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ABSTRACT 

The nature of spatial spillovers in the adoption of irrigation technology is examined in this paper. Adopting a new tech- 
nology is a decision that is based on economic and individual-specific factors. One of these individual factors might be 
communication with other users. It makes sense to expect that contact between users and non-users would follow a spa- 
tial pattern, and if knowledge spillovers are important to the adoption decision then resource managers need to be aware 
of their existence. Using counties in the Texas High Plains as the study area, the adoption of center pivot technology is 
examined using both Ordinary Least Squares and spatial regression models to determine if knowledge spillovers exist. 
Ultimately, no evidence was found that adoption practices in a county affects its neighbors; however, geographic loca- 
tion does matter to who adopts and when. 
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1. Introduction 

In the production of a good, the value of a per unit input, 
and by extension how much of it is used at any given 
time, is determined in part by the technology related to 
the input’s use. Ceteris paribus, technological progress 
decreases the costs faced by firms and increases how 
much of the input is used in the production process. 
When the input in question is a stock resource, techno- 
logical advancement implies that the resource will be 
depleted at a faster rate.1 It is, therefore, important for 
anyone whose responsibilities include resource manage- 
ment to understand the process by which technology is 
adopted by potential users and spreads through a popula- 
tion. 

Technology adoption is important to resource man- 
agement for any number of reasons. The introduction of 
a more efficient technology changes the incentives faced 
by producers; thus, any policies that aim at the resource’s 
conservation may no longer achieve the desired behavior. 
Consequently, it is important for resource managers to 
understand which individuals are most likely to adopt the 
new technology and how the technology will spread over 
time in order to adjust rules regarding resource use ac- 
cordingly. On the other hand, policy makers might view 

more efficient technology as a means to encourage con- 
servation. In this case, understanding the diffusion proc- 
ess will make it easier to identify those individuals or 
regions that will have the most influence on how quickly 
the technology spreads. 

A real world example of the importance of technology 
diffusion to resource management is the advancement of 
irrigation technology in arid regions such as the Texas 
High Plains. Agricultural production in this region of 
Texas is a part of the foundation of the region’s economy, 
and part of the reason for this is the availability of ground- 
water from the Ogallala Aquifer for irrigation. Over time, 
producers have found more efficient means of extracting 
water from the aquifer. Early farms used furrow irriga- 
tion to water crops. Sprinklers began replacing furrow 
irrigation in the mid-20th century; early sprinklers were 
high pressure systems that required a large amount of 
energy to operate. In the late 1980s, low energy precision 
application (LEPA) technology was introduced, and is 
the primary irrigation technology used today. 

As irrigation technology has become more efficient at 
extracting water from the aquifer, it has become eco- 
nomically viable to irrigate more acres (or irrigate the 
same acres more intensely). This extraction rate increase 
has led to concerns about the long-term viability of the 
aquifer as a resource for irrigation water and the devel- 
opment of plans and policies to curb extraction from the 
aquifer. In the midst of these concerns, a new irrigation  

1This assumes that no other changes occur in the cost and production 
functions due to changes in the use of other inputs, and that no changes 
occur in the price of the final good. 
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technology has begun to gain prominence, sub-surface 
drip, which supplies water directly to the root zone of the 
plant as opposed to sprinklers that deliver water above 
the surface which is absorbed by the plant through the 
soil. As such, it is more efficient in its application of wa- 
ter and generally reduces the variable cost of irrigating. 
Producers, therefore, have an opportunity to increase the 
amount of water they can take from the aquifer where 
available, and as drip becomes more prevalent, decision 
makers concerned about conservation must consider how 
the spread of this new technology will change water use 
patterns. 

The spread of a technology involves both adoption and 
diffusion. Adoption occurs when an individual chooses 
to accept and use the new technology. The decision to 
adopt can be thought of as an economic choice, where 
individuals seek to maximize utility or profits [1-4]. In- 
dividuals adopt a new innovation if it increases their net 
revenue from production. This idea has been expanded to 
acknowledge that individuals are heterogeneous in terms 
of their preferences as well as the physical and economic 
factors they must consider when choosing to adopt a new 
technology [1,2,5]. 

Diffusion can be thought of as the path that adoption 
takes through a population over time. Theoretically, the 
diffusion of technology from one person to another has 
been closely linked to interactions between individuals 
[6-11]. As users and nonusers interact, the users of a new 
technology communicate information about its benefits 
and its use. Nonusers take this information and use it to 
decide whether to adopt or not; thus diffusion can be 
thought of as a process of communication and imitation. 

This transfer of knowledge through communication 
constitutes an information externality associated with the 
adoption of the new technology. When innovators and 
early adopters adopt new technology, they take on the 
costs associated with the risk of using the new technol- 
ogy. Other potential users benefit from the experience of 
early adopters through person to person transfer of the 
knowledge gained, and are able to adopt the new tech- 
nology without the risk involved with early adoption. If 
the transfer of knowledge is informing adoption deci- 
sions, and consequently the diffusion of a technology, 
then it is necessary to understand the strength of this 
spillover relative to other factors. 

