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ABSTRACT 

Travel-time prediction has gained significance over the years especially in urban areas due to increasing traffic conges- 
tion. In this paper, the basic building blocks of the travel-time prediction models are discussed, with a small review of 
the previous work. A model for the travel-time prediction on freeways based on wavelet packet decomposition and 
support vector regression (WDSVR) is proposed, which used the multi-resolution and equivalent frequency distribution 
ability of the wavelet transform to train the support vector machines. The results are compared against the classical 
support vector regression (SVR) method. Our results indicated that the wavelet reconstructed coefficient when used as 
an input to the support vector machine for regression performed better (with selected wavelets only), when compared 
with the support vector regression model (without wavelet decomposition) with a prediction horizon of 45 minutes and 
more. The data used in this paper was taken from the California Department of Transportation (Caltrans) of District 12 
with a detector density of 2.73, experiencing daily peak hours except most weekends. The data was stored for a period 
of 214 days accumulated over 5-minute intervals over a distance of 9.13 miles. The results indicated MAPE ranging 
from 12.35% to 14.75% against the classical SVR method with MAPE ranging from 12.57% to 15.84% with a predic- 
tion horizon of 45 minutes to 1 hour. The basic criteria for selection of wavelet basis for preprocessing the inputs of 
support vector machines are also explored to filter the set of wavelet families for the WDSVR model. Finally, a con- 
figuration of travel-time prediction on freeways is presented with interchangeable prediction methods. 
 
Keywords: Travel-Time Prediction; Wavelet Packets; Support Vector Regression; Advanced Traveler Information  

System 

1. Introduction 

Accurate travel-time forecast information has become a 
fundamental component of all ATIS (Advanced Traffic 
Information Systems). Currently, drivers demand an ac- 
curate travel-time calculator that can forecast their com- 
mute time in advance. This forecast is even more sig- 
nificant in the morning and evening hours, when the 
commuters face jammed freeways and they want to avoid 
the peak-hour congestion. Drivers prefer precise infor- 
mation of the future traffic conditions to manage their 
route. Presently, most of the State Department traffic 
websites provide the current traffic conditions, some sites 
even calculate a forecast of the travel time based on the 
historical data and/or current data by employing a suit- 
able algorithm [1,2]. 

The travel-time is dependent on multiple factors that 
are related through a complex-dependent relationship 

with one another. Such factors include weather condi- 
tions, driver behavior, and time of the day etc. This com- 
plex-dependence makes the traffic data both non-linear 
and non-stationary. Consequently, accurate prediction of 
travel time becomes a challenging task. 

Travel time prediction method can be classified from 
different perspectives as shown in Figure 1. While, a 
brief overview of all types is given in Section 2, the fo- 
cus of this paper is on improving a short-term data driven 
prediction method. 

Table 1 shows a brief overview of the prior art in this 
area. The prediction horizons in Table 1 range from 5 
minutes to 60 minutes. However, lower forecast horizons 
are not very useful for commuters in the real-world sce- 
nario as there are delays involved in every module of the 
travel-time prediction process; the process diagram of the 
prediction process is shown in Figure 2. 

Artificial Intelligence methods were extensively used  
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Figure 1. A taxonomy of travel time prediction approaches. 
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Figure 2. Process diagram of travel-time prediction meth- 
ods. 
 
in travel-time prediction [7-10]. Most of this work was 
concentrated on the short-term travel-time prediction, 
(prediction horizon less than 60 minutes) mainly using 
the artificial neural network (ANN) technique. On the 
other hand, machine learning methods, such as support 
vector regression (SVR), that have shown superior per- 
formance when compared with other traditional methods 
for prediction of non-linear data, have not been applied 
aggressively in the area of travel-time prediction. 

Support vector machines since their inception by Vap- 
nik [11,12] were extensively used in classification and 
prediction problems. SVM uses a simple geometric in- 
terpretation and gives a sparse solution. The solution of 
SVM is also global and unique as SVM employs the 

structural-risk-minimization principle. The support vec- 
tor regression method [13] approaches the linear regres- 
sion forecast by addressing it as a convex optimization 
problem (details in section 4). Its performance in finan- 
cial time series forecast [14], bioinformatics [15] and 
various other areas of research also makes it a viable 
method in intelligent transportation systems (ITS) appli- 
cations. SVR application as a forecasting tool in ITS was 
first done by Wu [5], who predicted short-term travel 
time on the basis of past and current values. Recently, 
Wang in [16], used wavelet kernel support vector ma- 
chine for regression to predict traffic flow in ITS appli- 
cations.  

