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Abstract 
In this paper, the well known implicit function theorem was applied to study 
existence and uniqueness of periodic solution of Duffing-type equation. Un-
der appropriate conditions around the origin, a unique periodic solution was 
obtained. 
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1. Introduction 

The well-known implicit function theorem has been employed by many authors 
to study existence of solution to non-linear differential equations of various 
types. [1] [2] [3] investigated the existence of solution to ordinary differential 
equations using implicit function theorem. Other researchers [4]-[10] used im-
plicit function theorem to show the existence of periodic solution for non-linear 
partial differential equations. The Duffing equation (oscillator): 

( )3x cx ax bx h t+ + + =                    (1.1) 

where a, b, c are real constants and h(t) is continuous, has been widely used in 
physics, economics, engineering, and many other physical phenomena. Given its 
characteristic of oscillation and chaotic nature, many scientists are inspired by 
this nonlinear differential equation given its nature to replicate similar dynamics 
in our natural world. This equation together with Van der Pol’s equation has 
become one of the most common examples of nonlinear oscillation in textbooks 
and research articles. See for instance [11] [12] [13] [14] and the references 
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therein. Due to the importance of the Duffing equation in real world problems, 
the study of existence of solution of the equation has continued to attract the at-
tention of many researchers. [15] [16] [17] [18] have proposed independently, 
the existence of periodic solution of Duffing equation of the general form: 

( ) ( ), hx c t tx g x+ + =                      (1.2) 

where ( )h t  is continuous and 2π-periodic in t R∈  and ( ) 2 3,g t x ax bx xβ= + + . 
Motivated by the above results, the purpose of this paper is to study the exis-

tence and uniqueness of periodic solution of Duffing equation of the form: 

( )2 32x cx ax bx x h t+ + + =+                   (1.3) 

using implicit function theorem where a, b, c are real constants and  
[ ]: 0, 2π nh R→  is continuous with boundary conditions 

( ) ( )0 2πx x=  

( ) ( )0 2πx x=   

2. Preliminaries 

Definition 2.1. Consider the general non-linear differential equation of the 
form 

( )( ),x f t x t=                         (2.1) 

where : n nf × →  
 is continuous. The function f in Equation (2.1) is said to 

be T periodic if for every ( ), nt x R R∈ ×  and some 0T > . ( ) ( ), ,f t x f t T x= +  
and ( ) ( )*, ,f t x f t T x≠ +  for all *T T< . 

Definition 2.2. A solution x of Equation (2.1) defined on R such that 
( ) ( )x t T x t+ =  for all t R∈  is called T periodic solution or T periodic solu-

tion. 
Definition 2.3. Let E, F be Banach spaces, U an open subset of E and let 

0x U∈ . Let :f U F→  be a mapping of U into F. f is said to be Frechet diffe-
rentiable at x0 if there exists a continuous linear mapping; :L E F→  such that 

( ) ( ) ( )
0

0 0

0

lim 0
x x

f x f x L x x
x x→

− − −
=

−
 

Definition 2.4. Let E, F, G be Banach spaces, let 1 2U u u E F= × ∈ ×  be open 
set and :f U F→  be a mapping of U into G, with ( )0 0,x y U∈ . f is said to be 
Frechet differentiable with respect to the first variable x at ( )0 0,x y  if the fol-
lowing conditions hold. 

1) There exists a continuous linear mapping 1 :L E G→  such that 0ε∀ >  
0δ∃ >  such that 1,x ux∀ ∈  then 0x x δ− ≤ , 0x x δ− ≤  and 2y u∀ ∈

such that 0y y δ− ≤ , it follows that. 
2) ( ) ( ) ( )1, ,f x y f y Lx x xx xε− − − ≤ − . 
3) The mapping ( )0 ,y f x y→  is continuous at 0y . 
Proposition 2.5. Then condition (1) of the definition 2.4 is satisfied if the 

https://doi.org/10.4236/ojapps.2018.810036


E. O. Eze et al. 
 

 

DOI: 10.4236/ojapps.2018.810036 461 Open Journal of Applied Sciences 
 

partial Frechet derivative ( )1
1 0 0,f x y  exists for ( ),x y  in a neighbourhood of 

( )0 0,x y  and if the mapping ( ) ( )1
1 0 0, ,x y f x y→  is continuous at ( )0 0,x y . 

Proposition 2.6. If f is Frechet differentiable with respect to the first variable 
at ( )0 0,x y , it is Frechet differential with respect to this variable at ( )0 0,x y  
with the same L1. Moreover, this is unique. L1 is called the strong partial Frechet 
derivative with respect to the first variable at ( )0 0,x y  and denoted by

( )1
1 0 0,f x y . 
Lemma 2.7. (The Banach fixed point theorem) Let E be a Banach space and 
:f E E→  be a contraction mapping, then f has a unique fixed point in E, i.e. 

there exists a unique x E∈  such that ( )f x x= . 
Lemma 2.8. (The implicit function theorem) Let E, F, G be Banach spaces and 

let 1 2,U E U F⊂ ⊂ . Set 1 2U U U= × . For arbitrary ( )0 0,x y U∈ , let :f U G→  
be a mapping satisfying the following conditions. 