This study examines the presence of information spill- 
overs in the adoption of center pivot systems on the 
Texas High Plains. Center pivot technology is examined 
because, as opposed to drip systems, it has reached the 
end of its diffusion cycle, and there is more reliable data 
regarding its use. If the adoption of drip technology is 
determined by similar factors as center pivot systems, 
then the results of this study can be used as a benchmark 
for later studies involving drip adoption. 

In the study, the number of center pivot systems in 
each county that is a part of the High Plains Underground 
Water Conservation District No. 1 (HPWD) is related to 
the physical qualities of the county such as the saturated 
thickness of the Ogallala Aquifer at different points in 
time and the county’s geographic location. These physi- 
cal characteristics are of particular interest, as it is likely 
that the area of the aquifer a county overlies will deter- 
mine how many irrigation systems exist and how quickly 
this number grows. Furthermore, if there are counties 
that adopt first then it would be interesting to examine 
how much influence these counties have on the adoption 
level of their neighbors, or whether or not information 
spillovers exists in the adoption process. To this end, 
spatial econometric models are employed to account for 
any spatial dependence present in the number of center 
pivots in each county. 

2. Elements of the Adoption/Diffusion  
Process 

The choice to adopt new technology can be thought of as 
an economic decision where individuals switch to a new 
innovation because it increases their net revenue from the 
production of a good. Thus, the decision to adopt will be 
driven in part by the costs associated with the new tech- 
nology. References [8] and [10] separate the cost of 
adopting new innovations into “hardware” costs and 
“software” costs.  

Hardware costs relate to the actual purchase of the 
technology and its maintenance, and technologies such as 
irrigation systems that exhibit large hardware costs often 
rely on a loan to fund the purchase. Thus, access to credit 
may help these innovations to spread [3,12,13]. Software 
costs relate to the cost of learning to use a technology, 
and the ability to learn is related to the concepts of hu- 
man capital and education. Firms with high amounts of 
human capital are able to take advantage of their em- 
ployees’ capabilities and adopt earlier [3,4,13]. Individ- 
uals who are better educated can adopt earlier because 
they face a lower software cost, and due to their greater 
wealth are better able to afford the hardware costs [14]. 
Software costs can be reduced through personal experi- 
ence and communication with existing users, so compli- 
cated technologies tend to spread from more skilled users 
to less skilled users as the stock of knowledge related to 
the technology increases [8]. 

Aside from the cost of a new technology, the decision 
to adopt may be influenced by a number of physical fac- 
tors as well. While some physical factors, such as firm 
size, will affect technology adoption in general, these 
factors are especially important to agriculture due to the 
relation of agricultural production to physical qualities of 
the land itself. 
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Previous studies have found a relationship between the 
size of a firm and the ability to adopt new technology 
[15-17]. These authors argue that larger firms are better 
able to absorb the costs related to adopting a new innova- 
tion; thus, there is a lower limit to the size of a firm that 
can adopt an innovation, and the critical size increases 
along with the amount of fixed costs involved with the 
decision. Technology then diffuses from large firms to 
small firms. 

In studies related to irrigation adoption, the effects of 
land quality, well depth, and water price on adoption 
have been studied in a variety of frameworks. Land qual- 
ity, and related factors such as soil type, as well as well 
depth will determine whether traditional (furrow) irriga- 
tion systems or modern (sprinkler or drip) irrigation sys- 
tems are used [1]. Specifically, the authors show that 
modern technology is more likely to be adopted on lower 
quality land, or in areas with deeper wells. Similarly, [18] 
examines irrigation technology adoption in an exhausti- 
ble resource framework and finds that individuals will 
not adopt modern technology on their highest quality 
land, but do adopt modern technology as water price in- 
creases. Another study of irrigation adoption by [5] con- 
firms the relation between water price and the adoption 
of modern technology, in this case drip. The authors also 
find that the adoption of center pivot technology is less 
sensitive to land quality than that of drip due to the de- 
pendence of drip irrigation on field slope [5]. 

The decision to adopt a new technology is ultimately 
an individual decision based in part on both economic 
and physical factors. The difficulty, then, of modeling the 
adoption process is in collecting individual level data for 
analysis. The amount of information that must be col- 
lected is large, and the time to do so normally intensive. 
By studying adoption at the aggregate level, as this study 
proposes to do, the data collection process is much less 
effort intensive, but many of the micro level variables 
that affect the adoption decision must be dropped from 
the study; however, other important features, such as the 
existence of knowledge spillovers between regions can 
be explored. Identifying and measuring spillovers re- 
quires the use of econometric methods that model spatial 
dependence between observations. The next section ex- 
plains how and why these spatial relationships exist and 
how they might affect a county level analysis. 

