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Abstract 
A new more exact formula, than that recently published (Apeiron, Vol. 18, No 2 (2011)), for Sha-
dow-Gravity force, for any distances between fundamental sub-particles, including very short ones 
when gravitation becomes strong, is developed. It is found also that, in fundamental contrast to 
Darwin’s conclusion, the gravitation effect is performed at the expense of elastic collisions of fa-
tions with fundamental sub-particles, and thus the well known basic objection against the shadow- 
gravity (the thermal problem) becomes baseless. 
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1. Introduction 
The hypothesis of the shadow-gravity was originally proposed by Nicolas Fatio Duillier in 1690. Later (1748) 
Georges-Louis Le Sage somewhat developed this idea. Fatio reported on his idea to the Royal Society in Lon-
don, but did not publish it in his lifetime. Therefore this hypothesis is far-famed as Lesage’s theory [1] [2].  

Fatio have assumed that the Space is filled with microscopic unseen particles, moving in all directions with 
large velocities, and weakly absorbed by bodies. Lesage had named them as ultra-mundane corpuscles. These 
corpuscles have been called lesagons in the work [3], in which an attempt to develop Fatio-Lesage’s idea was 
also made, but I named them as fations in honor of Fatio who first proposed this idea. 

Fations, bombarding bodies from all sides, exert a pressure on bodies. As a consequence, both the density of 
the fations in areas between bodies and the pressure on bodies are reduced, resulting in attractive forces on the 
bodies. To be more exact, bodies are pushed towards each other. 

The idea of the shadow-gravity gives us the simple and visual mechanism of gravitation, but there are some 
difficulties. Most serious objections adduce Maxwell and Poincaré [4]. Originally Fatio came to conclusion that 
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gravitational effect can exist only if fations bombard bodies with non-elastic collisions. But in this case the body 
temperature, as a consequence of the energy absorption, must rapidly rise to a high level. In this paper I have 
found a radical solving this problem. A complete list of objections can be found, for example, in [5]. I have giv-
en answers on most of them in my previous papers [6] [7]. 

I was aware, for the first time the formula for the shadow gravity force was obtained by Darwin in 1905 [8]. 
He considers the conjectural case when the fations impact the bodies partially elastical with some coefficient k , 
which is 1 for a complete inelasticity, and 2 for perfect elasticity. Darwin did not consider fations are reflected 
between the particles of interacting bodies, whereas, as we will show in this paper, this feature plays the deci-
sive role in the shadow-gravity. The final formula obtained by him (in result of cumbersome derivations) is ap-
proximately valid only for 1k = , perfect smoothness and macroscopic distances between the interacting par-
ticles; it has the form 

2 2 2

2

1 π
4

v a b
R

ρ ,                                     (1) 

where (in original denotation) ρ  is a mass density of the fation gas, v  is the fation velocity, a  and b  are 
radii of spherical particles of interacting bodies, R  is the distance between them. 

In [6] I have found a more exact formula by a method, which differs from Darwin’s one. I had used the notion 
about a gravitational shadow area. The formula has the form 

4

1 2

π
4
c G

G
r

F
ε δ

=


,                                    (2) 

where cr  is the radius of the electron core1; δ  is the factor, which has the meaning of the probability of ab-
sorbing of fations by the core. The factor δ  is the ratio of the part of fations absorbed by the core to the all fa-
tions bombarding the core. For reasons, that we have considered in detail in [6] [7], δ  has named as the 
asymmetry factor. I introduced also notion of energy density εG of the fation gas instead of Darwin’s 2 2vρ , 
and considered impacts with perfect smoothness. 

In [7] I have introduced the notion about fundamental sub-particles (FSP) from which all substance consists. I 
suggest considering as fundamental such sub-particles, which are absolutely impermeable for fations. Evidently 
FSP, to a certain extent, can be associated with known sub-leptons: preons, which are hypothetical constituents 
of the electron and quarks. In [7] I have found the more exact (although not enough exact) formula as 

( )
( )

2 2

Gff 2

2 π

4
p p a G ar r

F k L
L

δ ε δ−
= .                              (3) 

where aδ  and pδ  are the asymmetry factors for active and passive FSPs, respectively, ar  and pr  are radii 
of respective FSPs, ( )k L  is the factor, which for macroscopic conditions, when L r , is equal to 1 and for 
short distances it becomes very large, and gravitation becomes strong. I have taken into account also fations that 
reflected between the interacting FSPs. 

