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Abstract 
In order to gain further insights into the structural requirements for anti-tuberculosis activity by 
chalcone derivatives of 1,3-diphenylprop-2-ene-1-one, quantitative structure activity relationship 
(QSAR) was performed using genetic function approximation (GFA). Geometry optimization was 
achieved at the density functional theory (DFT) level using Becke’s three-parameter Lee-Yang- 
Parr hybrid functional (B3LYP) in combination with the 6-31G* basis set. Subsequently, quantum 
chemical and molecular descriptors were generated and divided into training and test sets by 
Kennard Stone algorithm. Internal and external validations as well as Y-randomization tests were 
employed in model validation. Five predictive models were generated by GFA. The generated models 
showed that constitutional indices, 2D autocorrelations and radial distribution function (RDF) de-
scriptors were important contributors to anti-tuberculosis activity of 1,3-diphenylprop-2-ene-1-one 
derivatives. Based on validation results, model 4 was chosen as the best of the five models. 
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1. Introduction 
In recent time, there is an increasing concern over the re-emergence of tuberculosis (TB) which is an infectious 
diseases caused by the tubercle bacillus, Mycobacterium tuberculosis (M. tuberculosis). This re-emergence is at-
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tributed to the fact that TB is co-infected with the human immunodeficiency virus (HIV). Tuberculosis (TB) was 
the most common mycobacterial chronic communicable disease and in 2013, an estimated 9.0 million people 
developed TB and 1.5 million died from the disease, 360,000 of whom were HIV-positive [1]. 

When a person is infected with Mycobacterium tuberculosis, the bacilli are thought to persist in a subclinical 
status with minimal replication, a status in which the bacteria are unable to cause or manifest clinical disease. 
Upon a shift in an individual’s immunologic status, M. tuberculosis is able to begin replicating and multiplying 
to a number that causes disease, manifesting as active TB [2]. 

Active TB is diagnosed by evaluating an individual’s medical history, clinical symptoms, (chest) radiography, 
as well as the microbiologic and molecular identification of M. tuberculosis (through the detection of acid-fast 
bacilli insputum, M. tuberculosis culture, and nucleic acid amplification) [3]. 

At present, compounds currently use for the treatment of tuberculosis due to their potent anti-tuberculosis ac-
tivities include: para-amino salicylic acid (PAS), isoniazide (INH), rifampicin (RMP), pyrazinamide (PZA) and 
cycloserine [4]. 

The emergence of multidrug resistant strains of Mycobacterium tuberculosis to clinically available drugs ne-
cessitates the need for the development of new compounds with potent anti-tuberculosis activities. 

Computational procedures which employ cost effective evaluation of large virtual databases of chemical 
compounds are currently employed in the design of new drugs. Such procedures include Quantitative Struc-
ture-Activity Relationships (QSAR) models, Complex Networks theory, Artificial Neural Networks (ANN) 
analysis, Artificial Intelligence (AI) and Machine Learning (ML) [5]. 

The QSAR paradigm is based on the assumption that there is an underlying relationship between the molecu-
lar structure and biological activity. On this assumption, QSAR attempts to establish a correlation between var-
ious molecular properties of a set of molecules with their experimentally known biological activity. The success 
of any QSAR model depends on accuracy of the input data, selection of appropriate descriptors and statistical 
tools and most importantly, validation of the developed model [6]. 

In recent time, QSAR studies have been employed in order to explore the substitution requirements of synthe-
sized compounds derivatives for their Mycobacterium tuberculosis inhibition activities. Such compounds in-
clude: 8-methylquinolones [7]; 7-chloroquinoline derivatives [8]; 3-heteroaryl-thioquinoline derivatives [9]; 
β-thia adduct of chalconeanddiazachalcone derivatives [10]; 5-nitrofuran-2-yl/4-nitrophenyl methylene substi-
tuted hydrazides [11]; substituted benzothiazole/benzimidazole analogues [12] and biaryl analogues of PA-824 
[13]. 

Attention is currently drawn to the use of chalcone derivatives as anti-tuberculosis inhibitors. Umaa et al., in 
2013 carried out QSAR studies on the anti-tuberculosis activity of chalcone derivatives by semi empirical AMI 
method. Model development is by multiple linear regression approach where log p and electronic energy are 
found to correlate with anti-mycobacterial activity of 1,3-diphenylprop-2-en-1-ones. Also [14], in 2011 em-
ployed QSAR studies on a seriesof novel quinazolinone derivatives as anti-tubercular agents by semi empirical 
AMI Hamiltonian method using multiple linear regression analysis for model development. They observed that 
diameter, ovality, partition coefficient and radius are extremely significant for the design of new pharma-co- 
phores containing quinazolinone moiety for anti-tubercular activity. 

In this study, a data set of twenty four chalcone derivatives of substituted 1,3-diphenylprop-2-en-1-ones were 
optimized at the density functional theory (DFT) level using Becke’s three-parameter Lee-Yang-Parr hybrid 
functional (B3LYP) in combination with the 6-31G* basis set. The optimized structures were employed in the 
generation of quantum chemical and molecular descriptors. These were then divided into training and test sets 
by Kennard Stone algorithm. The QSAR models were generated using the Genetic Function Approximation 
(GFA). The GFA technique is a conglomeration of Genetic Algorithm, Friedman’s multivariate adaptive regres-
sion splines (MARS) algorithm and Holland’s genetic algorithm to evolve population of equations that best fit 
the training set data [15]. A distinctive feature of GFA is that it produces a population of models, instead of ge-
nerating a single model, as do most other statistical methods. The developed models were then subjected to in-
ternal and external validation and Y-randomization tests in order to establish their predictability and reliability.  