3. Spatial Relationships and Irrigation  
Adoption 

Spatial location and technology adoption can be linked 
through the physical location of users and through the 
geographic relationship between current users and poten- 
tial adopters. The relationship between physical location 
and the decision to adopt a new irrigation technology has 

been explained in detail in the previous section. To 
summarize, physical characteristics related to an indi- 
vidual’s land will determine where adoption is economi- 
cally viable. When neighboring counties share similar 
characteristics, for instance if the saturated thickness of 
an underlying aquifer is similar, it is reasonable to as- 
sume that they will share aggregate irrigation levels as 
well. 

How the geographic relationship between current users 
and potential adopters affects technology adoption and 
diffusion is less clear, but not difficult to explain. Early 
concepts of the diffusion process, [7] for example, mod- 
eled the diffusion process as similar to a disease epi- 
demic where the vector is contact between current and 
potential adopters [10]. As potential adopters come into 
contact with current users, they are “infected” with the 
new technology and become users themselves. While 
these early models did not account for proximity between 
current and potential users, it should be clear that the 
probability of contact becomes more likely when the two 
groups are close to one another. Thus, a technology 
should diffuse from current users to the individuals clos- 
est to them if spatial spillovers are present. 

From the above explanation, spatial relationships are 
clearly important to consider when studying the adoption 
and diffusion of irrigation technology; furthermore, mul- 
tiple empirical studies of technology diffusion provide 
evidence of spatial effects in the diffusion process [19- 
21]. With this in mind, the growth of center pivot tech- 
nologies in the HPWD area is analyzed using a set of 
spatial regression models. The next section describes the 
data and variables used in the estimation these models, 
and the structure of the models themselves. 

4. Data and Methods 

4.1. Variables and Sources 

This study assumes that adoption of irrigation technology 
will depend on a set of county specific physical factors 
faced by producers. Irrigation technology adoption is 
measured using center pivot counts for each county in the 
HPWD. Information on the number of center pivots sys- 
tems was provided by the staff of the HPWD [22,23]. 
The water district collects this information on a semi- 
annual basis only, thus this information was collected for 
the years 1986, 1990, 1993, 1995, 2005, and 2008, and 
seven cross sections were developed. 

Two measures of saturated thickness are used as inde- 
pendent variables. The first of these is the saturated 
thickness of the aquifer in the current period. Saturated 
thickness is closely related to the cost of irrigation, which 
has been shown to affect the adoption choice [5,18]. It is 
expected that as the saturated thickness of the aquifer 
decreases, and the price of pumping water increases, that 
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producers will switch to a more efficient irrigation sys- 
tem. The second variable is the change in saturated 
thickness over time, and is included to account for the 
fact that producers might take past experience into ac- 
count along with current conditions when making the 
choice to adopt a new technology. In other words, in 
counties where the reduction in saturated thickness over 
time is larger, producers might choose to adopt more 
efficient irrigation technology to extend the life of the 
aquifer. 

Saturated thickness information was collected primar- 
ily from the Texas Tech Center for Geospatial Technol- 
ogy (TTUCGT) [24]. The staff at the TTUCGT has de- 
veloped county average measures of the characteristics of 
the Ogallala aquifer, such as water storage and saturated 
thickness. The TTUCGT spans the years 1990-2008. For 
years prior to 1990, saturated thickness was estimated 
using the average change in well depth for each county, 
reported annually in the HPWD newsletter. This calcula- 
tion started with the 1990 saturated thickness in county i 
as the baseline, and saturated thickness in the previous 
year, STt−1, was related to the current year saturated 
thickness, STt, and change in well depth reported in year t, 
wt, so that STt−1 = STt − wt. 

Other physical characteristics considered in this study 
are the distance between a county and an experiment 
station, the amount of irrigated production in a county, 
and the aridity level in a county. The distance from an 
experiment station is considered important to the adop- 
tion choice because of the role experiment stations play 
in introducing new technology. These stations act as the 
central source for information referred to in [6-8], and 
[10] that introduces the innovation to a population 
through demonstrations of the new technology. Attend- 
ing these demonstrations requires that producers travel to 
the stations, and it is assumed that this will be easier for 
producers who are closer to a station. There are two ex- 
periment stations in the HPWD, so the distance from 
county to station was calculated as the average distance 
from the county seat to an experiment station. 

The level of irrigated production in a county signifies 
how willing producers might be to pursuing new irriga- 
tion technology. In counties where the amount of irri- 
gated production is high, producers should be more in- 
terested in learning about and adopting more efficient 
irrigation systems. To measure the level of irrigated ag- 
riculture practiced in each county, acreage amounts for 
corn, cotton, sorghum, and wheat where retrieved from 
the National Agricultural Statistics Service (NASS) 
quick stats data base [25]. The number of irrigated acres 
was divided by total acreage to calculate the percent of 
agriculture that depended on irrigation. 

The aridity level in a county indicates how important 
irrigation is to agricultural production. Producers in 

counties that are hotter and dryer will rely more on irri- 
gation to supplement natural precipitation, and should be 
more likely to switch to more efficient irrigation tech- 
nology when it becomes available. To measure aridity, 
the Lang Index [26] was calculated for each county in 
each year. This index is calculated as P/T where P is the 
annual precipitation in centimeters and T is the average 
annual temperature in C˚. Temperature and precipitation 
data was retrieved from the Western Regional Climate 
Center website [27]. 