Unlike Darwin, in this paper, I consider that each fation is either absorbed or reflected randomly with some 
probability δ ; therefore we can consider action of elastic and inelastic blows separately and then sum obtained 
results.  

2. The Updated Formula for the Shadow-Gravity Force  
2.1. The Component of the Force from the Action of Inelastic Collisions  
Let us consider (as I have done it in [7]) the gravitational interaction between two FSPs (Figure 1(a)) regardless 
of a possible electric forces acting between them. For convenience, the FSP which “creates a gravitational field” 
(creates the shadow from fations) will be here referred to as the active FSP (FSPa), and the FSP to which the 
gravitational force is attached (is shadowed from fations) will be referred to as the passive one (FSPp). 

In the same manner as in [7] we consider that the gravitational force is proportional to the total area of the 
shadow falling on the cross-section of the passive FSP from the active one. Let us name it as Gravitational  

 

 

1According to my hypothesis of the exploding electron [6] [7] the last has a very small core, which remains in the stable state by pressure of 
the fation gas, whereas the electron corona, periodically explodes and is renewed by absorbing fations. 
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(a)                                                        (b) 

Figure 1. (a) Scheme for the calculation of the shadow force of gravity acting on the FSP.The passive FSPp is shadowed, 
from the right side, by the active FSPa from the flows of fations 2 directed within the limits of the solid angle element dΩ  
of the solid angle Ω  (unidirectional flows having energy density Gε

∗ ). Only flows 3, reflected from FSPa, fall on the 
FSPp under a plane angle pΩ , from the right side. Analogous flows, 4, act on FSPp from the left side; (b) Cross-section 
along BCD (on (a)). The force element is proportional, in modulo, to the area of the shadow element, σ , that falls on the 
cross-section BC of the passive FSPp from the active FSPa (a). sC  is the shadow center; ar  and pr  are radii of active 
and passive FSPs. 
 
Cross-section (GCr-S). Gravitational effect is possible only if fations, at least partially, are absorbed by bodies 
(by FSPs in the final analysis). As Darwin noted [8], the attraction effect vanishes, when fations bombard bodies 
fully elastically, because fations that reflected between FSPa and FSPp, in the case of fully elastic collisions, 
exactly counterbalance the attraction. However, it is so only if all fations impact bodies elastically ( )0aδ = . 
We will show in this paper that the gravitational effect is performed only at the expense of elastic collisions of 
fations with FSP. 

As we noted above, we will consider that part of fations impacts, with some probability δ  in fully inelastic 
way and other part ( )1 δ−  impacts in fully elastic way. The effects of elastic and inelastic impacts will be con-
sidered separately and then summed. 

In the same manner as in [7] let us consider two FSPs: passive p  and active a  (Figure 1(a)). The passive 
FSPp is shadowed, from the right, by the active FSPa from the flows of fations 2 directed within the limits of the 
solid angle element dΩ  of the solid angle Ω  (unidirectional flows having energy density Gε

∗ ). Therefore 
only flows 3, reflected from FSPa, come to the FSPp under the plane angle pΩ  from the right side. These 
flows have energy density ( )1G aε δ∗ − , because FSPa absorbed a part of fations proportionally to the factor aδ , 
therefore these flows act on the FSPp, from the right side, with the force horizontal projection of which is pro-
portional to ( )1 cosG a p pε δ δ∗ − Ω . We introduced here different subscripts p  and a  at δ  in case where 
passive and active FSP have different value of asymmetry factors2. In the opposite direction (from the left side) 
flows 4 also act with the force proportional to cosG p pε δ∗ Ω . 

It may be noted that, for the inelastic collisions, a necessity to resolution of the momentum into radial and 
tangential components is fall away.  