This research on the anti-tuberculosis inhibition potentials of substituted 1,3-diphenylprop-2-en-1-ones gener-
ated results with higher levels of accuracy by employing higher levels of molecular optimization (DFT) and 
QSAR model development (GFA) methods in comparison to semi empirical and multiple linear regression me-
thods used by [16]. 
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2. Materials and Methods 
2.1. Data Set 
A data set of twenty four substituted 1, 3-diphenyl prop-2-en-1-ones (Chalcone Derivatives) and their anti-my- 
cobacterium activities were obtained from the work of [17]. The anti-mycobacterium activities are represented 
by the IC50 value. The IC50 values were subjected to data transformation by taking the negative logarithm to the 
base of 10 according to the formula: 

( )6
50 50log 10pIC IC −= − ×  

This is to ensure that a more uniformly distributed data is obtained. 
The chemical structure of the compounds together with their experimental and predicted activities is shown in 

Table 1.  
The basic structure of 1,3-diphenylprop-2-ene-1-one is given by: 

 

O  
 
Table 1. Molecular structure with observed and predicted activity of chalcone derivatives used in training and test set. 

Comp No Compounds IC50 pIC50 

   Observed Predicted Residual 

Mol 01* 
O

OHCl

 

36.97 4.432150549 5.290000 −0.857849 

Mol 02 
O

OH

Cl
 

5.07 5.294992041 5.289077 0.00591500 

Mol 03 

O

OHCl O CH3

 

62.03 4.207398219 4.304397 −0.0969990 

Mol 04 

O

OH O CH3

Cl

 

0.125 6.903089987 6.812006 0.09108400 

Mol 05 
O

OH Br

 

0.175 6.756961951 6.763335 −0.0063730 

Mol 06 

O

OH
Br

 

0.175 6.756961951 6.763335 −0.0063730 

Mol 07 

O

OH Br

 

0.25 6.602059991 6.763335 −0.1612750 

Mol 08 
O

OH

Br

 

0.25 6.602059991 6.763335 −0.1612750 

Mol 09 
O

OHBr

 

0.125 6.903089987 6.763335 0.13975500 

Mol 10 

O

OHBr O CH3

 

0.175 6.756961951 6.41975100 0.33721100 
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Continued 

Mol 11 

O

OH O CH3

Br

 

0.175 6.756961951 7.101508 −0.3445460 

Mol 12* 

O

OHBr H2N

 

0.175 6.756961951 6.540000 0.2169620 

Mol 13* 

O

OHH2N

Br

 

0.25 6.602059991 6.540000 0.0620600 

Mol 14* 

O

OH
I

 

0.25 6.602059991 6.740000 −0.137940 

Mol 15 

O

NH2
I

 

0.25 6.602059991 6.642225 −0.0401650 

Mol 16* 

O

OH

I

 

0.25 6.602059991 6.740000 −0.137940 

Mol 17* 

O

OHOH3C
I

 

0.25 6.602059991 7.030000 −0.427940 

Mol 18* 

O

OH I

 

0.25 6.602059991 6.740000 −0.137940 

Mol 19* 

O

OHI

 

0.175 6.756961951 6.740000 0.0169620 

Mol 20 

O

OH I

 

0.125 6.903089987 6.739626 0.16346400 

Mol 21 

O

OH
I

 

0.125 6.903089987 6.739626 0.16346400 

Mol 22 

O

OH

I

O CH3

 

0.175 6.756961951 6.672987 0.08397500 

Mol 23 

O

OH O CH3

I

 

0.25 6.602059991 6.639301 −0.0372410 

Mol 24 

O

OH
I

C
O

HO

 

0.25 6.602059991 6.732683 -0.1306230 
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2.2. Geometry Optimization  
Chemical structures of the compounds were drawn using the ChemDraw software [18], while the molecular 
geometries were optimized using Spartan 14 software [19], at the density functional theory (DFT) level using 
Becke’s three-parameter Lee-Yang-Parr hybrid functional (B3LYP) in combination with the 6-31G* basis set. 
The Spartan 14 software also resulted in the generation of a set of quantum chemical descriptors. 

2.3. Descriptors Calculation 
The low energy conformers were then submitted for further generation of an additional set of molecular de-
scriptors using the software “PaDel-Descriptor version 2.20”. Different physicochemical descriptors were cal-
culated for each molecule in the study table. These descriptors included electronic, spatial, structural, thermo-
dynamic and topological. This was combined to the set of quantum chemical descriptors obtained from the low 
energy conformer of the structures as generated by Spartan 14 software. 

2.4. Data Pre-Treatment/Feature Selection 
It is observed that constant value and highly correlated descriptors may cause difficulties in forming QSAR 
models, hence the predictivity and generalization of the model fails under these conditions. 

In order to overcome this problem, the pre-processing for the generated molecular descriptors was done by 
removing descriptors having constant value and pairs of variables with correlation coefficient greater than 0.9 
using “Data Pre-Treatment GUI 1.2” tool that uses V-WSP algorithm [20] [21]. 

2.5. Creation of Training and Test Set 
The dataset of twenty four molecular structures was split into training and test set by Kennard Stone algorithm 
technique using the software “Dataset Division GUI 1.2” [22]. This is an application tool used to perform ra-
tional selection of training and test set from the data set. 

2.6. QSAR Model Development and Validation 
2.6.1. Model Development 
The QSAR model were developed from the training set compounds where the independent variables (quantum 
chemical and molecular descriptors) and the dependent (response) variable (pIC50) were subjected to multiva-
riate analysis by Genetic Function Approximation (GFA) technique using the material studio software. GFA was 
performed by using 50,000 crossovers, a smoothness value of 1.00 and other default settings for each combina-
tion. An initial of three and a maximum of five terms per equation were considered for model development.GFA 
measures the fitness of a model during the evolution process by calculating the Friedman lack-of-fit (LOF). In 
Materials Studio, LOF is calculated using the expression: 

2

1

SSELOF
c dp

M

=
+ − 

 

 

where SSE is the sum of squares of errors, c is the number of terms in the model, other than the constant term, d 
is a user-defined smoothing parameter, p is the total number of descriptors contained in all model terms (again 
ignoring the constant term) and M is the number of samples in the training set [23]. 

