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ABSTRACT 

In this paper, we apply the differential transfor-
mation method to high-order nonlinear Volterra- 
Fredholm integro-differential equations with se- 
parable kernels. Some different examples are 
considered the results of these examples indi-
cated that the procedure of the differential trans- 
formation method is simple and effective, and 
could provide an accurate approximate solution 
or exact solution. 
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1. INTRODUCTION 

Integral and integro-differential equations play an im-
portant role in characterizing many social, biological, 
physical and engineering problems; for more details see 
[1-3] and references cited therein. Nonlinear integral and 
integro-differential equations are usually hard to solve 
analytically and exact solutions are rather difficult to be 
obtained. Many numerical methods have been studied 
such as the Legendre wavelets method [4], the Haar 
functions method [5,6], the linearization method [7], the 
finite difference method [8], the Tau method [9,10], the 
hybrid Legendre polynomials and block-pulse functions 
[11], the Adomian decomposition method [12,13], the 
Taylor polynomial method [14-16] and the collocation 
approach (for linear case) [17]. 

In this paper, we will use the differential transform 
method (DTM) to solve a high-order nonlinear Volterra- 
Fredholm integro-differential equation given by 
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with the initial conditions 

 ( ) , 0, 1, 2, ,i
iy a y i m 1    ,     (1.2) 

where i1 2, , , ,a b y   are constant values,  f x ,  
 t1 ,k x ,  ,k x t2  and   , 0, 1, 2, ,i x i m    with  
 x 0m   are known functions that have suitable de-

rivatives on an interval a x t b   ,p,  are integers 
and 

q
 y x  is the unknown function. The concept of the 

DTM was first proposed by Zhou [18] and has been used 
to solve both linear and nonlinear initial value problems, 
in electric circuit analysis. The DTM is a distinguished 
form of the Taylor series method, which requires sym-
bolic computation of the necessary derivatives of the data 
functions. Taylor polynomials method is computationally 
tedious for high orders. DTM leads to an iterative pro-
cedure for obtaining an analytic series solution of func-
tional equations. It is possible to solve differential equa-
tions, difference equations, differential difference equa-
tions, fractional differential equations, pantograph equa-
tions, integral equations and integro-differential equa-
tions by using this method. 

In this work, we apply the DTM to solve high-order 
nonlinear Volterra-Fredholm integro-differential equa-
tions with separable (degenerate) kernels; i.e.  

     ,k x t M x N t j , 1, 2j j j . Five different problems 
are solved to make clear the application of the DTM on 
such class of integro-differential equations. We introduce 
theorems in general forms to be able to apply any kind of 
integro-differential in any order. 

2. DIFFERENTIAL TRANSFORM  
METHOD 

The basic definition and the fundamental theorems of 
the differential transformation and its applicability for 
various kinds of differential and integral equations are 
given in [19-22]. For convenience of the reader, a review 
of differential transformation will be presented here. The 
transformation of the kth derivative of a function in one 

t

, (1.1) 
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variable is as follows. 
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and the inverse transformation is defined by 
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The following theorems can be deduced from Eqs.2.1 
and 2.2. 

Theorem 1. If      y x f x h x  , then      Y k F k H k  . 

Theorem 2. If    y x cf x , then    Y k cF k , where  is a constant. c

Theorem 3. If    ( )ny x f x , then      
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The following relation is quite useful in the solution of Fredholm integrals; it can be obtained from theorem 8 and 
Eq.2.2 
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Also, we introduce the differential transformations for 

some basic functions, which are encountered in the fol-
lowing examples. The proof of these differential trans-
forms follows directly from the definition (2.1) and (2.2) 
and the operations of the differential transformation 
given in the above theorems. 

 If   xy x e , then  
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 If    cosy x x   , then  

  πk k
cos

! 2
Y k

k
   

 
. 

3. APPLICATIONS AND NUMERICAL  
RESULTS 

In this section, we implement the DTM on some dif-
ferent examples. 

Example 3.1. Consider the nonlinear Volterra-Fred- 
holm integro-differential equation 
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with the initial conditions 

       0 1, 0 0, 0 2 and 0 0y y y y       (3.2) 

Application of the differential transform to Eq.3.1 
gives 
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(3.3) 

where .   
1

0

dy t t  
Substitute and 6 into Eq.3.3, one can 

get the following relations 
1,2,3,4,5k 

     3 3 2 7 3Y Y     , 

     224 4 6 3 0 1Y Y Y   , 

       300 5 12 4 0 1Y Y Y Y  , 

         23960 6 60 5 2 0 2 1 2Y Y Y Y Y    , 

           7980 7 60 6 0 3 1 2Y Y Y Y Y Y   , 
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Also, for  in Eq.3.3, the following recurrence 
relation can be obtained 

6k 
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The initial conditions in Eq.3.2 is transformed by us-
ing (2.1) to 

       0 1, 1 0, 2 1 and 3 0Y Y Y Y .     

Consequently, from the above recurrence relations we 
can easily find that   0, 4Y k k  . 