In addition, we must take into account the fact that not all fations, which arrive from the left side, come to 
FSPa and then, being reflected from FSPa, come to FSPp from the right side, inasmuch as the FSPp screens  
some part of them, therefore it is necessary to introduce a coefficient ( )1 k R∗ −   for the fations that come to  

FSPp from the right side. We denote pR R r∗ = , where R  is the distance between FSPs, and pr  is the radius 
of FSPp. Thus, resultant element of the force, which acts on FSPp in direction to FSPa, is proportional to 
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2In principle, it is possible a case when 0pδ = . In this case gravitational force will act on the passive particle although the passive particle 
itself cannot “create gravitational field”. 

http://dx.doi.org/10.4236/oalib.1101076


N. V. Dibrov 
 

OALibJ | DOI:10.4236/oalib.1101076 4 December 2014 | Volume 1 | e1076 
 

( ) ( ){ } ( ) 11 1 cos d 1 1 cos dG p p a p G a p p
a

k R k Rε δ δ δ σ ε δ δ σ
δ

∗ ∗ ∗ ∗   − − − Ω Ω = + − Ω Ω       
,        (4) 

where coefficient ( )k R∗  has a sense of the probability of screening of the fation flow by FSPp. This geometric 
probability can be found as 

( ) s

f s

k R∗ Ω
=
Ω +Ω

,                                   (5) 

where fΩ  is the solid angle within limit of which fations freely come to FSPa and then, being reflected from 
FSPa, come to FSPp from the right side, and sΩ  is the solid angle screened by FSPp. The vertex of all these 
angles is in the center A of active FSPa (Figure 1(a)). Figuratively speaking, sΩ  is the solid angle under which 
FSPp is seen from the centre A. It is equal to [7] 

2

2
1

2π 1 1rp p
s

S r
Rρ

   Ω = = − −     

,                             (6) 

where rpS  is the area of the spherical surface having radius 1ρ . 
After substituting (6) in (5) we obtain 

( )
2

1 1 pr
k R

R
∗  
= − −  

 
.                                 (7) 

In doing so, we put 2πf sΩ +Ω ≈  regardless of the difference in radii of FSPs. Although the value (7) is 
approximate, but according to our calculations it is very slightly differs from the exact one, therefore we do not 
give exact calculations here because they, in addition, are extremely cumbersome. 

As was noted above, gravitational effect is proportional to the shadow, which comes to the passive FSPp from 
the active FSPa with taking into account above features connected with fations reflected from the FSPa. Actions 
of all other fations, that bombard the FSPp from right and left sides, counterbalance each other.  

Thus, the cross-section element σ  (in Figure 1(b) it is shaded), is shadowed from the fations directed with-
in the limits of the element dΩ  of the solid angle Ω . Total area of the shadow is equal to sum of the elements 
σ , when the center sC  of the shadow (Figure 1(a)) circumscribes the circle with radius cos pa Ω  and the 
plane angle pΩ  goes through the values from 0 (when 0a = ) to maxpΩ , when a pa r r= + . In doing so, the 
solid angle Ω  goes through the values from 0 to maxΩ . Thus, the force acting on the total shadow area in the 
direction to FSPa can be obtain, considering (4), as 

( ) max
Gff 0

, cos dG a p a pF k Rε δ δ δ σ
Ω∗ ∗= Ω Ω∫ ,                          (8) 

where we denoted 

( ) ( ) 1, 1 1a
a

k R k Rδ
δ

∗ ∗  
= + − 

 
,                              (9) 

where ( )k R∗  is given by (7). 

Next from Figure 1(b) we find 

( ) ( )sin 2 sin 2p p a aEF r rϕ ϕ= = .                            (10) 

The cross-section element of the shadow σ  can be found as the sum of areas of segments:  

( ) ( ) ( ) ( )2 21 2 sin   and  1 2 sina a a a p p p pr rσ ϕ ϕ σ ϕ ϕ= − = −                    (11) 

Whence, taking into account (10), we obtain [7] 