2.6.2. Model Validation 
The developed QSAR models were validated in order to test the internal stability and predictive ability of the 
models. The procedure employed in model validation is: 

1) Internal Model Validation 
The developed models were validated internally by leave-one-out (LOO) cross-validation technique. In this 

technique, one compound is eliminated from the data set at random in each cycle and the model is built using the 
rest of the compounds. The model thus formed is used for predicting the activity of the eliminated compound. 
The process is repeated until all the compounds are eliminated once.  
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The cross-validated squared correlation coefficient, ( )2 2
cvR Q  was calculated using the expression: 

( )
( )

2

2
21 obs pred

obs

Y Y
Q

Y Y

−
= −

−

∑
∑

 

where obsY  represents the observed activity of the training set compounds, predY  is the predicted activity of 
the training set compounds and Y  corresponds to the mean observed activity of the training set compounds. 

Also calculated was the adjusted R2 ( 2
aR ) which is a modification of R2 that adjusts for the number of expla-

natory terms in a model. Unlike R2 in which addition of descriptors to the developed QSAR model increases its 
value, the value of 2

aR  increases only if the new term improves the model more than what would be expected 
by chance [24]. 

Hence 2
aR  overcomes the draw backs associated with the value of R2 and was calculated using the expres-

sion: 

( ) 2
2 1

1a

n R p
R

n p
− −

=
− −

 

where p is the number of predictor variables used in the model development. 
In other to judge the overall significance of the regression coefficients, the variance ratio, F value (the ratio of 

regression mean square to deviations mean square), was also calculated using the relation: 

( )

( )

2

2

1

cal

obs cal

Y Y
pF

Y Y
N P

−

=
−

− −

∑

∑
 

2) External Model Validation 
External validation was employed in order to determine the predictive capacity of the developed model as 

judged by its application for the prediction of test set activity values and calculation of predictive R2 (R2 pred) 
value as given by the expression: 

( ) ( )( )
( ) ( )( )

2

Test Test2
2

Test Training

1
pred

pred

Y Y
R

Y Y

−
= −

−

∑

∑
 

where ( )TestpredY  and ( )TestY  indicate predicted and observed activity values, respectively, of the test set com-
pounds. ( )TrainingY  indicate mean activity value of the training set. 2

predR  is the predicted correlation coefficient 
calculated from the predicted activity ofall the test set compounds. 

It has been observed that 2
predR  may not be sufficient to indicate the external predictivity of a model since its  

value is controlled by ( ) ( )( )2

Test TrainingY Y−∑ . Thus 2
predR  depends on the training set mean and may not truly  

reflect the predictive capability of the developed model with regard to a new data set [25]. This may result in 
considerable numerical difference between the observed and predicted values in spite of maintaining a good 
overall intercorrelation.  

A modified R2 called 2
mr  is thus introduced for a better measure of external predictive potential of the model 

[26] as defined by the expression: 

( )2 2 2 2
01mr r r r= − −  

where 2
0r  and 2r  represent squared correlation coefficients of linear relations between the observed and pre-

dicted values of the compounds with intercept set to zero and intercept not set to zero respectively. It is worthy 
to note that 2

mr  can be applied for test set ( )( )2
testmr , training set ( )( )2

m LOOr  and the overall set ( )( )2
overallmr . 2

mr  
determine how closely the predicted activity data fits the corresponding observed activity range [27]. 

When the axes are interchanged, i.e. predicted values are considered in y-axis and observed values are consi-
dered in the x-axis, we obtain the parameter 2

mr′  which is defined by the relation: 
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( )2 2 2 2
01mr r r r′ ′= × − −  

2
0r′  bears the same meaning as 2

0r  but in the reversed axes. A plot of observed values of test set compounds 
against the predicted values with intercept set to zero has slope equal to k. Interchange of the axes gives slope 
equal to k ′  [23]. Other external validation parameters calculated include: 2 2 2 2 2 2

0 0, ,r r r r r r k and k′ ′− − . 
All the external validation parameters were generated using the program: External Validation Metric Calcu-

lator “DTC-MLR Plus Validation GUI 1.2” [28]-[31]. 
3) Randomization Test 
The robustness of the developed QSAR model was checked using the Y-randomization technique in which 

model randomization was employed. In Y-randomization, validation was performed by permuting the response 
values, Activity (Y) with respect to the descriptor (X) matrix which was unaltered [32].  

The deviation in the values of the squared mean correlation coefficient ofthe randomized model ( 2
rR ) from 

the squared correlation coefficient of the non-randommodel (R2) is reflected in the value of 𝑅𝑅𝑝𝑝2 parameter 
computed from the expression [33]: 

( )2 2 2 2
p rR R R R= × −  

In an ideal case, it is observed that the average value of ( )2 2
rR R  for the randomized models should be 

should be zero. This implies that the value of value of 2
pR  should be equal to the value of 𝑅𝑅2 for the devel-

oped QSAR model. This led [34], to suggest a correction for 2
pR  which is defined as: 

2 2 2c
p rR R R R×= −  

In other to penalize the developed models for the difference between the squared correlation coefficients of 
the randomized and the non-randomized models, the value 2c

vR  was calculated for each model. This procedure 
ensures that the model is not due to a chance. 

The Y-randomization results were generated using the program “MLR Y-Randomization Test 1.2” [35]. 

3. Results and Discussion 
3.1. Geometry Optimization and Descriptors Calculation 
The observed activities for the various data sets were transformed to obtain a more uniformly distributed data as 
shown in Table 1. After minimization of the various compounds in the data set 32 descriptors were generated 
using the Spatans 14 software. These were combined to the 1875 descriptors generated using the PaDEL soft-
ware to give a total of 1907 descriptors.  

3.2. Feature Selection and Data Division 
The generated descriptor results were subjected to data pre-treatment where descriptors having constant value 
and pairs of variables with correlation coefficient greater than 0.9 were removed using the software: “Data 
Pre-Treatment GUI 1.2”. Data pre-treatment resulted in 973 descriptors from 1907descriptors, thus removing 
934 invariable and highly correlated descriptors. 

Data division using Dataset Division GUI 1.2” tool resulted in 16 molecular compounds (comprising ap-
proximately 67% of total compounds) in the training set and 8 compounds (comprising approximately 33.3% of 
total compounds) in the test set.  

3.3. Model Development and Validation 
A total of five models were developed from the training set by Genetic Function Approximation using the Ma-
terial Studio Software. The developed models and the description of the molecular descriptors which appeared 
in the developed models are given in Table 2 and Table 3 respectively.  