Once the data is collected, it is sorted into seven cross 
sections, one for each year that the number of center piv- 
ots in the HPWD was counted. Each cross section had 
thirteen observations. There are fifteen counties in the 
study area; however, only small parts of Armstrong and 
Potter Counties are actually a part of the HPWD, and 
these counties practice low levels of crop agriculture. For 
this reason it is assumed that these counties would have 
little influence on center pivot adoption in neighboring 
counties, and would not be influenced by interactions 
with other counties in the study area. There is some ob- 
vious concern about the small number of observations in 
a given year and the effect on degrees of freedom; how- 
ever, there is no easy way around this limitation. The ac- 
counting procedure for center pivot numbers is only 
semi-annual in the HPWD which limits the number of 
years with data available and prevents the use of panel 
estimation methods; furthermore, expanding the study 
area to include other water district introduces new con- 
cerns such as the effect of differing organizational struc- 
tures, accounting practices, and data collection proce- 
dures. 

Additional information collected for this study in- 
cludes the market average prices reported by NASS and 
the interest rate for the 3-month T-bill [28]. Crop prices 
and interest rates may influence the adoption decision; 
however, while these variables may show variation over 
time, they do not change from county to county. As the 
data related to adoption is organized into cross sections, 
any effect that these variables might have on adoption 
would simply reduce to a fixed effect and enter the in- 
tercept; therefore, crop prices and the interest rate are not 
included in the spatial analysis, but were regressed 
against center pivots to determine their level of correla- 
tion with the number of center pivot in a county. 

With the data for each county organized into cross sec- 
tions, exploratory analysis was conducted to confirm the 
existence of spatial clustering in center pivot counts. 
Then, an Ordinary Least Squares (OLS) model was esti- 
mated, and tested for spatial dependence in the error term 
and dependent variable using the Moran’s I statistic and 
Lagrange Multiplier (LM) tests. If these tests confirmed 
spatial dependence, the model was re-estimated using 
spatial regression techniques. The specification of these 
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models is explained below. 

4.2. The OLS Model 

In all of the models estimated, the dependent variable is 
the log of the number of center pivots (CP) in each 
county. The independent variables in the OLS model 
include the log of saturated thickness (ST), the 5-year 
change in saturated thickness (chg), the average distance 
to an experiment station (dist), the level of irrigated ag- 
riculture (irr), and the aridity index (arid): 

( ) ( )0 1 2 3

4 5

ln lnCP ST chg dist

irr arid

β β β β
β β

= + + +
+ + + ∈.

    (1) 

These variables are chosen because they affect the 
center pivot count in a county and have a reasonable 
amount of variation at the county level of aggregation; 
however, the estimated parameters from this equation are 
not the main interest of this study. What is of interest is 
whether any spillovers exist from the center pivot counts 
in neighboring studies. 

4.3. The Spatial Lag Model 

If spatial dependence exists in county center pivot counts, 
it means that the number of center pivots in each county 
is dependent on the number of center pivots in neighbor- 
ing counties and can be represented by a spatial lag 
model (SAR): y = ρWy + Xβ + ε. 

In this specification, a spatially lagged dependent var- 
iable, ρWy, is included as an independent variable to ac- 
count for the effect of neighboring observations. In the 
SAR model, W is a spatial weighting matrix and ρ is a 
spatial autoregressive parameter that measures the strength 
of spatial interactions between neighbors. A statistically 
significant ρ implies that spillovers related to center pivot 
counts exist between counties. To account for spatial 
dependence in center pivot counts, Equation (1) is modi- 
fied so that: 

( ) ( ) ( )0 1

2 3 4 5

ln ln lnCP W CP ST

chg dist irr arid

β ρ β
β β β β

= + +
+ + + + + ∈.

    (2) 

4.4. The Spatial Error Model 

A second form of spatial dependence is spatial autocor- 
relation, or spatial dependence in the error term. When 
spatial autocorrelation exists, observations are grouped in 
such a way that measurement error depends on location. 
Examples of this would be if counties with high center 
pivot counts tended to be grouped together (positive spa- 
tial autocorrelation), or if counties with high center pivot 
counts tended to neighbor counties with low center pivot 
counts (negative spatial autocorrelation). The spatial er- 
ror model (SEM) accounts for spatial autocorrelation by 
modifying the error term in the OLS specification, y = 

Xβ + ε, so that ε = λWξ + μ, where ξ is the spatially cor- 
related part of the error term and μ ~ (0, σ2In) is spatially 
uncorrelated. This specification is identical to an OLS 
model, save for the error term, which now exhibits spa- 
tial dependence. In the SEM model, λ is a spatial autore- 
gressive parameter that measures the strength of spatial 
correlation between errors, and μ is the portion of the 
error term that satisfies the assumptions of a normal re- 
gression model. 

