

Weak Insertion of a Continuous Function between Two Comparable α -Continuous (C-Continuous) Functions*

Majid Mirmiran

Department of Mathematics, University of Isfahan, Isfahan, Iran Email: mirmir@sci.ui.ac.ir

Received 18 February 2016; accepted 4 March 2016; published 9 March 2016

Copyright © 2016 by author and OALib.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

A sufficient condition in terms of lower cut sets is given for the insertion of a continuous function between two comparable real-valued functions.

Keywords

Weak Insertion, Strong Binary Relation, C-Open Set, Semi-Preopen Set, α -Open Set, Lower Cut Set

Subject Areas: Topology

1. Introduction

The concept of a C-open set in a topological space was introduced by E. Hatir, T. Noiri and S. Yksel in 1996 [1]. The authors define a set S to be a C-open set if $S = U \cap A$, where U is open and A is semi-preclosed. A set S is a C-closed set if its complement is C-open set or equivalently if $S = U \cup A$, where U is closed and A is semi-preopen. The authors show that a subset of a topological space is open if and only if it is an α -open set and a C-open set. This enable them to provide the following decomposition of continuity: a function is continuous if and only if it is α -continuous and C-continuous.

Recall that a subset A of a topological space (X,τ) is called α -open if A is the difference of an open and a nowhere dense subset of X. A set A is called α -closed if its complement is α -open or equivalently if A is union of a closed and a nowhere dense set. Sets which are dense in some regular closed subspace are called semi-preopen or β -open. A set is semi-preclosed or β -closed if its complement is semi-preopen or β -open.

The concept of a set A was β -open if and only if $A \subseteq Cl(Int(Cl(A)))$ was introduced by J. Dontchev in 1998 [2].

^{*}This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).

Recall that a real-valued function f defined on a topological space X was called A-continuous if the preimage of every open subset of \mathbb{R} belongs to A, where A was a collection of subset of X and this the concept was introduced by M. Przemski in 1993 [3]. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts, the reader might refer to papers introduced by J. Dontchev in 1995 [4], M. Ganster and J. Reilly in 1990 [5].

Hence, a real-valued function f defined on a topological space X is called C-continuous (resp. α -continuous) if the preimage of every open subset of \mathbb{R} is C-open (resp. α -open) subset of X.

Results of Katětov in 1951 [6] and in 1953 [7] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which was due to Brooks in 1971 [8], were used in order to give necessary and sufficient conditions for the strong insertion of a continuous function between two comparable real-valued functions.

If g and f are real-valued functions defined on a space X, we write $g \le f$ in case $g(x) \le f(x)$ for all x in X.

The following definitions were modifications of conditions considered in paper introduced by E. Lane in 1976 [9].

A property P defined relative to a real-valued function on a topological space is a c-property provided that any constant function has property P and provided that the sum of a function with property P and any continuous function also has property P. If P_1 and P_2 are c-property, the following terminology is used: A space X has the weak c-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \le f, g$ has property P_1 and f has property P_2 , then there exists a continuous function f such that f is a continuous function f is a continuous fun

In this paper, it is given a sufficient condition for the weak c-insertion property. Also several insertion theorems are obtained as corollaries of this result.

2. The Main Result

Before giving a sufficient condition for insertability of a continuous function, the necessary definitions and terminology are stated.

Let (X,τ) be a topological space, the family of all α -open, α -closed, C-open and C-closed will be denoted by $\alpha O(X,\tau)$, $\alpha C(X,\tau)$, $CO(X,\tau)$ and $CC(X,\tau)$, respectively.

Definition 2.1. Let A be a subset of a topological space (X,τ) . Respectively, we define the α -closure, α -interior, C-closure and C-interior of a set A, denoted by $\alpha Cl(A), \alpha Int(A), CCl(A)$ and CInt(A) as follows:

$$\alpha Cl(A) = \bigcap \{F : F \supseteq A, F \in \alpha C(X, \tau)\}$$

$$\alpha Int(A) = \bigcup \{O : O \subseteq A, O \in \alpha O(X, \tau)\}$$

$$CCl(A) = \bigcap \{F : F \supseteq A, F \in CC(X, \tau)\}$$
and
$$CInt(A) = \bigcup \{O : O \subseteq A, O \in CO(X, \tau)\}.$$

Respectively, we have $\alpha Cl(A)$, CCl(A) are α -closed, semi-preclosed and $\alpha Int(A)$, CInt(A) are α -open, semi-preopen.

The following first two definitions are modifications of conditions considered in [6] [7].

Definition 2.2. If ρ is a binary relation in a set S then $\overline{\rho}$ is defined as follows: $x \overline{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) in case ρ satisfies each of the following conditions:

- 1) If $A_i \rho B_j$ for any $i \in \{1, \dots, m\}$ and for any $j \in \{1, \dots, n\}$, then there exists a set C in P(X) such that $A_i \rho C$ and $C \rho B_j$ for any $i \in \{1, \dots, m\}$ and any $j \in \{1, \dots, n\}$.
 - 2) If $A \subseteq B$, then $A \overline{\rho} B$.
 - 3) If $A \cap B$, then $Cl(A) \subset B$ and $A \subset Int(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined [8] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if

 $\{x \in X : f(x) < \ell\} \subseteq A(f,\ell) \subseteq \{x \in X : f(x) \le \ell\}$ for a real number ℓ , then $A(f,\ell)$ is called a *lower indefinite cut set* in the domain of f at the level ℓ .

We now give the following main result:

Theorem 2.1. Let g and f be real-valued functions on a topological space X with $g \le f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$, then there exists a continuous function h defined on X such that $g \le h \le f$.