The predicted activities of the training set compounds by the developed models were also generated by the 
Material Studio Software as shown in Table 4 and Table 5. 

The results of the internal validation for the developed models are given in Table 6. 
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Table 2. Developed models using genetic function approximation. 

S/No Equation 

1 pIC50 = −17.955124724 * GATS1m + 1.612871207 * RDF140s + 15.262234571 

2 pIC50 = −18.666799812 * GATS1m − 0.116271713 * RDF115e + 1.777410276 * RDF140s + 15.846353927 

3 pIC50 = −17.470376965 * GATS1m + 0.545677554 * RDF130m + 14.943059631 

4 pIC50 = −2.040810634 * nCl − 19.024890361 * MATS2m + 1.855704759 * RDF140s + 6.739013671 

5 pIC50 = −18.839819454 * GATS1m − 0.134652475 * RDF115u + 1.756905779 * RDF140s + 15.950721272 

 
Table 3. Description of the molecular descriptors which appeared in the developed models. 

S/No Symbol Description Symbol 

1 nCL number of Chlorine atoms Constitutional indices 

2 MATS2m Moran autocorrelation of lag 2 weighted by mass 2D autocorrelations 

3 GATS1m Geary autocorrelation of lag 1 weighted by mass 2D autocorrelations 

4 RDF115e Radial Distribution Function-115/weighted by Sanderson electronegativity RDF descriptors 

5 RDF115u Radial Distribution Function-115/unweighted RDF descriptors 

6 RDF130m Radial Distribution Function-130/weighted by mass RDF descriptors 

7 RDF140s Radial Distribution Function-140/weighted by I-state RDF descriptors 

 
Table 4. Predicted activities of the training set by the developed model. 

Comp 
No 

Actual  
values for: 

pIC50 

Equation 1: 
predicted 

values 

Equation 1: 
residual 
values 

Equation 2: 
predicted 

values 

Equation 2: 
residual 
values 

Equation 3: 
predicted 

values 

Equation 3: 
residual 
values 

Equation 4: 
predicted 

values 

Equation 4: 
residual 
values 

Equation 5: 
predicted 

values 

Equation 5: 
residual 
values 

2 5.29499200 4.93379700 0.36119500 5.04382200 0.25117000 4.89427000 0.40072200 5.28907700 0.00591500 5.04016800 0.2548240 

3 4.20739800 4.62762500 −0.4202270 4.47973500 −0.2723370 4.70388200 −0.4964830 4.30439700 −0.0969990 4.48289300 −0.2754950 

4 6.90309000 6.80709400 0.09599600 6.88012800 0.02296200 6.72088800 0.18220200 6.81200600 0.09108400 6.87023100 0.03285900 

5 6.75696200 6.63617400 0.12078800 6.66069400 0.09626800 6.54988300 0.20707900 6.76333500 −0.0063730 6.62937700 0.12758500 

6 6.75696200 6.63617400 0.12078800 6.81021900 −0.0532570 6.54988300 0.20707900 6.76333500 −0.0063730 6.81379300 −0.0568310 

7 6.60206000 6.63617400 −0.0341140 6.84684700 −0.2447870 6.99358400 −0.3915240 6.76333500 −0.1612750 6.85921000 −0.2571500 

8 6.60206000 6.63617400 −0.0341140 6.64103900 −0.0389790 6.65374500 −0.0516850 6.76333500 −0.1612750 6.65442500 −0.0523650 

9 6.90309000 6.63617400 0.26691600 6.83614600 0.06694400 6.85408400 0.04900600 6.76333500 0.13975500 6.84600900 0.05708100 

10 6.75696200 6.48013100 0.27683100 6.38206900 0.37489300 6.64124200 0.11572000 6.41975100 0.33721100 6.40643800 0.35052400 

11 6.75696200 7.07267500 −0.3157130 6.83212500 −0.0751630 7.02946800 −0.2725060 7.10150800 −0.3445460 6.85955900 −0.1025970 

15 6.60206000 6.80663700 −0.2045770 6.73553900 −0.1334790 6.71574400 −0.1136840 6.64222500 −0.0401650 6.67110600 −0.0690460 

20 6.90309000 6.82346800 0.07962200 6.95491400 −0.0518240 6.75554100 0.14754900 6.73962600 0.16346400 6.95022800 −0.0471380 

21 6.90309000 6.82346800 0.07962200 6.86492500 0.03816500 6.73212100 0.17096900 6.73962600 0.16346400 6.83707700 0.06601300 

22 6.75696200 6.83798900 −0.0810270 6.76038000 −0.0034180 6.65555200 0.10141000 6.67298700 0.08397500 6.79809800 −0.0411360 

23 6.60206000 6.80871100 −0.2066510 6.67764800 −0.0755880 6.79002900 −0.1879690 6.63930100 −0.0372410 6.70129300 −0.0992330 

24 6.60206000 6.70739500 −0.1053350 6.50362900 0.09843100 6.66994500 −0.0678850 6.73268300 −0.1306230 6.48995700 0.11210300 

Average Activity for Training Set: 6.494366. 
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The external validation results are summarized in Table 7. The five models passed the Golbraikh and Tropsha 
acceptable criteria for model predictability. According to this criteria, a QSAR model is predictive if: 2 0.6predR > , 

2 2 2
0 0.1r r r− <  and 0.85 1.15k≤ ≤ , 2 2 2

0 0.1r r r′− <  and 0.85 1.15k ′≤ ≤ , 2 2
0 0 0.3r r′− <  [28].  

 
Table 5. Actual and predicted activities for the test set. 