Hence by using Eq.2.2, the solution of the integro- 
differential Eq.3.1 with its initial conditions (3.2) is ob-
tained to be 

  21y x x  , 

which is the exact solution. 
Example 3.2. Consider the integro-differential equa-

tion 
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with the initial conditions 

   
   

 (4)

0 0, 0 1,

0 2, 0

and 0 4.

y y

y y

y

 

  3 



          (3.5) 

The differential transformation of Eq.3.4 and the ini-
tial conditions (3.5) are 
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where , and  
1

2

0

dy t t  

   
   

 

0 0, 1 1,

2 1, 3 1 2!

and 4 1 3!.

Y Y

Y Y

Y

 

 



,            (3.7) 

Utilizing the recurrence relation (3.6) and the trans-
formed initial conditions (3.7), we can obtain  

 1 1 !, 4Y k k k    

Copyright © 2012 SciRes.                                                                    OPEN ACCESS 



S. H. Behiry, S. I. Mohamed / Natural Science 4 (2012) 581-587 584 

Substitute  into Eq.2.2 to obtain the solution of 
the nonlinear Volterra-Fredholm integro-differential equa- 
tion in this example  

 Y k
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which is its exact solution. 
Example 3.3. Consider the following sixth order Vol- 

terra-Fredholm integro-differential equation 
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with the initial conditions 

   
   
   (4) (5)

0 1, 0 0,

0 1, 0 0,

0 1 and 0 0

y y

y y

y y

 

   

 

       (3.9) 

The differential transformation of Eq.3.8 and the ini-
tial conditions (3.9) are 
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and 

   
   
   

0 1, 1 0,

2 1 2!, 3 0

4 1 4!and 5 0

Y Y

Y Y

Y Y

 

  

  .

,         (3.11) 

Note that, in Eq.3.10 the first and third terms in left 
hand side vanish as .  3k 

Utilizing the recurrence relation (3.10) and the trans-
formed initial conditions (3.11), we can get  
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Therefore, the solution of Eq.3.8 is given by 
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which is the exact solution. 
Example 3.4. Let us consider the nonlinear Volterra- 

Fredholm integro-differential equation [23]  
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(3.12) 

with the initial conditions 

     0 1, 0 0 and 0y y y  2      (3.13) 

The differential transformation of this equation and its 
initial conditions are 
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where 
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and 

    0 1 1 0 and 2Y Y Y  1.         (3.17) 

To obtain  3Y , put 0x   into Eq.3.12 and utiliz-
ing the transformation (2.1), hence  3 0Y  .   

Substitute 1,2k ,3, 4 and 5 into Eq.3.14, one can get 
the following relations 

   4 1 315 24Y    ,        (3.18) 

 5 1 360 6Y    0 ,         (3.19) 

 6 0Y  ,    7 4 2Y Y  10 , and  
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     8 5 336 4 8Y Y Y   40 . 

Also, for  in Eq.3.14, the following recurrence 
relation can be obtained 

6k 
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Utilizing Eqs.2.3, 3.15 and 3.16, it can be shown that 
the following equalities hold for   and   
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where  is a suitably large integer that represents the 
number of terms to be chosen. Solving Eqs.3.20 and 3.21 
with Eqs.3.18 and 3.19 by taking  terms, one can 
obtain the following results  

N

8N 

1 6  , 8 105  ,  and  4 0Y   5 0Y  .  

Hence one can get all the missing coefficients of 
 of the expansion for the unknown function, that is  Y k

  21y x x   , 

which is the exact solution. 
Example 3.5. Consider the nonlinear Volterra-Fred- 

holm integro-differential equation 
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Eq.3.22 can be written in the following form 
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The differential transformation of the Eq.3.24 gives 
the following recurrence relation 
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where 
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The initial conditions in Eq.3.23 are transformed by 
using Eq.2.1 as follows 
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Also, for obtaining  8Y , put  into Eq.3.22 
and utilize (2.1), one can get 

0x 

 8 0Y  .                (3.28) 

By using the transformed initial conditions in (3.27) 
and (3.28) and the recurrence relation in Eq.3.25, the 
series solution is then evaluated for  y x  up to  15O x  
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Utilizing Eqs.2.3 and 3.26, one can show 
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where  is a sufficiently large integer. Solving Eqs. 
3.30 and 3.31 by taking  terms, we can get 

N

0.00000
25N 

20056  , and 0.499998190  .  
The unknown function is evaluated by using Eq.3.29 

for these values of   and  . The numerical results 
are shown in Table 1 with comparison to the exact solu-
ion t    sin πy x x .    
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Table 1. Numerical comparison of results in example 3.5. 

x App. Value, (N = 10) App. Value, (N = 25) Exact value 

0.1 0.3090169944 0.3090169944 0.3090169944 

0.2 0.5877852524 0.5877852523 0.5877852523 

0.3 0.8090170074 0.8090169944 0.8090169944 

0.4 0.9510568223 0.9510565163 0.9510565163 

0.5 1.0000035426 1.0000000000 1.0000000000 

0.6 0.9510826571 0.9510565163 0.9510565163 

0.7 0.8091583161 0.8090169944 0.8090169944 

0.8 0.5883934857 0.5877852523 0.5877852523 

0.9 0.3112157684 0.3090169944 0.3090169944 

1.0 0.0069252707 0.0000000000 0.0000000000 
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