While spatial autocorrelation does not imply the exis- 
tence of spillovers between counties, the existence of 
spatial autocorrelation in center pivot counts would have 
important implications for the diffusion of irrigation 
technology in this region. In this context, the presence 
spatial autocorrelation would imply that a county’s 
physical location, and perhaps its physical characteristics, 
is what drive the adoption decision. If this is the case 
then future attempts to understand the adoption decisions 
of producers would need to rely on a micro level ap- 
proach that considers physical factors. 

4.5. The Spatial Weights Matrix 

Both of the spatial model specifications rely on the use of 
the spatial weights matrix to model spatial interaction. In 
the matrix, each element, wij, represents the spatial rela- 
tionship between points i and j, and wij = 0 ∀ i = j. The 
types of weights matrices are many, and there is no for- 
mal method of choosing one method of modeling dis- 
tance over another [29]. For this analysis a row standard- 
ized inverse distance matrix is used where distance, dij, is 
the Euclidian distance between two counties, and each 
element is standardized by dividing it by the number of 
neighbors, in this case 13, so the value of every off di- 
agonal element is 1 13ij ijw d −=  To calculate the Euclid- 
ian distance between two counties, the geographic coor- 
dinates for the county center were taken from the Texas 
State Historical Society Website [30]. Assuming the geo- 
graphic coordinates for two counties are the corners of a 
triangle adjacent to the hypotenuse, the distance between 
counties can be calculated using the Pythagorean Theo- 
rem. 

Using the type of weighting matrix specified above 
assumes that all counties in the study area will have some 
affect on each other, but the effect will decrease as dis- 
tance increases. Using a different type of weighting ma- 
trix could potentially change the nature of any spatial 
relationships discovered in the regression analysis. For 
example, using a k nearest neighbor (knn) matrix would 
only consider a k number of specified counties as neigh- 
bors, and only these neighbors would be considered 
when measuring spatial relationships. Considering the 
small study area, and that all of the counties included in 
the data are part of the same regulatory institution 
through membership in the HPWD, it is assumed that 
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even individuals in the counties farthest away from each 
other would have some chance for contact with each 
other. Using an inverse distance matrix with no limit 
placed on distance captures these interactions. 

5. Results 

5.1. Correlation with Price and Interest Rate 

In the analysis of aggregated spatial effects, economic 
variables, such as price and the interest rate, are left out 
because they do not vary for each observation in the 
cross section; thus, these variables would reduce to a 
fixed effect and enter the intercept during the estimation 
process. To examine how these variables impact the 
number of center pivots in a county, a regression was 
performed using an index of crop prices and the interest 
rate as independent variables. The price variable (P) is an 
index of the average market price reported by NASS for 
corn, cotton, peanuts, sorghum, and wheat. The year 
1986 was used as the base and was set at 100. The inter- 
est rate (i) used was the 90 day T-bill rate. The model 
took the following form: 

( ) ( ) ( )0 1 2ln ln lnCP P iβ β β= + + + ∈.      (3) 

The results in Table 1 show that while these variables 
may be important to the individual, they have no statisti- 
cally significant correlation with the aggregate level of 
center pivot adoption, thus confirming that omission of 
these variables from subsequent regressions will not re- 
sult in omitted variable bias on the basis of interest rates 
and prices. 

5.2. Exploratory Analysis 

To confirm the existence of spatial clustering in center 
pivot numbers, a global Moran’s I test statistic was cal- 
culated for the dependent variable in each cross section. 
This test, proposed by [31] examines whether or not the 
distribution across space of observations with similar 
values for a variable of interest is random or not. The 
Moran’s I statistic is a value of global spatial autocorre- 
lation which is calculated as 

1

0 2

n n

ij i j
i j i

w Z Z

I
S m

= ==


             (4) 

where wij is an element of the weighting matrix, 
Zi Yi Y= − , Yi is the value of the variable of interest at 
location i, Y  is the mean of the variable of interest, 

0 iji j
, and S w=  2

2 i
m . The statistic is 

compared to the expected value of I, 

Table 1. Regression of price and interest rate variables on 
center pivot systems. 

 Coefficient Std. Err. t p-value 

Price index 0.490 0.906 0.54 0.589 

Interest rate −0.623 0.461 −1.35 0.18 

constant 4.018 4.972 0.81 0.421 

R-squared 0.06    

Adj. R-square 0.04    

 
Table 2. Moran’s I values for the dependent variable 
(lnCP). 