Proof. Let g and f be real-valued functions defined on X such that $g \le f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$.

Define functions F and G mapping the rational numbers $\mathbb Q$ into the power set of X by F(t) = A(f,t) and G(t) = A(g,t). If t_1 and t_2 are any elements of $\mathbb Q$ with $t_1 < t_2$, then $F(t_1) \overline{\rho} F(t_2)$, $G(t_1) \overline{\rho} G(t_2)$, and $F(t_1) \rho G(t_2)$. By Lemmas 1 and 2 of [7] it follows that there exists a function H mapping $\mathbb Q$ into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \rho H(t_2)$, $H(t_1) \rho H(t_2)$ and $H(t_1) \rho G(t_2)$.

For any x in X, let $h(x) = \inf \{ t \in \mathbb{Q} : x \in H(t) \}$.

We first verify that $g \le h \le f$: If x is in H(t) then x is in G(t') for any t' > t; since x is in G(t') = A(g,t') implies that $g(x) \le t'$, it follows that $g(x) \le t$. Hence $g \le h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f,t') implies that f(x) > t', it follows that $f(x) \ge t$. Hence $h \le f$.

Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = Int(H(t_2)) \setminus Cl(H(t_1))$. Hence $h^{-1}(t_1, t_2)$ is an open subset of X, *i.e.*, h is a continuous function on X.

The above proof used the technique of proof of Theorem 1 of [6].

3. Applications

The abbreviations αc and Cc are used for α -continuous and C-continuous, respectively.

Corollary 3.1. If for each pair of disjoint α -closed (resp. C-closed) sets F_1, F_2 of X, there exist open sets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X has the weak c-insertion property for $(\alpha c, \alpha c)$ (resp. (Cc, Cc)).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are αc (resp. Cc), and $g \le f$. If a binary relation ρ is defined by $A \rho B$ in case $\alpha Cl(A) \subseteq \alpha Int(B)$ (resp. $CCl(A) \subseteq CInt(B)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of $\mathbb Q$ with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2);$$

since $\{x \in X : f(x) \le t_1\}$ is an α -closed (resp. C-closed) set and since $\{x \in X : g(x) < t_2\}$ is an α -open (resp. C-open) set, it follows that $\alpha Cl(A(f,t_1)) \subseteq \alpha Int(A(g,t_2))$ (resp. $CCl(A(f,t_1)) \subseteq CInt(A(g,t_2))$). Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint α -closed (resp. C-closed) sets F_1, F_2 , there exist open sets G_1 and G_2 such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then every α -continuous (resp. C-continuous) function is continuous.

Proof. Let f be a real-valued α -continuous (resp. C-continuous) function defined on the X. Set g = f, then by Corollary 3.1, there exists a continuous function h such that g = h = f.

Corollary 3.3. If for each pair of disjoint subsets F_1, F_2 of X, such that F_1 is α -closed and F_2 is C-closed, there exist open subsets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X have the weak c-insertion property for $(\alpha c, Cc)$ and $(Cc, \alpha c)$.

Proof. Let g and f be real-valued functions defined on the X, such that g is ac (resp. Cc) and f is Cc (resp. ac), with $g \le f$. If a binary relation ρ is defined by $A \rho B$ in case $CCl(A) \subseteq \alpha Int(B)$ (resp. $\alpha Cl(A) \subseteq CInt(B)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of $\mathbb Q$ with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \left\{x \in X : f(x) \le t_1\right\} \subseteq \left\{x \in X : g(x) < t_2\right\} \subseteq A(g,t_2);$$

since $\{x \in X : f(x) \le t_1\}$ is a C-closed (resp. α -closed) set and since $\{x \in X : g(x) < t_2\}$ is an α -open (resp.

C-open) set, it follows that $CCl(A(f,t_1)) \subseteq \alpha Int(A(g,t_2))$ (resp. $\alpha Cl(A(f,t_1)) \subseteq CInt(A(g,t_2))$). Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

Acknowledgements

This research was partially supported by Centre of Excellence for Mathematics(University of Isfahan).

References

- [1] Hatir, E., Noiri, T. and Yksel, S. (1996) A Decomposition of Continuity. *Acta Mathematica Hungarica*, **70**, 145-150. http://dx.doi.org/10.1007/BF00113919
- [2] Dontchev, J. (1998) Between α and β -Sets. Mathematica Balkanica, 12, 295-302.
- [3] Przemski, M. (1993) A Decomposition of Continuity and α-Continuity. Acta Mathematica Hungarica, 61, 93-98. http://dx.doi.org/10.1007/BF01872101
- [4] Dontchev, J. (1995) The Characterization of Some Peculiar Topological Space via α- and β-Sets. *Acta Mathematica Hungarica*, **69**, 67-71. http://dx.doi.org/10.1007/BF01874608
- [5] Ganster, M. and Reilly, I. (1990) A Decomposition of Continuity. Acta Mathematica Hungarica, 56, 299-301. http://dx.doi.org/10.1007/BF01903846
- [6] Katětov, M. (1951) On Real-Valued Functions in Topological Spaces. Fundamenta Mathematicae, 38, 85-91.
- [7] Katětov, M. (1953) Correction to, "On Real-Valued Functions in Topological Spaces". Fundamenta Mathematicae, 40, 203-205.
- [8] Brooks, F. (1971) Indefinite Cut Sets for Real Functions. The American Mathematical Monthly, 78, 1007-1010. http://dx.doi.org/10.2307/2317815
- [9] Lane, E. (1976) Insertion of a Continuous Function. Pacific Journal of Mathematics, 66, 181-190. http://dx.doi.org/10.2140/pjm.1976.66.181