1) ( )0 0, 0f x y = . 
2) f is Frechet differentiable with respect to the first variable at ( )0 0,x y . 
3) ( )0 01 , :f x y E G′ →  is a linear homeomorphism. 
Then there exists a neighborhood 1 2 1 2V V U U× ⊂ ×  of ( )0 0,x y  and a 

unique mapping 1 2:V Vζ →  such that for each 2y V∈  the equation 
( ), 0f x y =  has in V1, the unique solution ( )( ), 0f y yζ = : Moreover, ζ  is 

continuous at y0. 
Lemma 2.9. If X and Y are Banach spaces and ( ),A B X Y∈  with ( )R A Y=  

and N(A) = {0}, then ( )1 ,A B Y X− ∈  where N(A) is the Null spaces of A and 
R(A) is the range space of A. B(X, Y) is the space of bounded linear transforma-
tions from X to Y. 

3. Main Result 

We present in this section, the main result of this paper. 
Theorem 3.1. Let 2

2πC  = { [ ]: 0, nx T R→ : x is a class of C2} and equipped 
with the usual uniform norm ( ) ( ) ( ){ }max ,| ,x x t x t x t

∞
=    C = { [ ]: 0,x T →

: 
x is continous} with the usual norm, [ ]0,J T= , [ ]2π 0,2πJ = . 

Then, Equation (1.2) is equivalent to 

( ) 2
2π, 0 inf x h C C= ×                     (3.1) 

where 2
2π:f C C C× →  is defined by 

( ) 2 3, 2f x h x cx ax bx x h= + + + + −                 (3.2) 

Proof: We first remark that with the norm defined above, 2
2πC  is a Banach 

space. The strategy for the proof involves application of the implicit function 
theorem to the function f defined in Equation (3.1). We split the proof into 
steps. 

Step 1: ( )0,0 0f = . This follows trivially from the definition of f: hence 

( )0,f h h= −                         (3.3) 

Step 2: f is Frechet differentiable with respect to x at (0; 0). Observe that 
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( ) ( ) ( )( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

2 3 2 3

2 2 3 3

2 2

, , 0,0 ,

2 2

2

2

xf x h f x h f x x

x cx ax bx x h x cx ax bx x h

x x c x x a x x b x x x x

x x b x x x xx x

− −

= + + + + − − + + + + −

= − + − + − + − + −

≤ − ⋅ + + + +

 

 

 

 

 

( ) ( )
( ) ( )

( )

2 2

2 2

2

2

2

2 6 , with ,

x x b x x x xx x

x x b x x x xx x

x x bp p x p x p

≤ − + + + +

≤ − + + + +

≤ − + ≤ ≤

 

Consequently,  

( ) ( ) ( )( ), , 0,0 , 0, as 0xf x h f x h f x x x x− − → − →        (3.4) 

Combining (3.3) and (3.4), we obtain that f is Frechet differentiable with re-
spect to the first variable at (0, 0). 

Step 3: ( ) 2
2π0,0 :xf C C→  defined by z z cz az→ + +   is a linear homeo-

morphism. 
The mapping ( )0,0 :xf z z cz az→ + +   is linear and continuous and hence 

bounded. It is also an onto mapping. Linear homeomorphism would have been 
established if the mapping is shown to be one to one. This is equivalent to re-
quiring that 

0z cz az+ + =                         (3.5) 

with 

( ) ( ) ( ) ( )0 2π and 0 2πz z z z= =                (3.6) 

be non-critical. 
It suffices to place appropriate conditions on the constants a, c such that Equ-

ation (3.5) is solvable. The auxiliary equation of (3.5) is 2 0c aλ λ+ + = . 
Case I: 
If 0c = , and 2a k=  where k is a natural number, then ikλ = ±  and 

( ) 1 2cos sinz t c kt c kt= +                   (3.7) 

for arbitrary constants 1c  and 2c . Clearly 

( ) ( ) ( ) ( )0 2π and 0 2πz z z z= =                (3.8) 

and the solution is non-trivial. 
Case II: 
If 0c =  and 2a k≠ , then condition 

( ) ( )0 2πz z=                         (3.9) 

is satisfied only by the trivial solution z = 0. 
Case III: 
If 0c ≠  and 0a ≠ , only the trivial solution exists. Most generally, put 

2 4
2

c c a u ivλ
− ± −

= = +                 (3.10) 
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for some real numbers u, v. 
1) Choose c and a such 0u ≠ . 
2) Choose c and a such that 0, 0u v≠ =  then z z cz az→ + +   is non-critical 

[19]. 
3) Choose c and a such that ( )2πI x−  is non-singular where ( )x t  is fun-

damental matrix of Equation (3.5) with ( )0x I=  the 2 2×  identity matrix 
[20]. 

Thus with any of these conditions imposed, one deduces the one to oneness of 
( )| 0,0xf . Hence by Lemma 2.8 ( )

1| 0,0xf
−

    exists as a bounded linear opera-
tor. Linear homeomorphism of ( )| 0,0xf  follows. Existence of a unique solution 
is now assured by the implicit function theorem. 
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