Year I E(I) sd(I) Z p-value

1986 0.062 −0.083 0.046 3.161 0.002 

1990 0.027 −0.083 0.046 2.410 0.016 

1993 0.008 −0.083 0.046 1.991 0.047 

1995 −0.031 −0.083 0.046 1.133 0.257 

1998 −0.051 −0.083 0.046 0.703 0.482 

2005 −0.064 −0.083 0.046 0.418 0.676 

2008 −0.076 −0.083 0.046 0.160 0.873 

 
The Moran’s I values indicate the existence of spatial 

autocorrelation in only the first three cross sections. To 
augment the Moran’s I statistic, Moran’s scatter plots 
were created that give a visual representation of these 
results by plotting observed values of the variable of in- 
terest against the spatially lagged variable of interest. The 
Moran scatter plot for all years are shown in Figures 1-7. 
Points in the upper right quadrant indicate counties with 
high center pivot counts that are close to other counties 
with high center pivot counts. Points in the lower left 
quadrant indicate counties with low center pivot counts 
that are close to other counties with low center pivot 
counts. 

The points of the scatter plots for the first three years 
have a positive skew, but the skew is decreasing from 
year to year. By 1995, the points are beginning to cluster 
more around the origin. The scatter plots for the years 
1998-2008 show that the observations continue to cluster 
more tightly around the origin as time passes, with one 
exception. Randall County is an extreme outlier in the 
1995-2008 scatter plots because it has the lowest number 
of center pivots of all the counties and is next to a county 
with one of the highest center pivot counts. While this 
may be evidence in support of dropping Randall from the 
rest of the analysis, the county was kept due to concerns 
about the already low number of degrees of freedom. 

Zi n=
( ) ( )1 1E I N= − −  

using a z-score, and a positive I value implies positive 
autocorrelation. The I statistic for each cross section is 
reported in Table 2. 

From a diffusion perspective, the reduction in spatial 
autocorrelation over the time period studied suggests that 
specific characteristics of a county determine where early 
adoption occurred at the individual level. In the 1986 
cross section, for example, the two upper-rightmost ob-  
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Figure 1. Moran’s scatter plot of 1986 center pivots. 
 

 

Figure 2. Moran’s scatter plot of 1990 center pivots. 
 

 

Figure 3. Moran’s scatter plot of 1993 center pivots. 
 
servations are Bailey and Parmer counties. These two 
counties are situated next to each other in the region and  

 

Figure 4. Moran’s scatter plot of 1995 center pivots. 
 

 

Figure 5. Moran’s scatter plot of 1998 center pivots. 
 

 

Figure 6. Moran’s scatter plot of 2005 center pivots. 
 
also share the trait of high saturated thickness in the aq- 
uifer. If this and other traits influence individual adoption 
decisions are spatially located then it would make sense  
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Figure 7. Moran’s scatter plot of 2008 center pivots. 
 
for earlier years to show spatial autocorrelation, and for 
the autocorrelation to disappear as center pivot technol- 
ogy diffuses across the region. 

5.3. Regression Analysis 

The OLS and spatial models were estimated using 
STATA [32-34] for 1986, 1990, and 1993, and the re- 
sults are reported in Tables 3-5. The first column in each 
table reports the results from the OLS regression. The 
second column pertains to the spatial error model (SEM) 
estimation and the last column reports results from the 
spatial lag model (SAR). At the bottom of the OLS col- 
umn are the results from spatial diagnostic tests regard- 
ing the existence of spatial dependence. The first test is 
the Moran’s I, which is significant at the 1% level in all 
three of these years and indicates that the residuals from 
the OLS regressions exhibit spatial autocorrelation. 

The Lagrange Multiplier (LM) tests listed under the 
Moran’s I statistic are used to determine how spatial de- 
pendence enters the model. For both spatial dependence 
in the error term and spatial dependence in the dependent 
variable, two test statistics are listed. A weakness of the 
standard LM tests is that the LM test for λ responds to a 
non-zero ρ, and the LM test for ρ responds to a non-zero 
λ [35,36]. The robust tests are meant to correct for this, 
but are only meaningful when the standard tests are sig- 
nificant [36]. 

In contrast to the Moran’s I statistic, the LM tests fail 
to reject the null hypothesis of no spatial dependence in 
either the error term or the dependent variable. To verify 
this result the SEM and SAR models were estimated for 
all three years, and Wald and LM tests run for λ = 0 and 
ρ = 0. The difference in results between the  

Moran’s I statistic and the LM test for spatial depend- 
ence in the error term is an interesting result. It would 
seem that when one is significant the other should be as  

Table 3. Regression results for the 1986 cross section. 

 OLS SEM SAR 

Sat. Thickness −3.821* −4.122** −3.754** 

 (1.571) (1.351) (1.110) 

∆ in S.T. −1.863* −1.935** −1.819** 

 (0.620) (0.484) (0.423) 

% Irrigated Acres 3.113 3.296 3.129 

 (3.415) (2.711) (3.967) 

Dist. to Station −0.014 −0.014 −0.016 

 (0.022) (0.017) (0.017) 

Aridity Index −0.122 −0.141 −0.109 

 (0.484) (0.384) (0.338) 

constant 20.556** 21.814** 19.080** 

 (6.067) (5.253) (3.216) 

λ  −0.589  

  (1.422)  

ρ   0.242 

   (0.516) 