In the recent years many researchers decomposed time 
series into more informative domains like the wavelets 
transform [17], S-transform [18] etc., as an input to the 
SVR that showed more accurate results than the non- 
decomposed method. This improved performance of 
SVR along with the ability of SVR to predict non-linear 
data, formed the motivation of our research to explore 
the effectiveness of travel-time prediction using wavelet 
transformed travel-time values as an input to SVR. 

The rest of the paper is organized as follows: the 
problem statement along with some highlights of the past 
research is given in Section 2. Wavelet theory and Sup- 
port vector regression are explained in Section 3 and 4, 
respectively. In Section 5 the proposed model is ex- 
plained. Then we show the results of our model in Sec- 
tion 6. Finally, the paper is concluded in Section 7, with 
a brief on the claims made and future research direction. 

2. Problem Description 

The travel-time prediction problem can be viewed from 
the perspective of the input data type, prediction meth- 
odology and prediction horizon as shown in Figure 1. 
Irrespective of the class of travel-time prediction, the 
fundamental components of the process are similar as 
shown in Figure 2. Below we explain each component 
with a review of the main published work done in each 
area. 

2.1. Data Acquisition and Storage (ILD) 

Formulation of an accurate predictive inference relies 
significantly on the quality of the traffic data. A typical 
speed plot constructed using a portion of the dataset we 
used is shown in Figure 3. The blue area represents con- 
gestion, while the red part shows the free flow speeds.  

Inductive Loop Detector (ILD) data based on its abun- 
dance and known quality issues has been used as input 
data in most travel-time prediction papers [6,19-25]. The 
scalability of the model also biased the choice of the re- 
searcher towards choosing ILD as a data source. Other 
orms of datasets include probe vehicle data, traffic cam-  f  
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Table 1. Comparison of related work. 

Prior Art Related to Short-Term Travel-Time Prediction 

Prediction Methods Author/Year of Publication Length of Roadway Accuracy/Prediction Horizon 

Neural Networks J.W.C. Van Lint (2004) [3]  5.28 Mi (8.5 Km) 
RMSEP: 7.7% MRE: 0.49% SRE 6% Horizon: 

15 min 

Kaman Filter Chen and Steven Chien (2001) [4]  8 Mi (12.88 Km) MARE: 0.0173 - 0.0208 Horizon: 5 min 

Support Vector  
Regression 

Wu, Ho and Lee (2004) [5]  
28 - 217.5 Mi  
(45 - 350 Km) 

RME:0.96% - 4.42%, RMSE 1.33% - 7.35% 
Horizon: 3 min 

PCA/Nearest Neighbor Rice and Zwet (2004) [1]  48 Mi (77.25 Km) RMSE: 2.6 - 11 (Approx) Horizon: 60 min 

Regression Kwon, Coifman and Bickel (2000), [6] 
6.2 Mi (10 Km), 20 Mi 

(32.19 Km) 
MAPE: (Tree Method) 6.9% - 28.7%,  

(Regression) 7.7% - 23.3% Horizon 10 - 60 min

 
travel time) is essential to calculate and evaluate the re- 
sults (predicted travel time). The travel-time estimation 
methods are divided into two broad categories: trajec- 
tory-based and flow-based.  

 

Figure 3. Speed plot of a portion of the dataset. 
 
era feeds, and satellite data, data obtained from micro- 
wave radar, license plate matching, and automated vehi- 
cle tag matching. 

Before using ILD data as our data source, certain 
known issues required attention in context of the site 
selection and data pre-processing phases. Spacing be- 
tween consecutive loop detectors directly affects the 
quality of the data captured. The standard spacing re- 
quirement between consecutive loop detectors is not de- 
fined in literature. However, [26] concluded that the de- 
tector spacing of 1 to 1.5 km is optimum for the use of 
short-term forecasting of traffic parameters. In [27], it 
was shown that a detector spacing of 0.33 to 1 mile does 
not destabilize the travel-time estimation errors, while 
[28] concluded that a detector spacing of 0.5 miles is 
sufficient to represent traffic congestion with acceptable 
accuracy. 