Comp 
No 

Actual 
values for: 

pIC50 

Equation 1: 
predicted 

values 

Equation 1: 
residual 
values 

Equation 2: 
predicted 

values 

Equation 2: 
residual 
values 

Equation 3: 
predicted 

values 

Equation 3: 
residual 
values 

Equation 4: 
predicted 

values 

Equation 4: 
residual 
values 

Equation 5: 
predicted 

values 

Equation 5: 
residual 
values 

1 4.432151 4.93E+00 −0.497849 5.06E+00 −0.627849 4.986147 −0.553996 5.29E+00 −0.857849 5.06E+00 −0.627849 

12 6.756962 6.43E+00 0.3269620 6.41E+00 0.3469620 6.604561 0.152401 6.54E+00 0.2169620 6.39E+00 0.3669620 

13 6.602060 6.43E+00 0.1720600 6.57E+00 0.0320600 6.436697 0.165363 6.54E+00 0.0620600 6.57E+00 0.0320600 

14 6.602060 6.82E+00 −0.217940 7.03E+00 −0.427940 6.732121 −0.130061 6.74E+00 −0.137940 7.04E+00 −0.437940 

16 6.602060 6.82E+00 −0.217940 7.03E+00 −0.427940 6.939137 −0.337077 6.74E+00 −0.137940 7.04E+00 −0.437940 

17 6.602060 7.15E+00 −0.547940 6.99E+00 −0.387940 7.162020 −0.559960 7.03E+00 −0.427940 6.97E+00 −0.367940 

18 6.602060 6.82E+00 −0.217940 7.07E+00 −0.427940 6.732121 −0.130061 6.74E+00 −0.137940 7.09E+00 −0.487940 

19 6.756962 6.82E+00 −0.063038 6.94E+00 −0.183038 6.732645 0.0243170 6.74E+00 0.0169620 6.93E+00 −0.173038 

 
Table 6. Internal validation results for the generated models by genetic function approximation. 

S/No  Equation 1 Equation 2 Equation 3 Equation 4 Equation 5 

1 Friedman LOF 0.12167500 0.15142800 0.15182300 0.15255700 0.15257300 

2 R-squared 0.90823600 0.94839900 0.88550000 0.94801500 0.94800900 

3 Adjusted R-squared 0.89411900 0.93549900 0.86788400 0.93501900 0.93501200 

4 Cross validated R-squared 0.47445400 0.82445000 0.32517100 0.50985700 0.79935000 

5 Significant regression Yes Yes Yes Yes Yes 

6 Significance-of-regression F-value 64.3340810 73.5186080 50.2684580 72.9450990 72.9368220 

7 Critical SOR F-value (95%) 5.01926700 3.65064200 5.01926700 3.65064200 3.65064200 

8 Replicate points 0 0 0 0 0 

9 Computed experimental error 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

10 Lack-of-fit points 13 12 13 12 12 

11 Min expt. error for non-significant LOF (95%) 0.17794700 0.13759200 0.19877300 0.13810400 0.13811100 

 
Table 7. Comparison of statistical qualities and external validation parameters of the various models. 

Model No 2
predR  2r  2

0r  2
mr  2 2 2

0r r r−  
2 2 2

0r r r′−

 
k k′  2 2

0 0r r′−  

1 0.81319 0.85665 0.85137 0.79442 0.00616 0.0705 0.9766 1.02196 0.05512 

2 0.71118 0.83797 0.83119 0.76898 0.00809 0.096 0.9605 1.03881 0.07367 

3 0.81588 0.87274 0.86043 0.77591 0.0141 0.08942 0.97501 1.02374 0.06573 

4 0.76907 0.89297 0.80972 0.63532 0.09323 0.37217 0.97564 1.02241 0.24909 

5 0.70398 0.82861 0.82312 0.76722 0.00662 0.0975 0.9606 1.0386 0.0753 
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If we consider the predictive capacity of the developed models, model 3 has the best predictive capacity since 
it has the highest 2

predR  value of 0.81588. The predictive potential and acceptability of the developed models 
were confirmed by the results of 2

mr  which were all above the threshold value of 0.5 [36]. The highest value of 
2

mr  was 0.79442 which corresponds to model 1. Golbraikh and Tropsha critaria for other validation parameters, 
namely, 2 2 2

0r r r− , 2 2 2
0r r r′− , k, k ′  and 2 2

0 0r r′−  were also satisfied by all the five developed models. 
The results of Y-randomization test for the developed models have 2c

vR  values of 0.874804, 0.87804, 
0.845538, 0.885605 and 0.802384 for models 1, 2, 3, 4 and 5 respectively. These values are all greater than the 
threshold value of 0.5. This confirms the robustness and acceptability of the developed models. We recall that 
the value of 2c

vR  should be greater than 0.5 for an indicator of model acceptability [37]. Based on these results, 
all the five models have met the minimum requirement for robustness. This is an indication that developed mod-
els were not merely due to chance.  

Model 4 which is given by: 
pIC50 = −2.040810634 * nCl − 19.024890361 * MATS2m + 1.855704759 * RDF140s + 6.739013671 was 

chosen as the best of the five models based on the excellent results obtained from the statistical validation para-
meters. The graph of correlation between observed activity and predicted activity of Training Set compounds 
using model 4 are given in Figure 1. Also the graph of correlation between observed activity and predicted ac-
tivity of Test Set compounds using model 4 are given in Figure 2. 
 

 
Figure 1. The graph of correlation between observed activity and predicted activity of Training Set 
compounds using model 4. 

 

 
Figure 2. The graph of correlation between observed activity and predicted activity of test set com-
pounds using model 4. 
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3.4. Interpretation of the Descriptors in the QSAR Equations 
The descriptors which contributed to the specific anti-tuberculosis inhibitory activity in the selected model and 
their importance are discussed below: 

Equations 1 to 5 showed the importance of nCl, MATS2m, GATS1m, RDF115e, RDF115u, RDF130m and 
RDF140s descriptors, on the anti-tuberculosis activity of 1,3-diphenylprop-2-ene-1-ones. From the developed 
models the descriptors nCl, MATS2m, GATS1m, RDF115e and RDF115u correlate negatively with the an-
ti-bacteria biological activities of 1,3-diphenylprop-2-ene-1-one derivatives while the descriptors RDF130m and 
RDF140s correlates positively with the activities. This suggests that lower values of the descriptors nCl, 
MATS2m, GATS1m, RDF115e and RDF115u and higher values of the descriptors RDF130m and RDF140s 
lead to improvements in Anti-tuberculosis inhibitory activity. 