Observations 13 13 13 

F-Statistic 4.00*   

R-squared 0.74   

Adj. R-squared 0.56   

Sq. Correlation  0.74 0.75 

Moran’s I (λ) 3.55**   

LM (λ) 0.07   

Robust LM (λ) 2.65   

LM (ρ) 0.07   

Robust LM (ρ) 2.65   

Wald Test (λ = 0)  0.17  

LM Test (λ = 0)  0.21  

Wald Test (ρ = 0)   0.22 

Thiel’s U 0.13 0.13 0.13 

The SAR model uses robust Hubert-White standards errors; *significant at p ≤ 
0.05; **significant at p ≤ 0.01. 
 
well. One possible explanation may be that the spatial 
clustering in the HPWD simply does not affect the error 
term, either because of the small size of the area or for 
some other unknown reason. Ultimately, however, the 
existence or lack thereof of spatial autocorrelation is of 
secondary importance. The goal of the analysis is to 
identify spatial spillovers. The results for these three 
counties make it impossible to reject the null hypothesis 
of no spatial dependence in the dependent variable; 
therefore the conclusion is that for these years there are 
no spillovers present. 

While global Moran’s I statistics showed no sign of 
spatial autocorrelation in the last four cross sections, 
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Table 4. Regression results for the 1990 cross section. 

 OLS SEM SAR 

Sat. Thickness −1.989 −1.936 −1.887 

 (2.415) (2.174) (0.842) 

∆ in S.T. −0.226 −0.212 −0.163 

 (0.709) (0.156) (0.081) 

% Irrigated Acres 5.028 5.012 5.083 

 (4.282) (2.080) (1.966) 

Dist. to Station 0.012 0.012 0.011 

 (0.027) (0.016) (0.015) 

Aridity Index −1.222 −1.203 −1.232 

 (1.034) (0.572) (0.403) 

constant 13.846 13.575* 11.506* 

 (8.237) (8.099) (4.028) 

λ  0.090  

  (2.482)  

ρ   0.395 

   (0.379) 

Observations 13 13 13 

F-Statistic 1.63   

R-squared 0.54   

Adj. R-squared 0.21   

Sq. Correlation  0.54 0.55 

Moran’s I (λ) 3.92**   

LM (λ) 0.00   

Robust LM (λ) 4.59*   

LM (ρ) 0.16   

Robust LM (ρ) 4.75*   

Wald Test (λ = 0)  0.01  

LM Test (λ = 0)  0.01  

Wald Test (ρ = 0)   0.40 

Thiel’s U 0.15 0.15 0.15 

The SAR model uses robust Hubert-White standards errors; *significant at p ≤ 
0.05; **significant at p ≤ 0.01. 
 
OLS models were estimated to confirm these results, the 
results of which are listed in Table 6. For the years 1995 
– 2005 the results are what would be expected based on 
the exploratory analysis; however, the Moran’s I for spa- 
tial autocorrelation in the residuals in 2008 is significant 
at the 5% level. Estimating the SEM and SAR models, 
the results of which can be found in Table 7, produce 
similar findings as in earlier years, and no evidence of 
spatial dependence was found. 

6. Discussion and Conclusions 

This study measures the level of spatial dependence in 
the number of center pivots in existence in the HPWD 

Table 5. Regression results for the 1993 cross section. 

 OLS SEM SAR 

Sat. Thickness −4.317* −4.712* −4.281** 

 (1.452) (2.174) (0.842) 

∆ in S.T. −0.370* −0.396** −0.370** 

 (0.130) (0.156) (0.081) 

% Irrigated Acres 1.216 1.239 1.281 

 (2.701) (2.080) (1.966) 

Dist. to Station −0.015 −0.015 −0.016 

 (0.020) (0.016) (0.015) 

Aridity Index 0.312 0.386 0.288 

 (0.549) (0.572) (0.403) 

constant 22.843** 24.288** 19.340** 

 (5.766) (8.099) (4.028) 

λ  −0.534  

  (2.482)  

ρ   0.588 

   (0.379) 

Observations 13 13 13 

F-Statistic 4.15*   

R-squared 0.75   

Adj. R-squared 0.57   

Sq. Correlation  0.75 0.79 

Moran’s I (λ) 3.06**   

LM (λ) 0.02   

Robust LM (λ) 9.85**   

LM (ρ) 0.93   

Robust LM (ρ) 10.76**   

Wald Test (λ = 0)  0.05  

LM Test (λ = 0)  0.09  

Wald Test (ρ = 0)   2.41 

Thiel’s U 0.09 0.09 0.08 

The SAR model uses robust Hubert-White standards errors; *significant at p ≤ 
0.05; **significant at p ≤ 0.01. 
 
area using spatial econometric methods. The results indi- 
cate that while center pivot technology is certainly clus- 
tered spatially, at least in the earlier years of the study, 
there is no evidence of spatial interdependence in either 
the dependent variable or the error term in any of the 
seven cross sections studied. 