After data acquisition preprocessing steps are per- 
formed on this data to ensure its validity. ILDs are prone 
to a number of errors [29]. These data errors are usually 
detected and removed using imputation methods [29,30]. 
[29] gave a linear model based on historical data using 
neighboring detectors to detect faulty values and through 
linear regression imputed the missing or bad values. The 
method proposed in [29] was adopted by CALTRANS 
for data processing of the loop detector data in California 
roadways. 

2.2. Travel-Time Estimation 

Like any prediction problem, the ground truth (estimated 

2.2.1. Trajectory-Based Methods 
vert the time-mean 

2.2.2. Flow-Based Methods 
g travel-time is through 

2.3. Travel-Time Prediction 

ch is mainly classified 

The trajectory-based methods con
speeds collected from detectors to space-mean speed. 
Different methods are proposed to calculate link travel- 
time from this speed. The two common methods are the 
mid-point method and the average speed method. Both of 
these methods assume a constant speed between links, 
which in reality is never the case especially when traffic 
is in transition from free flow to congestion or vice versa. 
Hence, the algorithms proposing a constant speed lose 
their accuracy with the increase in congestion [31]. Van 
Lint and Van der Zijpp proposed an alternate approach, 
the “Piecewise Linear Speed” method [32], which solved 
the function of the travel-time based on the time mean 
speed using an ordinary differential equation to calculate 
the trajectory of the vehicle in the section based on space 
mean speed.  

An alternate way of estimatin
flow-based models which focus on capturing the dy-
namoics of traffic using traffic-flow theory concepts, and 
through traffic data simulation, draw the travel-time of 
the segment. Accurate flow information is also required 
for a precise estimation; however, in most cases it is dif- 
ficult to collect data from all on-ramps and off-ramps 
using the existing infrastructure, which becomes a bot- 
tleneck for flow-based estimation methods. These models 
are, however, more popular in research involving traffic 
flow simulation. 

The travel-time prediction approa
w.r.t. the prediction horizon, modeling approach and type 
of input data as shown in Figure 1. Further classification 
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is also possible w.r.t. the road type (freeways, arterials); 
but, since the scope of this proposal is confined to free- 
ways; we would not discuss the arterial travel-time pre- 
diction problem. 

The historical data of traffic parameters can represent 
a 

historical data with 
cu

es similarities when compared with 
hi

ilters used in [2,42] 
pr

N) were extensively 
us

co

understanding of 
th

3. An Overview of Wavelets 

nt a multi-resolution 

traffic profile, which could be implemented to predict 
future values, in similar traffic conditions. This approach 
demands offline processing. The data is classified into 
different subtypes based on their characteristics. In [33] 
the data was sub-classified into the “type of day”, for 
prediction of travel-time. This forecast method does not 
take into account the dynamics of traffic for travel-time 
prediction, which makes this method less robust for 
short-term prediction. Consequently, it produces low ac- 
curacy results, when the current traffic is not representa- 
tive of its historical profile. Historical predictor is nor- 
mally used for long-term prediction. 

A hybrid approach of combining 
rrent data was used in [34] where real-time data was 

captured directly from the road side terminals, and using 
it with aggregated historical data showed improved re- 
sults. [1] used principal component analysis and win- 
dowed nearest neighbor, while combining historical and 
instantaneous data. 

Traffic data shar
storical data of the same day and time as the current 

data. Regression methods with coefficients varying with 
the time of the day were used by [1], [35] and [36] to 
predict travel-time. [6] also used linear regression with 
step wise variable selection method. Regression models 
involve the examination of historical data, thereby, ex- 
tracting parameters, which represent traffic characteris- 
tics, and projecting them into the future to predict tra- 
vel-time. Autoregressive integrated moving average 
(ARIMA) was introduced by [37] and [38] as an alternate 
to model the stochastic nature of traffic. [39] used auto- 
regression model to predict travel time. Non-linear time 
series with multifractal analysis was implemented in [40] 
and [41] for travel time prediction. 