( ) ( )
2 2

2 2 2
1sin 2 arcsin sin sin 1 sin

2 2 2 2 2
p pa a a

a p a a a a a a a

r r
f

ϕ ϕ ϕ
σ σ σ γ ϕ ϕ γ γ γ ϕ

    = + = − + − − =   
     

,   (12) 
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where and further a a pr rγ = , pr  and ar  are radii of the FSPp and FSPa respectively, a pr r≤ . The expres-

sion in curly brackets is denoted by ( )1 af ϕ . It will be used further.  
The solid angle Ω  is equal to ratio of the spherical segment area, sS , to 2 2 2R aρ = − , where R  is the 

distance between FSPs. The segment area, sS , is equal to 

12πsS hρ= ,                                     (13) 

where h  is the height of the segment, which is equal to  

( ) ( )( )2
1 11 cos 1 1ph a Rρ ρ= − Ω = − − ,                         (14) 

where  
2

cos 1p
a
R

 Ω = −  
 

                                  (15) 

Then substituting (14) in (13) we obtain the expression for the solid angle as 
1 22

2
1

2π 1 1sS a
Rρ

    Ω = = − −   
     

.                            (16) 

Differentiating this relationship with respect to a , we obtain [7] 

2

2πd d
cos p

a a
R

Ω =
Ω

.                                  (17) 

From simple trigonometric relations (Figure 1(b)), taking into account also (10), we obtain [7] 

( ) ( ) ( ) ( ){ }1 22 2cos 2 cos 2 1 sin 2 cos 2p p a a a p a a a aa r r r r aϕ ϕ γ γ ϕ ϕ  ′= + = − + =  ,         (18) 

where 1p p a ar rγ γ= = , and the expression in curly brackets is denoted by a′ . 
By differentiating (18) with respect to aϕ , we obtain [7] 

( )
( ) ( )22 2

sin
d sin 2 d d

2 22 1 sin 2
a a a a

a a a a

a a

r r
a f

γ ϕ
ϕ ϕ ϕ ϕ

γ ϕ

 
 = − + = −
 − 

,               (19) 

where expression in curly brackets is denoted by ( )2 af ϕ . 
Now, substituting (12), (17) into (8), taking into account also (18), (19), we obtain the formula for the com-

ponent of the force from inelastic collisions as 

( )
2 2

inelast
Gff inelast2

π
,

4
p a G a p

a

r r
F k R I

R
ε δ δ

δ∗= ,                          (20) 

where 4πG Gε ε ∗=  is the volume energy density of omnidirectional flows of fations, and  

( ) ( )( )1 2
inelast 2

0

2d d
2π

p ar r
a a

a
p

a f f
I a a

r
ϕ ϕ

ϕ
−′ −

= + ∫ .                          (21) 

We have used expressions for two limits of integrating (21). First of them is equal to 2π , 0, for the variable 
aϕ  that corresponds to positions of the shadow in the limits: p a p ar r a r r− ≤ ≤ + . The second limits are 

0 p aa r r≤ ≤ − , for the variable a , and 2π arσ =  have used instead of (12). The first integral is for the situation 
when FSPp is partially shadowed (like the waning moon) as depicted in Figure 1(b), and second for cases when 
the shadow from FSPa is wholly situated within the cross-section of FSPp.  

New Formula (20) substantially differs from (3), but we must take into account also a contribution of the elas-
tic collisions. At first sight, it was necessary to expect, that elastic collisions gives the zero contribution. How-
ever this is the case only, if 0aδ = , i.e. if all fations bombard bodies elastically. 
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2.2. The Component of the Force from the Action of Elastic Collisions 
Flows of fations falling onto FSPp from the left side and taking part only in elastic collisions have energy den-
sity ( )1 p Gδ ε ∗− , and those coming from the right side after their reflecting from FSPa have energy density 

( )( ) ( )1 1 1p a Gk Rδ δ ε∗ ∗ − − −  , where ( )1 aδ−  is the factor considering the absorption of fations by FSPa, and 

( )k R∗  is the given by (7) factor considering the part of fations shadowed by FSPp. 

In this case we must resolve the momentum vector on radial and tangential components, but take into account 
only the radial component, because the tangential component is removed by the reflected fations (Figure 2(a)). 
We assume that the collisions are perfectly smooth. 