In the developed models, four Radial Distribution Function (RDF) descriptors are encountered namely 
RDF115u, RDF115e, RDF130m and RDF140s. The RDF descriptors are based on a radial distribution function 
which can be interpreted as the probability distribution of finding an atom in a spherical volume of radius r [38].  

For a Radial Distribution Function defined by RDFrw, which is generally calculated at a number of discrete 
points with a step size for r = 0.5 Å under five different weighing schemes (w), given by the unweighted case (u), 
atomic mass (m), Van der Waals volume (v), atomic polarizability (p) and Sanderson atomic electronegativity 
(e). Besides information about interatomic distances in the entire molecule, RDF descriptors provide further 
valuable information, for example, about bond distances, ring types, planar and non-planar systems and atom 
types [39]. 

Among the four RDF descriptors in the developed models, one is unweighted, the second is weighted by 
atomic Sanderson electronegativity, the third is weighted by atomic masses, while the remaining one descriptor 
is weighted by one-state. 

Since the descriptor nCl is negatively correlated with anti-tuberculosis activity of 1,3-diphenylprop-2-ene- 
1-ones, the presence of a chlorine substituent in the chalcone derivative does not improve the anti-tuberculosis 
activity of 1,3-diphenylprop-2-ene-1-ones. This is also confirmed by the descriptor RDF115e which is also ne-
gatively correlated with anti-tuberculosis activity for the considered derivatives. 

MATS2m (Moran autocorrelation-lag 2/weighted by atomic masses) and GATS1m (Geary autocorrelation of 
lag 1 weighted by mass) are 2D autocorrelation descriptors, which are obtained from molecular graphs, by 
summing the products of atom weights of the terminal atoms of all the paths of the considered path length (the 
lag) [40]. These descriptors are related to the atomic property of a molecule, such as molecular size influence the 
retention of compound. Since MATS2m and GATS1m are negatively correlated with anti-tuberculosis activity, 
their decrease has a positive influence on the anti-tuberculosis activity of 1,3-diphenylprop-2-ene-1-ones. 

This result illustrates that the proper distribution of the above properties is a necessary requirement for chal-
cone derivatives of 1,3-diphenyl prop-2-en-1-ones with potent anti-tuberculosis activity. 

4. Conclusions 
In this research, the ant-tuberculosis inhibition potentials of twenty four molecular structures of chalcone deriva-
tives of 1,3-diphenylprop-2-ene-1-one were modelled by QSAR. Geometry optimization was investigated at the 
DFT level. The optimized structures were submitted for the generation of a total number of 1907 quantum 
chemical and molecular descriptors which were further subjected to data pre-treatment. The entire data set was 
split into training and test sets by Kennard Stone algorithm. Model development was achieved by Genetic Func-
tion Approximation which resulted in the generation of five models. 

Based on this present QSAR studies, it was observed that the descriptors which were highly correlated with 
the anti-bacteria biological activity of 1,3-diphenylprop-2-ene-1-one derivatives were: nCl, MATS2m, GATS1m, 
RDF115e, RDF115u, RDF130m and RDF140s descriptors. From the developed model, the descriptors nCl, 
MATS2m, GATS1m, RDF115e and RDF115u correlated negatively with the anti-bacteria biological activities 
of 1,3-diphenylprop-2-ene-1-one derivatives while the descriptors RDF130m and RDF140s correlated positively 
with the activities. 

This research strongly suggested that the main features controlling ant-tuberculosis inhibition activities of 
chalcone derivatives of 1,3-diphenylprop-2-ene-1-one were constitutional indices, 2D autocorrelations and 
Radial Distribution Function (RDF) descriptors. In comparison to the QSAR studies of 1,3-diphenylprop-2- 
ene-1-one derivatives conducted by Umaa et al., in 2013 only log p and electronic energy were found to contri-
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bute to anti-tuberculosis activity. Also higher levels of accuracy were attained in this research such as an R2 
value of 0.94801500, compared to 0.898421 obtained by [15]. The developed five models passed all the Gol-
braikh and Tropsha acceptable criteria for model predictability as given in Table 7. 

On the basis of the developed QSAR models, novel 1,3-diphenylprop-2-ene-1-one derivatives could be de-
signed as potential anti-tuberculosis agents. 

References 
[1] World Health Organization (WHO) (2014) Global Tuberculosis Report. 
[2] Mack, U., Migliori, G.B., Sester, M., Rieder, H.L., Ehlers, S., Goletti, D., Bossink, A., Magdorf, K., Holscher, C., 

Kampmann, B., Arend, S.M., Detjen, A., Bothamley, G., Zellweger, J.P., Milburn, H., Diel, R., Ravn, P., Cobelens, F., 
Cardona, P.J., Kan, B., Solovic, I., Duarte, R., Cirillo, D.M. and Lange, C. for the TBNET (2009) LTBI: Latent Tu-
berculosis Infection or Lasting Immune Responses to M. Tuberculosis? ATBNET Consensus Statement. European 
Respiratory Society, 33, 956-973. http://dx.doi.org/10.1183/09031936.00120908 

[3] European Centre for Disease Prevention and Control. (2011) Use of Interferon-Gamma Release Assays in Support of 
TB Diagnosis. ECDC, Stockholm. 

[4] Tripathi, R., Tewari, N., Dwivedi, N. and Tiwari, V.K. (2005) Fighting Tuberculosis: An Old Disease with New Chal-
lenges. Medicinal Research Reviews, 25, 93-131. http://dx.doi.org/10.1002/med.20017 

[5] Alejandro, S.P., Marcus Tulius, S. and de Paulo-Emerenciano, V. (2010) Current Pharmaceutical Design of Antituber-
culosis Drugs: Future Perspectives. Current Pharmaceutical Design, 16, 2656-2665.  
http://dx.doi.org/10.2174/138161210792389289 

[6] Ibezim1, E.C., Duchowicz, P.R., Ibezim, N.E., Mullen, L.M.A., Onyishi, I.V., Brown, S.A. and Castro, E.A. (2009) 
Computer-Aided Linear Modeling Employing QSAR for Drug Discovery. Scientific Research and Essay, 4, 1559- 
1564. 

