section we present the results of analysis of the WRMCL algorithm under colluding attacks and we  
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Figure 9. Increase in number of neighbors due to attacks.                       

 

 
Figure 10. Rise in fraction of nodes having inconsistencies.                     

 

 
Figure 11. Rise in estimation error.                                        
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also show a comparative study about between MCL and WRMCL. 

5.2.1. Average Estimation Error of the Area under Attack 
The experimental results show that the number of steps it takes for the nodes, which started localization process 
in the hostile region, to converge to a minimum value decreases substantially. Figure 12 is the comparative 
study of WRMCL with MCL in terms of the average estimation error produced in area under attack. 

5.2.2. Overall Estimation Error 
Figure 13 is the comparison between estimation error produced by the MCL and WRMCL in the whole region. 

6. Conclusions and Scope 
Wormhole attack is a dangerous external attack that can affect the accuracy level of any localization algorithm. 
Monte-Carlo Localization (MCL), a range-free localization scheme widely accepted for mobile sensors localiza- 
tion with both normal and beacon nodes moving, undergoes some serious degradation in its accuracy under 
these attacks. The approach we proposed detects and avoids getting location estimates from the non-neighbor 
 

 
Figure 12. Improvement in estimation error in the area under attacks.                

 

 
Figure 13. Comparison of overall estimation error of MCL and WRMCL.            
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beacon nodes using preliminary and final checks. The accompanying security analysis theoretically proves the 
appropriateness of the approach to MCL and demonstrates its security. The concrete analysis of false positives 
and false negatives of the algorithm, their variations with the factors such as stress factor, threshold, processing 
delay, exploring possibilities of using this scheme with other range-free localization schemes and a proof of 
concept implementation of the scheme remains as ongoing future work. 

References 
[1] Hu, L. and Evans, D. (2004) Localization for Mobile Sensor Networks. 10th Annual International Conference on Mo- 

bile Computing and Networking (MobiCom 2004), Philadelphia, 26 September-1 October 2004, 45-57. 
[2] Maheshwari, R., Gao, J. and Das, S. (2007) Detecting Wormhole Attacks in Wire-Less Networks Using Connectivity 

Information. INFOCOM, 26th IEEE International Conference on Computer Communications. 
[3] Baggio, A. and Langendoen, K. (2006) Monte-Carlo Localization for Mobile Wireless Sensor Networks. Proc. Conf. 

Mobile Ad-Hoc and Sensor Net-works (MSN 06), 317-328. http://dx.doi.org/10.1007/11943952_27 
[4] Rudafshani, M. and Datta, S. (2007) Localization in Wireless Sensor Net-Works. Proc. 6th International Conf. Infor- 

mation Processing in Sensor Networks (IPSN 07), 51-60. http://dx.doi.org/10.1145/1236360.1236368 
[5] Zhang, S.G., Cao, J.N., Chen, L.J. and Chen, D.X. (2010) Accurate and Energy-Efficient Range-Free Localization for 

Mobile Sensor Net-Works. IEEE Transactions on Mobile Computing, 9, 897-910. 
[6] Zeng, Y.P., Cao, J.N., Hong, J., Zhangt, S.G. and Xie, L. (2009) SecMCL: A Secure Monte Carlo Localization Algo- 

rithm for Mobile Sensor Networks. Mobile Adhoc and Sensor Systems, MASS ’09. 
[7] Capkun, S. and Hubaux, J.-P. (2006) Secure Positioning in Wireless Networks. IEEE Journals on Selective Areas in 

Communication, 24. 
[8] Lazos, L., Poovendran, R. and Capkun, S. (2005) ROPE: Robust Position Estimation in Wireless Sensor Networks. 

The Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, IPSN 05. 
[9] Hu, L. and Evans, D. (2004) Using Directional Antennas to Prevent Wormhole Attacks. NDSS04, San Diego. 
[10] Bettstetter, C., Hartenstein, H. and Costa, X.P. (2003) Stochastic Properties of the Random Waypoint Mobility Model. 

ACM/Kluwer Wireless Networks, Special Issue on Modeling Analysis of Mobile Networks. 
[11] Stoleru, R., Wu, H. and Chenji, H. (2011) Secure Neighbor Discovery in Mobile Ad Hoc Networks. 8th IEEE Interna- 

tional Conference on Mobile Ad-Hoc and Sensor Systems, 35-42. 

http://dx.doi.org/10.1007/11943952_27
http://dx.doi.org/10.1145/1236360.1236368

	Wormhole Attack Behaviour in Monte-Carlo Localization for Mobile Sensor Networks
	Abstract
	Keywords
	1. Introduction
	1.1. Introduction to MCL
	1.2. Introduction to Wormhole Attacks

	2. Related Work
	3. Assumptions
	3.1. Network Model
	3.2. Attacker Model

	4. Proposed Work
	4.1. Overview of the Algorithm
	4.2. Communication Protocol
	4.3. Final Checks

	5. Simulation Results
	5.1. Results of Attacks
	5.1.1. Increase in Number of Neighbors
	5.1.2. Rise in Fraction of Nodes Not Having Enough Valid Samples
	5.1.3. Rise in Estimation Error

	5.2. Results on Applying the Proposed Algorithm (WRMCL)
	5.2.1. Average Estimation Error of the Area under Attack
	5.2.2. Overall Estimation Error


	6. Conclusions and Scope
	References