Kalman and Extended Kalman F
ovide good performance in predicting travel-time for 

one time-step ahead horizon, which is normally not more 
than 5 minutes, as the state model needs real observa- 
tions to calculate each error term.  

Artificial neural networks (AN
ed for marking non-linear boundaries. To address the 

problem of a time series forecast, a subtype of ANN 
called the recurrent neural network (RNN) was consid- 
ered suitable [19,24,43]. RNN has an internal state, 
which keeps track of the temporal behavior between 
classes. Different architectures of the Multilayer percep- 
tron have been used to predict travel-time with an im- 
proved accuracy [7,8,10,19,20,23,24,43-45]. The support 
vector regression method was also investigated in [5,46]. 

On the other hand, traffic flow models work on the 
ncept of correlating the theory of fluid dynamics with 

vehicular flow. From the perspective of traffic flow 
models, travel-time prediction is more of a boundary 
condition prediction problem, because the flow model is 
designed offline, and it would predict the time based on 
the values of demand and supply at on-ramps and off- 
ramps respectively. The model is run using a simulation 
scheme, which is based on the assumptions of the 
car-following, gap acceptance, and risk avoidance pa- 
rameters. The simulation model predicts the aggregated 
parameters of simulated vehicles to display the predicted 
travel-time [47,48]. This makes traffic flow models very 
complex and requires a high degree of expertise and long 
man-hours for design and maintenance. 

Traffic flow models give us a better 
e traffic flow dynamics, but as far as their accuracy for 

travel time prediction is concerned, they demand a pre- 
cise infrastructure of input detectors, whose location 
would be defined by the flow model. To manage the 
supply and demand parameters, the flow models require 
additional detectors on each off and on-ramp. Traffic 
flow based models are a good method to evaluate the 
cause and effect of traffic phenomenon, but applying 
them for travel-time prediction would entail a huge de- 
sign and maintenance cost for every freeway section. 
Due to their modular design, precision of traffic flow 
models, for travel-time prediction, would be as accurate, 
as the precision of the predicted inputs and boundary 
conditions. 

Wavelets are functions, which prese
decomposition of a signal x using a mother function   
and a linear combination of its dilated and/or shifted ve  
sions (1). 

r-

 ,

1
,     


u s



x u
x

ss
           (1) 

where s defines the dilation and u defines the shift. To 
ensure orthonormalilty of basis functions [49] the time- 
scale parameters are sampled on a dyadic grid on the 
time-scale plane. Thus Equation (1) becomes 

 ,

1  t n
.

22
   

 
j n jj

t  

The orthonormal wavelet transform is then given by 

       , ,

1 
, 2

2 




  jj n n
j

j
x t ψ x x t t n dt  

To make the transform computationally effective the 
concept of sub-band coding [50] was used to filter the 
signal with a series of high pass and low pass filters to 
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analyze its high frequency and low frequency compo- 
nents respectively. The input signal x(t) can now be rep- 
resented in discrete domain as 

     
,, ,



  

  J nJ n j n j n
n z j J n z

x t c t d ψ t . ,

The sampled scaling cj,n and wavelet coefficients dj,n 
ca

,2 1

,2 1

To add translation-invariance in discrete wavelet 
tra

n now be defined using high pass hl and low pass filter 
gl. 

, 1 . 


 j n l j n
l z

c g c  

, 1 . 


 j n l j n
l z

d h c  

nsform (DWT), maximum overlap discrete wavelet 
transform (MODWT) was introduced, which instead of 
down sampling and up sampling the signal introduces 
high and low pass filters up sampled by a factor of 2j−1. 
The up sampling filters also introduce redundancy in the 
output, since the number of samples at output in every 
level is equal to the number of samples in the input signal. 
This makes multi-resolution analysis much more effect- 
tive especially from the perspective of using this trans- 
form as an input to another system. 