Thus, the horizontal projection of the force element leftdF  acting on the surface element of FSPp ds  from 
the left side is equal to 

( ) ( )2
leftd 2 1 cos cos d dG p pF sε δ α α∗= − Ω + Ω .                        (22) 

The analogous element acts from the right side  

( )( ) ( ) ( )2
rightd 2 1 1 1 cos cos d dG p a pF k R sε δ δ α α∗ ∗ = − − − Ω + Ω  ,               (23) 

where, in (22) and (23), we have taken into account only elastic collisions. 
The resultant force element is  

( ) ( ) ( )left right
1d d d 2 1 1 1 cos cos d dG p a p p
a

F F F k R xε δ δ ρϕ α α
δ

∗ ∗  
= − = − + − Ω + Ω  

   
,        (24) 

where we have taken into account that ( )d d cosp ps xρϕ α= Ω + , where dp xρϕ  is an arcwise shadow ele-

ment (Figure 2(b)) and ( )CF abs xρ = = , dΩ  is given by (16). 
Thus, the total formula for the gravitation force from elastic collisions will be found as 

max 1

1

elast
Gff 1 20

d dp a

a a

r a r

a r a r
F F F

Ω Ω +

Ω − −
= +∫ ∫ ∫ ∫ ,                           (25) 

where 1Ω  corresponds to the coordinate 1 p aa r r= − , and maxΩ  to the coordinate max a pa r r= +  (Figure 2(b)); 
the first double integral and the element of force 1dF  correspond to situation when FSPp is partially shadowed 
as depicted in Figure 2(b), and the second double integral and 2dF  are for cases when the shadow from FSPa 
is wholly situated within the cross-section of FSPp. 

Next, using relations (17) (24), and (25), let us take outside of integrals the constant parameters and go over to 

non-dimensional quantities, using relations: ( )sin p
p

x x
r

α ∗Ω + = = ; pa r a∗= ; prρ ρ∗= ;  

2cos sin cos 1p px xα ∗ ∗= Ω + Ω − , a a pr rγ = . In result we obtain the total formula for the elastic part of colli-
sions as 

( ) ( )
2 2

elast
Gff elast2

π 1
,

4
a p G p a

a

r r
F k R I

R

ε δ δ
δ∗

−
= ,                         (26) 

where 

2

1 2

1 1 11 2
elast 1 1 2 22 21 0

4 4
d d d d

π π
a a a

a a a

a

a a
a a

a aI a a
γ γ γ

γ γ γ
σ σ

γ γ

∗

∗ ∗

∗ ∗
+ − +∗ ∗ ∗ ∗

− − −
= +∫ ∫ ∫ ∫ ,                   (27) 

where 

( )2 2
1 1 1 1 1 1 1 1d 1 tg 1 dp px x x xσ ϕ ρ∗ ∗ ∗ ∗ ∗ ∗= − Ω + − ;                        (28) 

( )2 2
2 2 2 2 2 2 2 2d 1 tg 1 dp px x x xσ ϕ ρ∗ ∗ ∗ ∗ ∗ ∗= − Ω + − ,                        (29) 
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(a)                                                       (b) 

Figure 2. (a) Scheme for calculation of the shadow-gravity force acting on the FSPp from the action of elastic collision. The 
passive FSPp is shadowed, from the right side, by the active FSPa from the flows of fations 2 directed within the limits of 
the solid angle element dΩ  of the solid angle Ω  (unidirectional flows having energy density Gε

∗ ). Only the flows 3, re-
flected from FSPa, fall on the FSPp under a plane angle pΩ  from the right side. Analogous flows 4 act from the left side. 

The difference of the force elements leftdF  and rightdF  created by these flows pushes FSPp to FSPa. (b) Cross-section on 
BCD (a). The force element is proportional, in modulo, to the area of the shadow element, dl x , that falls on the cross-sec- 
tion BC of the passive FSPp from the active FSPa (a); sC  is the shadow center; ar  and pr  are radii of active and passive 
FSPs. 
 
where ( ), ak R δ∗  is given by (9). 