[7] Eric, G.M., Uzairu, A. and Mamza, P.A.P. (2015) Investigation of the Activity of 8-Methylquinolones against Myco-
bacterium tuberculosis Using Theoretical Molecular Descriptors: A Case Study. European Scientific Journal Septem-
ber, 11, 1857-7881. 

[8] Ravichandran, V., Shalini, S., Sokkalingam, A.D., Harish, R. and Suresh, K. (2014) QSAR Study of 7-Chloroquinoline 
Derivatives as Antitubercular Agents. World Journal of Pharmacy and Pharmaceutical Sciences, 3, 1072-1082. 

[9] Ravichandran, V., Shalini, S., Kumar, K.V., Harish, R. and Kumar, K.S. (2015) QSAR Study on Arylthioquinoline 
Derivatives as Anti-Tubercular Agents. PTB Reports, 1, 81-86. http://dx.doi.org/10.5530/PTB.1.2.8 

[10] Younes, A., Abdelkader, A., Hayat, L., Ahmed, R., Driss, Z. and Mohamed, Z. (2014) QSAR for Antimycobacterial 
Activity of β-Thia Adduct of Chalcone and Diazachalcone Derivatives. International Journal of Computational and 
Theoretical Chemistry, 2, 20-25. http://dx.doi.org/10.11648/j.ijctc.20140203.11 

[11] Gupta, R.A. and Kaskhedikar, S.G. (2012) Synthesis, Evaluation and QSAR Analysis of 5-Nitrofuran-2-Yl/4-Nitro- 
phenyl Methylene Substituted Hydrazides as Antitubercular Agents. Asian Journal of Pharmaceutical and Clinical 
Research, 5, 251-259. 

[12] Priyadarsini, R., Tharanib, C.B., Sathya, S. and Kavithaa, S. (2012) Pharmacophore Modeling and 3D-QSAR Studies 
on Substituted Benzothiazole/Benzimidazole Analogues as DHFR Inhibitors with Antimycobacterial Activity. Interna-
tional Journal of Pharma Sciences and Research, 3, 4441-4450. 

[13] Sawarkar, V.M., Dudhe, P.B., Nagras, M.A., Bhosle, P.V., Jadhav, B. and Meshram, R.S. (2013) 2D & 3D QSAR 
Studies of Biaryl Analogues of Pa-824 Having Various Ether Linkers: An Approach to Design Antitubercular Agents. 
Pharmacophore, 4, 92-104. 

[14] Rajasekaran, S., Gopalkrishna, R. and Sanjay, P.P.N. (2011) 2D QSAR Studies of Some Novel Quinazolinone Deriva-
tives as Antitubercular Agents. Journal of Computational Methods in Molecular Design, 1, 69-82. 

[15] Kamalakaran, A.S., Srinivasan, S. and Veluchamy, A. (2009) QSAR Studies on N-Aryl Derivative Activity towards 
Alzheimer’s Disease. Molecules, 14, 1448-1455. http://dx.doi.org/10.3390/molecules14041448 

[16] Umaa, K., Kavithamani, A., Maida Engels, S.E. and Geetha, G. (2013) Quantitative Structure Activity Studies on the 
Anti-Mycobacterial Potentials of Certain Chalcone Derivatives. International Journal of Research in Organic Chemis-
try, 3, 6-10. 

[17] Lin, Y.M., Zhou, Y., Flavin, M.T. and Zhou, L.M. (2002) Chalcones and Flavonoids as Anti-Tuberculosis Agents. 
Bioorganic & Medicinal Chemistry, 10, 2795-2802. http://dx.doi.org/10.1016/S0968-0896(02)00094-9 

[18] ChemBioDraw version 12.0. CambridgeSoft, 2010. 
[19] Spartan 14v112 (2013) Wavefunction, Inc., Irvine.  

http://dx.doi.org/10.4236/oalib.1102432
http://dx.doi.org/10.1183/09031936.00120908
http://dx.doi.org/10.1002/med.20017
http://dx.doi.org/10.2174/138161210792389289
http://dx.doi.org/10.5530/PTB.1.2.8
http://dx.doi.org/10.11648/j.ijctc.20140203.11
http://dx.doi.org/10.3390/molecules14041448
http://dx.doi.org/10.1016/S0968-0896(02)00094-9


A. I. Ogadimma, U. Adamu 
 

OALibJ | DOI:10.4236/oalib.1102432 13 March 2016 | Volume 3 | e2432 
 

[20] Ballabio, D., Consonni, V., Mauri, A., Claeys-Bruno, M., Sergent, M. and Todeschini, R. (2014) A Novel Variable 
Reduction Method Adapted from Space-Filling Designs. Chemometrics and Intelligent Laboratory Systems, 136, 
147-154. http://dx.doi.org/10.1016/j.chemolab.2014.05.010 

[21] Ambure, P., Aher, R.B., Gajewicz, A. and Puzyn, T. (2015) “NanoBRIDGES” Software: Open Access Tools to Per-
form QSAR and Nano-QSAR Modeling. Chemometrics and Intelligent Laboratory Systems, 147, 1-13.  
http://dx.doi.org/10.1016/j.chemolab.2015.07.007 

[22] Todd, M.M., Harten, P., Douglas, M.Y., Muratov, E.N., Golbraikh, A., Zhu, H. and Tropsha, A. (2012) Does Rational 
Selection of Training and Test Sets Improve the Outcome of QSAR Modeling? Journal of Chemical Information and 
Modeling, 52, 2570-2578. http://dx.doi.org/10.1021/ci300338w 

[23] Khaled, K.F. and Abdel-Shafi, N.S. (2011) Quantitative Structure and Activity Relationship Modeling Study of Corro-
sion Inhibitors: Genetic Function Approximation and Molecular Dynamics Simulation Methods. International Journal 
of Electrochemical Science, 6, 4077-4094. 

[24] Das, R.N. and Roy, K. (2012) Development of Classification and Regression Models for Vibrio fischeri Toxicity of 
Ionic Liquids: Green Solvents for the Future. Toxicology Research, 1, 186-195. http://dx.doi.org/10.1039/c2tx20020a 

[25] Kar, S. and Roy, K. (2011) Development and Validation of a Robust QSAR Model for Prediction of Carcinogenicity of 
Drugs. Indian Journal of Biochemistry and Biophysics, 48, 111-122. 