    
1L

MM
1, 1, 2

0
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The filters can now be represented as a circular filter 
of the original time series. 

jL
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To generate the wavelet packet tree, both the approxi- 
m

4. Support Vector Regression 

 on the concept of 

ation and detail coefficients are decomposed instead of 
just the approximation coefficients as in the case of the 
DWT. Hence the wavelet packet distributes the fre- 
quency of the original signal evenly between all coeffi- 
cients as opposed to the wavelet transform where 50% of 
the signal frequency is in the first detail as shown in 
Figure 4. In the WDSVR model, we chose the wavelet 
packet transform to evenly distribute the signal frequency 
in each support vector module. 

Support vector machines (SVM) work
Structural Risk Minimization [12] by transforming a low 
dimensional input x into a high dimensional feature space 

through a mapping function   and then approximating 
the function f(x) using linear r ression eg

   
1

,


  i i
i

D

f x w x  b

where b is the threshold. w is the normal vector to the 
hyperplane. The coefficients can be determined from the 
data by minimizing the regression risk function. 

   2

1

1 N

Reg ,
2 



  
i

w w C y f x       (2) 

where C is the cost function, which defines the tradeoff 
between training error and model complexity. The ε-SVR 
algorithm discards the training points that lie beyond the 
threshold ε defined by the user. Mathematically 

     for

0                  otherwise

   y f x y f x
  

ε

i
i

ε
f x y     (3) 

Equation (3) is also known as the Vapnik’s ε-insensi- 
tive loss function. Both Equation (3) and the regression 
risk unction Equation (2) can be minimized by introduc- 
ing Langrangian multipliers α and *i  to this quadratic 
problem, yielding the solution 

     * *

1

, , ,   


   i i
i

N

f x k  x x b

with * *0,  , 0    i i i i

 function k(xi,x), wh
for k(xi,x) is the 1, , . i N  

putedkernel ich is com  by calculating 
the dot product of some feature space. 
 

A2 D1 D2

Signal 

A1 

D2 D1 

 
(a) 

2-0 D22-1 2-32-2 

1-0 1-1 
Signal 

 
(b) 

Figure 4. Frequency allocat level DWT. Frequency 
allocation of 2 level wavelet packet transform. 

ion of 2 
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     , .  
D

j jk x y x y  
1j

It is important to note that the kernel k(x,y) has a 
known an

elet Packet Support Vector 

or regression 

 

alytical form and must obey the Mercer’s con- 
dition. 

5. Wav
Regression 

The structure of wavelet packet support vect
is schematically outlined in Figure 5. The model works 
by evenly distributing the original signal’s frequency us- 
ing the wavelet packet transform into the SVR modules. 
The time series signal, which represented the travel-time 
of the freeway was sampled from the database, based on 
the prediction horizon selected. The time signal was then 
transformed using the wavelet packet decomposed sig- 

nals, such as 
2 1

,0




j

j nn
W , where j is the level of the de-  

composition. T t decomposition was done using 
a sliding window n in Figure 6. The window size 

he wavele

nd Results 

t 

 proposed travel- 
nto two parts: 

or wavelet decomposed support 
ve

the condition in Equation (4) is 
m

e, is the error of the classical suppo
method. ear from Equation (4) that WDSVR

ce

 

ata 
For accurate predictions of a non-linear and non- 

 
The second test was to detect if the reconstructed wavelet 

ing a certain pattern at 

 using 

 as show
determines the number of input features given to the sup- 
port vector machine. In our case the window size of 8 
was selected and the decomposition was done at level 2. 
These wavelet coefficients were stored for the support 
vector regression module. The four frequency compo- 
nents were processed through their respective support 
vector machines leading to compute one time-step ahead 
output, where the step was equal to the time interval be- 
tween the consecutive input values. The support vector 
regression output was finally aggregated to calculate the 
travel-time forecast. Table 2 gives the step by step im- 
plementation of the wavelet packet support vector re- 
gression algorithm. 

6. Experiments a

6.1. Selection of Mother Wavele

The major computational load of the
time prediction model was divided i
computation of the wavelet packet reconstructedtime- 
series data, and training of the support vector regression 
machines using the optimal cost and epsilon values.  

The grid search method was used for searching for 
epsilon and cost values. 

A definite procedure for selection of mother wavelets 
is yet to be established f

ctor regression models. However, analyzing the wave- 
let reconstructed signal in context of the characteristics 
of the support vector machines helped us in filtering the 
relevant wavelets basis. 