Proceeding from trivial relations 

( ) ( ) ( ) ( )sin 2 sin 2 ;     cos 2 cos 2p p a a a a pr r a rϕ ϕ ϕ ρ ϕ= = +                  (30) 

We obtain, for 0.5a a pr rγ = ≤ , 
2 2 2

1 arccos
2

a
p

a r
a
ρ

ϕ
ρ

+ −
=                                 (31) 

And, for 0.5a a pr rγ = > , 
2 2 2

2 arccos
2

a
p

r a
a

ρ
ϕ

ρ
− −

= .                               (32) 

In so doing if 1 0x∗ < , then 0pϕ = , in order to avoid of a double summation, and also if 1 1aρ γ∗ ∗< − , we put 
2πpϕ = , and arcs become rings.  

The total force equal to the sum of elastic (26) and inelastic (20) components as 

( )( )
2 2

total elast inelast
Gff Gff Gff elast elast inelast2

π
,

4
G a p a

a p p

r r
F F F k R I I I

R
ε δ

δ δ δ∗= + = − + ,             (33) 

where, since 41~ 10 1pδ
−
  [7], the expression in the brackets equals elastI , and therefore the total force is 

performed only at the expense of elastic collisions of fations with FSP in contrast of given above Darwin’s con-
clusion! 

In Table 1, it is seen that for macroscopic conditions, 100,000fR R r∗ = > , elast inelast 1I I= = , therefore ex-

pression in the brackets of (33) also equal to 1. Thus the final formula, for 100,000fR R r∗ = > , takes the form 

( )
2 2

total
Gff 2

π
,

4
G a p a
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R
ε δ

δ∗= .                              (34) 
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Table 1. Results of calculations by (21), (27) and (35) for 411.3 10a pδ δ −= = × . 

fR R r∗ =  ( ), ak R δ∗ , f. (35) elastI , f. (27) inelastI , f. (21) 

2 401.0 10×  1.46329 1.00000 

10 383.9 10×  1.07166 1.00000 

100 363.8 10×  1.00712 1.00000 

1000 343.8 10×  1.00071 1.00000 

10,000 323.9 10×  1.00007 1.00000 

100,000 303.9 10×  1.00001 1.00000 

1,000,000 283.9 10×  1.00000 1.00000 

… … … 1.00000 
171 10×  63.8 10×  1.00000 1.00000 
181 10×  43.8 10×  1.00000 1.00000 
191 10×  23.9 10×  1.00000 1.00000 
201 10×  4.8 1.00000 1.00000 
211 10×  1.0 1.00000 1.00000 

 
For distances 100,000fR R r∗ = >  it is necessary to add multiplier elastI  calculated by (27) taking into ac-

count (28…32). 
Since, accordance with [7] 411.3 10aδ

−= × and, 1 1aδ  , we may omit 1 in (9) and, taking into account also 
(7), finally to write 

( ) ( )2
, 1 1 1a f ak R r Rδ δ∗  = + − − 

 
.                          (35) 

In Table 1, it is given results of calculations of the integrals elastI , inelastI  and coefficient ( ), ak R δ∗ . The 
calculations were performed by the numerical method (by Simpson’s formula) with the relative precision  

( )( )ekast ekast ekast 1 0.00001i iiI I I−− < , where i  is number of the calculation cycle. 

Of course, results of the above numerical calculations are strongly depend from the numerical value of aδ , 
which evidently has a smaller value, because the value 411.3 10aδ

−= ×  had been found very approximately in [7]. 

3. Strong Gravitation 
As is seen from the table and Figure 3, when R∗ → ∞  coefficient ( ), 1ak R δ∗ → . Practically when 2110R∗ =  
we can consider this coefficient is equal to 1, but at short distances it has a very large value, and thus gravitation 
becomes strong. On the shortest distance 2R∗ =  it is comparable to electromagnetic and nuclear forces. Un-
fortunately, we do not have reliable data on the size of the fundamental sub-particle, fr  Evidently, it is less of 
Planck’s length, ~10−35 m. 