[26] Roy, P.P. and Roy, K. (2008) On Some Aspects of Variable Selection for Partial Least Squares Regression Models. 
QSAR & Combinatorial Science, 27, 302-313. http://dx.doi.org/10.1002/qsar.200710043 

[27] Indrani, M., Achintya, S. and Kunal, R. (2010) Chemometric Modeling of Free Radical Scavenging Activity of Fla-
vone Derivatives. European Journal of Medicinal Chemistry, 45, 5071-5079.  
http://dx.doi.org/10.1016/j.ejmech.2010.08.016 

[28] Roy, K. and Mitra, I. (2011) On Various Metrics Used for Validation of Predictive QSAR Models with Applications in 
Virtual Screening and Focused Library Design. Combinatorial Chemistry & High Throughput Screening, 14, 450-474.  
http://dx.doi.org/10.2174/138620711795767893 

[29] Roy, K., Chakraborty, P., Mitra, I., Ojha, P.K., Kar, S. and Das, R.N. (2013) Some Case Studies on Application of “rm
2” 

Metrics for Judging Quality of Quantitative Structure-Activity Relationship Predictions: Emphasis on Scaling of Re-
sponse Data. Journal of Computational Chemistry, 34, 1071-1082. http://dx.doi.org/10.1002/jcc.23231 

[30] Golbraikh, A. and Tropsha, A. (2002) Beware of q2! Journal of Molecular Graphics and Modelling, 20, 269-276.  
http://dx.doi.org/10.1016/S1093-3263(01)00123-1 

[31] Tropsha, A. (2010) Best Practices for QSAR Model Development, Validation, and Exploitation. Molecular Informatics, 
29, 476-488. http://dx.doi.org/10.1002/minf.201000061 

[32] Roy, K., Kar, S. and Das, R.N. (2015) Statistical Methods in QSAR/QSPR. In: Roy, K., Kar, S. and Das, R.N., Eds., A 
Primer on QSAR/QSPR Modeling, Springer Briefs in Molecular Science, Springer, Berlin, 37-59.  
http://dx.doi.org/10.1007/978-3-319-17281-1_2 

[33] Roy, K. and Paul, S. (2008) Exploring 2D and 3D QSARs of 2,4-diphenyl-1,3-oxazolines for Ovicidal Activity against 
Tetranychus urticae. QSAR & Combinatorial Science, 28, 406-425. http://dx.doi.org/10.1002/qsar.200810130 

[34] Todeschini, R. (2010) Milano Chemometrics. Italy (Personal Communication). 
[35] Pravin, A. (2013) Drug Theoretics & Cheminformatics (DTC) Laboratory, Jadavpur University. 
[36] Partha, P.R., Somnath, P., Indrani, M. and Kunal, R. (2009) On Two Novel Parameters for Validation of Predictive 

QSAR Models. Molecules, 14, 1660-1701. http://dx.doi.org/10.3390/molecules14051660 
[37] Roy, K. (2007) On Some Aspects of Validation of Predictive Quantitative Structure-Activity Relationship Models. 

Expert Opinion on Drug Discovery, 2, 1567-1577. http://dx.doi.org/10.1517/17460441.2.12.1567 
[38] Singh, P. (2013) Molecular Descriptors in Modelling of TNF-∝ Converting Enzyme (TACE) Inhibition Activity of 

2-(2-Aminothiazol-4-yl) pyrrolidine-Based Tartrate Diamides. Indian Journal of Chemistry, 52, 1325-1341. 
[39] Cheng, Z.J. and Zhang, Y.T. (2010) Classification Models of Estrogen Receptor-β Ligands Based on PSO-Adaboost- 

SVM. Journal of Convergence Information Technology, 5, 67-83. http://dx.doi.org/10.4156/jcit.vol5.issue2.8 
[40] Fernandez, M., Caballero, J. and Tundidor-Camba, A. (2006) Linear and Nonlinear QSAR Study of N-hydroxy-2- 

[(phenylsulfonyl)amino] Acetamide Derivatives as Matrix Metalloproteinase Inhibitors. Bioorganic & Medicinal 
Chemistry, 14, 4137-4150. http://dx.doi.org/10.1016/j.bmc.2006.01.072 

http://dx.doi.org/10.4236/oalib.1102432
http://dx.doi.org/10.1016/j.chemolab.2014.05.010
http://dx.doi.org/10.1016/j.chemolab.2015.07.007
http://dx.doi.org/10.1021/ci300338w
http://dx.doi.org/10.1039/c2tx20020a
http://dx.doi.org/10.1002/qsar.200710043
http://dx.doi.org/10.1016/j.ejmech.2010.08.016
http://dx.doi.org/10.2174/138620711795767893
http://dx.doi.org/10.1002/jcc.23231
http://dx.doi.org/10.1016/S1093-3263(01)00123-1
http://dx.doi.org/10.1002/minf.201000061
http://dx.doi.org/10.1007/978-3-319-17281-1_2
http://dx.doi.org/10.1002/qsar.200810130
http://dx.doi.org/10.3390/molecules14051660
http://dx.doi.org/10.1517/17460441.2.12.1567
http://dx.doi.org/10.4156/jcit.vol5.issue2.8
http://dx.doi.org/10.1016/j.bmc.2006.01.072

	Quantitative Structure Activity Relationship Analysis of Selected Chalcone Derivatives as Mycobacterium tuberculosis Inhibitors
	Abstract
	Keywords
	1. Introduction
	2. Materials and Methods
	2.1. Data Set
	2.2. Geometry Optimization 
	2.3. Descriptors Calculation
	2.4. Data Pre-Treatment/Feature Selection
	2.5. Creation of Training and Test Set
	2.6. QSAR Model Development and Validation
	2.6.1. Model Development
	2.6.2. Model Validation


	3. Results and Discussion
	3.1. Geometry Optimization and Descriptors Calculation
	3.2. Feature Selection and Data Division
	3.3. Model Development and Validation
	3.4. Interpretation of the Descriptors in the QSAR Equations

	4. Conclusions
	References