This curious result may be a consequence of the small 
size of the study area. With only a few counties to be 
neighbors with, it is likely that counties with high center 
pivot values can be clustered together and still be near 
neighbors to counties with low center pivot values sim- 
ply because of aquifer characteristics. One way to deal 
with this might be use a different weighting matrix, such 
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Table 6. OLS estimates for the 1995, 1998, 2005, and 2008 
cross sections. 

 1995 1998 2005 2008 

Sat. Thickness −0.252** −0.105 0.022 −0.099 

 (0.527) (1.207) (0.380) (0.485) 

∆ in S.T. −0.216 2.651 4.582** 0.844 

 (0.029) (0.092) (0.033) (0.046) 

% Irrigated Acres −0.007 −0.004 0.009 −0.022 

 (0.943) (2.848) (0.864) (1.190) 

Dist. to Station −0.330* −0.093 0.498 0.678 

 (0.005) (0.016) (0.006) (0.013) 

Aridity Index 13.032** 11.615* 5.062** 7.162** 

 (0.140) (0.615) (0.248) (0.375) 

constant −1.445* −1.559 −0.663 −0.560 

 (1.692) (4.296) (1.456) (1.825) 

Observations 13 13 13 13 

F-Statistic 32.18** 1.77 10.94* 6.43* 

R-squared 0.96 0.56 0.89 0.82 

Adj. R-squared 0.93 0.24 0.81 0.69 

Moran’s I (λ) -2.17 1.56 0.38 2.33* 

LM (λ) 1.99 0.31 0.73 0.44 

Robust LM (λ) 3.76 5.48* 0.87 2.72 

LM (ρ) 0.09 0.09 0.28 0.16 

Robust LM (ρ) 1.85 5.26* 0.42 2.44 

*significant at p ≤ 0.05; **significant at p ≤ 0.01. 
 
as a binary weights matrix that defines neighbors as only 
those observations within a critical distance, or a k near- 
est neighbor (knn) matrix that defines neighbors as only 
the k nearest observations. 

Another explanation for the inability of the models to 
detect spatial dependence is the existence of an extreme 
outlier in Randall County. This would be especially true 
for the detection of spatial autocorrelation, which Mo- 
ran’s I statistics detected in 1986, 1990, and 1993. Again, 
though, the small sample size becomes a problem. While 
dropping Randall County out of the data set might re- 
move an outlier, it also removes an observation. 

With only thirteen observations the degrees of freedom 
in the model is very restricting. The problem is finding 
data for enough observations in the same time period. 
The ideal data set would provide information on the irri- 
gation adoption decisions of individuals; however, if the 
goal is to model spatial dependence then collecting data 
for enough neighboring individuals for even one time 
period would be a daunting task. 

Two options that might improve this analysis in the 
future would be to either analyze the study as a panel or 
to reduce the number of independent variables. Taking 
the data as a panel would increase the number of obser-  

Table 7. SEM and SAR results for the year 2008. 

 SEM SAR 

Sat. Thickness −0.784* −0.519 

 (0.353) (0.406) 

∆ in S.T. −0.110** −0.010* 

 (0.032) (0.041) 

% Irrigated Acres 0.817 0.694 

 (0.956) (1.067) 

Dist. to Station −0.024** −0.021* 

 (0.009) (0.009) 

Aridity Index 0.686** 0.618* 

 (0.269) (0.311) 

constant 8.135** 11.926 

 (1.147) (7.687) 

λ −2.07  

 (1.456)  

ρ  −0.693 

  −1.092 

Sq. Correlation 0.74 0.75 

   

Wald Test (λ = 0) 2.02  

LM Test (λ = 0) 1.88  

Wald Test (ρ = 0)  0.4 

Thiel’s U 0.04 0.04 

The SAR model uses robust Hubert-White standards errors; *significant at p ≤ 
0.05; **significant at p ≤ 0.01. 
 
vations, but the semiannual center pivot counts make 
panel estimation difficult. Reducing the number of inde- 
pendent variables would free up some degrees of free- 
dom, but in an aggregate level study that is already ig- 
noring a number of micro level variables, what should be 
dropped? 

It might be interesting to develop an index variable 
that takes into account all of the pertinent physical char- 
acteristics of a region, which would reduce the number of 
independent variables to one. Reducing the number  

of independent variables would also make the estima- 
tion of the Spatial Durbin Model (SDM) possible. The 
SDM was originally proposed as a means of addressing 
omitted variables in spatial studies. The SDM lags both 
the dependent variable and the independent variable, so 
how each observation is affected by the independent 
variables is different based on location. In this study, 
however, the SDM would have thirteen observations and 
eleven parameters. An index variable would reduce the 
number of parameters to three and make estimation more 
appealing.  

Ultimately, the results of this study make it clear that 
while there is some sort of spatial relation, data limita-  
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tions make understanding this relationship difficult. If 
patterns of spatial dependence in the adoption of irriga- 
tion technology on the Texas High Plains are important 
from either an academic or a policy making viewpoint, 
the analysis will need to make use of either different or 
more refined methods than those used here. 
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