The claimed in literature notion about a strong gravitation “constant”, evidently, is not valid, inasmuch as actually 
the factor ( ), ak R δ∗  is function of distance R . The production of the maximal value of ( ) 40, ~ 10ak R δ∗  on 
Newton’s gravitation constant, G, i.e. ( ) 11 40 30, 6.67 10 10 ~ 10aGk R δ∗ −= × ×  m3∙kg−1∙c−2, is comparable to nu-
merical values of the “strong gravitational constants” given, for example, in [9] 3.9 × 1031 dyne∙c2∙g−2 - 1028 
m3∙kg−1∙c−2 and in [10] 1038 G - 1028 m3∙kg−1∙c−2 which had been found by another methods. 

Thus, Newton’s improved formula for the force of gravity can be represented as follows: 

( )21 2
2 1 1 1 f a

m m GF r R
R

δ  = + − −    
,                         (36) 

where fr  and aδ  are new constants, which must be found theoretically and experimentally. 
It should be pointed out also that neither Newton’s nor Einstein’s theories do not predict the strong gravitation 

at small distances. 
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Figure 3. Diagram of dependence of the factor ( ), ak R δ∗  from the ratio fR R r∗ =  

for 411.3 10aδ
−= × . 

4. Conclusions 
An improved self-consistent model of the shadow-gravity has been developed and the exact formula for the 
shadow gravity force, for any including short distances, was derived. The obtained new formula for shadow- 
gravity force can be important for the particle physics theory and for unification of the strong, electrical and 
gravitation forces. 

An important consequence of the derived exact formula here is the fact that the well known basic objection 
against the shadow-gravity (thermal problem) loses grounds. Poincaré have deduced, on Darwin’s conclusion, 
that temperature of the Earth must be increase at 1026 degrees per second in result of absorption of fations. 
However this is so if the gravitation force is created only by inelastic collisions fations with body matter, as until 
now it was thought on Darwin’s conclusion. Point is that Darwin does not take into account the flows of fations 
3 (Figure 1(a) and Figure 2(a)) which are reflected from the active FSP (FSPa) and then come to the passive 
FSP (FSPp) from the right side. Having in mind this fact, as well as having considered elastic and inelastic colli-
sions separately, I have shown that the gravitational force is created only at the expense of the action of elastic 
collisions, inasmuch as the inelastic part is counterbalanced by the negative term of the elastic one. Inelastic part 
of the force is considerably smaller than that of elastic. Indeed, from (20) and (33) it follows that the inelastic 
component makes up only inelast total 42

Gff Gff ~ 10pF F δ −=  part of the whole force and, therefore, bombarding the 
body fations. Thus, Poincaré’s estimation must be corrected as 26 42 1610 10 10− −× =  degrees per second. During 
the existence of the Earth (~1017 seconds), its temperature must be increased, in result of the fation absorption, 
regardless of other well known factors, only to 10 degrees, thereby the objection loses grounds. 

The new improved factor ( ), ak R δ∗  for the strong gravity force is derived. Gravity force becomes strong 

beginning from the relative distance 2010fR R r∗ = =  and reaches 40
Gff~ 10 F∞  at the distance 2fR R r∗ = =  

between FSPs, where GffF∞  is the gravitation force for macroscopic conditions: practically at 2010fR R r∗ = ≥ , 

when the factor ( ), ak R δ∗  becomes equal to 1.0. Thus, at the distance 2fR R r∗ = =  gravitation force be-

1040

1036

1032

1028

1024

1020

1016

1012

108

104

1

( ), ak R δ∗

R∗2      102          104 106         108         1010         1012       1014        1016         1018        1020      1022
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comes comparable to the electric and nuclear forces. 
In the paper, the new important notion about fundamental sub-particles (FSP), from which all substances 

consist, is used. I suggest considering such sub-particles as fundamental, which are absolutely impermeable for 
fations.  

Inasmuch as FSPs are in the sub-electron and sub-quark levels, their experimental detection presents a big 
problem. 

It is possible, that the idea of shadow-gravity is confirmed by Podkletnov’s experiments [11] subject to my 
interpretation of his results [12]. Unfortunately, it should be noted that no one can reproduce Podkletnov’s ex-
periment until now. 

Finally, I would like to notice that, although we have made some arbitrary assumptions throughout the paper, 
these assumptions are justified out by the self-consistent model of the shadow-gravity and by important corolla-
ries of the model. 
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