The accuracy of the proposed model is superior to the 
classical SVR model, if 

et. 

       2,0 2,1 2,2 2,3 ,   SVR SVR SVR SVR SVRε ε ε ε ε     (4) 

wher SVRε  
 It is cl

rt vector 
 would 

not produ  more accurate results than SVR for shorter 
time horizons, knowing that prediction error is propor- 
tional to the prediction horizon. In our datasets, the 
WDSVR gave more accurate results than the SVR me- 
thod for prediction horizons of 45 minutes or more. 

We conducted two basic tests for the admissibility of 
all wavelets for the support vector machine module. 

6.1.1. Cross-Correlation of Wavelet Decomposed D

stationary dataset the reconstructed wavelet coefficients 
of successive windows should not be correlated with one 
another. A positive linear correlation of +1.0 would 
indicate a similar pattern to the SVR module for every 
input and would adversely affect its prediction accuracy. 
To test our hypothesis we computed the cross-correlation 
of each window with the other. 

6.1.2. Recurrence Relationship

coefficients windows were follow
a particular location. We know that the input data of the 
successive windows is non-linear. The existence of a 
unique pattern at a similar location in the input signal 
would indicate a similar pattern to the support vector 
machine in every iteration, which in reality is not the 
case. Consequently, it would adversely affect the per- 
formance of the SVR module. To detect such events we 
calculated the first difference of each successive window. 
 
Table 2. Algorithm for wavelet decomposed support vector 

gression. re

1) Sample travel-time array into subsets for their respective predict- 
tion horizons

 
0

1
5

     


N

k

hk
y t x , 

where h is the prediction horizon in minutes. 
 
2) Initialize p = 0 and decompose the sampled signal using wavelet 
packet decomposition at level j = 2 

 
7

,





 
 






p

j n
k p

W y t k . 

3) Store Wj,n computed in step 2 for the SVR module and increment 
p = p + 1. 
 
4) Repeat steps 2 and 3 until the end of the input array  y t . 

 
5) Increment n = n + 1 and repeat steps 2 - 4 until n = 2j. 
 
6) Divide Wj,n into training and testing sets and compute one step 
ahead prediction value using their respective SVR modules. 
 
7) Aggregate the predictions of all 4 SVR modules to calculate the 
predicted travel time. 
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s  subset of the data chosen at random 
ranging four days. In Figure 7(a) the wavelet recons- 
tructed difference signal converged to zero at a similar 
p  the first difference 
o  
w ong the successive 
windows. On the other hand, the best performing wavelet 
at one hour prediction horizon, the Reverse Biorthogonal 
6  
r p as shown in Figures 7(b) and (d). Based on 
our adm out of a 
total of d  our 
p n wavelet 
selection for WDSVR is needed,our results on the 
s  
have r work 
i

 

To identify the above characteristics in the wavelet
ignal we used a

oint in every iteration. Figure 7(b) is
f the of the Biorthogonal 1.1 filter output at level 2,3,
hich indicates a linear correlation am

.8 wavelet, showed no cross-correlation or recurrence
elationshi

issibility tests, 9 wavelets were filtered 
 42, hence reducing the computational loa  of

roject by 21.43%. While a detailed study o

election of wavelets for the support vector machines
 shown encouraging results to motivate furthe

n this area. 

6.2. An Alternate Configuration for 
Interchangeable 

The WDSVR and SVR have both proven suitable for 
travel-time prediction depending on the selected forecast 
 

Historic Travel-Time Database 

Wavelet Tree Decomposition & Coefficient Reconstruction

W2,2 W2,1 W2,0 W2,3 

SVR2,2 SVR2,1 SVR2,0 SVR2,3 

Ŵ2,2 Ŵ2,1 Ŵ2,0 Ŵ2,3 

Predicted Travel Time 
 

Figu ram of the wavelet decomposed 

horizon. In our dataset, weobserved that SVR is more 
accurate for prediction horizons of less than 45 minutes. 
From 45 minutes onwards, WDSVR gives more accurate 
results. Considering the effectiveness of both models in 
different horizons, we have proposed an interchangeable 
configuration in Figure 8, where travel-times using both 
models were computed in parallel and then switch to the 
configuration for active use depending on the selected 
prediction horizon. The cloud component, which houses 
both the prediction models is flexible and can be either 
scaled horizontally or vertically toaccommodate for the 
computation overhead. 

6.3. Experimental Setup 

ance Measurement Sys- 
tem (PeMS) website [2]. 

The route of 9.13 miles on I-5N was selected with a 
detector density of 2.73. The data was observed for 214 
consecutive days commencing from March 01, 2011 to 
September 30, 2011 from 1 pm to 8 pm. The time slot 
was selected after observing the daily pattern of conges- 
tion during this period. The data revealed daily conges- 
tion in the evening hours except holidays and most 
weekends. This loop detector data was collected over a 5 
minutes interval. The speed data was converted to 
travel-time series using the PLSB travel-time estimation 
method [32]. We decomposed the time series using the 
wavelet packet decomposition at level 2. The data was 
then reshaped into a u*v matrix with u = N − 7 and v = 8. 
The decomposed and reshaped wavelet transform of 
travel-time matrix gave us 2j matrices at level j repre- 
sented as 

The data for our model validation and testing was col- 
lected from the Caltrans Perform

, , 1 , , 8

,

, , 7 , ,

 



 
   
  


  



j n t j n t

j n

j n N j n N

W W

W

W W

 

The four matrices were given as input to their respec- 
tive support vector machines with (N − 7) × 0.7 rows for 
training while the remaining 30% for evaluation. The  

re 5. Schematic diag
support vector regression model. 
 

 
t-8 t-7 t-6 t-5 t-4 t-3 t-2 t-1t-14 t-13 t-12 t-11 t-10 t-9 t-8 t-7 
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W2,1,t+1

W2,2,t+1
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Predicted travel time  
value for time t + 1 

W2,0 t-7 - - - - - - - - - t-1 t
W2,1 t-7 - - - - - - - - - t-1 t
W2,2 t-7 - - - - - - - - - t-1 t
W2,3 t-7 - - - - - - - - - t-1 t

t-7 t-6 t-5 t-4 t-3 t-2 t-1 t
 

t-14 t-13 t-12 t-11 t-10 t-9 t-8 t-7 ------------------ t-8 t-7 t-6 t-5 t-4 t-3 t-2 t-1 t-7 t-6 t-5 t-4 t-3 t-2 t-1 t

Reshaped Travel Time Data 

Wavelet Coefficients Wavelet Coefficients Wavelet Coefficients 

 

Figure 6. Flow diagram of the algorithm for wavelet decomposed support vector regression.  
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(a)                                                 (b) 

           
(c)                                                      (d) 

Figure 7. A comparison of wavelet recurrence relationship and cross correlation of better and worse performing wavelets: (a) 
First difference signal of wavelet Packet Reconstructed time series at level 2,3 using Biorthogonal 3.3; (b) First difference 
signal of wavelet Packet Reconstructed time series at level 2,3 using Reverse Biorthogonal 6.8; (c) First difference signal of 
wavelet Packet Reconstructed time series at level 2,3 using Biorthogonal 1.1; (d) First difference signal of wavelet Packet Re- 
constructed time series at level 2,3 using Reverse Biorthogonal 6.8.  
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evaluation matrix for each Wj,n above was represented as  

The predicted labels of each support vector machine 
were aggregated to compute the forecast time value. Fi- 
nally the values generated by SVR were evaluated for 
errors. 

We tested our model using Debauchies, Coiflets, 
Symlets, Reverse Biorthogonal and Biorthogonal wave- 
lets in 42 different configurations, with different values 
of cost and epsilon. It was observed that not all wavelets 
gave better results than the benchmark SVR predicted 
values. However, some of the worse performing wavelets 
were filtered out using our wavelet selection process to 
save computational cost. The best outputs in each time 
horizon sub-category were shown in Tables 1-3. 

Mean Absolute Percentage Error (MAPE), Root Mean 
Squared Error (RMSE) and Pearson Product-Moment  

Correlation were the three indicators chosen for evalua- 
tion of our model and for comparison with the classical 
Support Vector Regression model. Table 4 shows the 
comparison of MAPE between SVR and SVR with 
wavelet decomposed inputs. Table 5 shows comparison 
of Pearson product-moment correlation between SVR 
and SVR with wavelet decomposed inputs. 

Our results indicated that the wavelet decomposed 
support vector regression model consistently showed 
better performance for prediction horizon of 45 minutes 
and above but below 45 minutes the classical SVR 
method was more accurate. Figure 9 showed the better 
tracking ability of the proposed model in comparison 
with the SVR model. 

7. Summary of Results 

The proposed wavelet packet decomposed SVR method 
showed improved results for travel-time data prediction 
over the conventional SVR method for prediction hori- 
zons of 45 minutes and above. For accurate state estima- 
tion through machine learning methods large datasets are  

 
Table 3. Comparison of RMSE between SVR and SVR with wavelet decomposed inputs (our approach). 

tion Horizon 

, ,

, , 1
,
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

 
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  


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j n N

W

W

W

 

Predic
Prediction Methods 

45-min 60-min 50-min 55-min 

bior2.6 ε = 0.1, C = 100 bior6.8 ε = 0.01, C = 100 coif5 ε = 0.1, C = 100 db6 ε = 0.001, C = 100
Wavelet Packet SVR 

2.2 2.31 2.41 2.46 

ε = 0.01, C = 100 ε = 0.1, C = 1 ε = 0.001, C = 100 ε = 0.1, C = 10 
SVR Predictor 

2.26 2.4 2.48 2.88 

 
Table 4. Comparison of MAPE (%) between SVR and SVR with wavelet decomposed inputs. 

Prediction Horizon 
Prediction Methods 

45-min 50-min 55-min 60-min 

bior2.6 ε = 0.1, C = 1 rbio2.8 ε = 0.1, C = 100 rbio2.8 ε = 0.001, C = 100 rbio6.8 ε = 0.01, C = 100
Wavelet Packet SVR 

12.35 13.1 13.66 14.74 

ε = 0.01, C = 10 ε = 0.01, C = 100 ε = 0.1, C = 1 ε = 0.1, C = 100 
SVR Predictor 

12.57 13.5 13.96 15.06 

 
Table 5. Comparison of Pearson product-moment correlation between SVR and SVR with wavelet decomposed inputs. 

Prediction Horizon 
Prediction Methods 

45-min 50-min 55-min 60-min 

bior2.6 ε = 0.1, C = 1 bior6.8 0 coif5 ε = 0.1, C = 100 db6 ε = 0.001, C = 100ε = 0.01, C = 10
Wavelet Packet SVR 

0.87 0.8441 67 0.8623 0.8486 

ε = 0.01, C = 100 ε = 0.1, C = 100 ε = 0.1, C = 10 ε = 0.1, C = 10 
SVR Predictor 

0.8702 0.8498 0.8381 0.8406 
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sed configuration for travel-time prediction 

 
Fig
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needed, many of w le  T

iple methods would require significant 
computation cost and sto which, we have
posed an alternate framework with a cloud component, 

r the memory and computation requirements. We pro- 

ucted coeffi- 
ci

tterns, some examples are by con- 
by day of the week or both. 
so makes it a viable option 

, Vol. 

/TITS.2004.833765

ure 9. Comparison of actual travel time, and predicted 

decomposed Suppo

hich, are now availab  online. heir 
training with mult

rage, for  pro- 

which could be scaled horizontally or vertically to cater 
fo
posed a modular prediction method, where multiple pre- 
diction algorithms are stored in the cloud and the best 
performing algorithm is selected based on the prediction 
horizon. We also investigated wavelet properties in con- 
junction with their effectiveness for support vector ma- 
chines. We observed that wavelet basis, whose cross- 
correlation between the wavelet reconstr

ents of successive windows resulted in a linear correla- 
tion of +1.0 or the ones with recurrent relationships are 
not useful for WDSVR model and should be discarded to 
reduce the computation cost. In our dataset it reduced 
computational cost by 21.43%. Further improvements to 
our model might be made possible by subdividing the 
dataset based on its pa
gested and free flow parts or 
The scalability of the model al
for its application to calculate arterial travel times. 
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