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Abstract 
In big and crowded cities with limited urban areas, it is sometimes necessary 
to build twin tunnels to overcome transportation problems. In a city like 
Riyadh in Saudi Arabia, tunneling becomes very essential to solve effectively 
traffic conjunctions and associated problems. The city started to construct big 
tunneling projects and it is expected in the near future to start building twin 
tunnels. If the design and construction process of twin tunnels are not un-
derstood and considered, damage to the tunnel lining or excessive ground 
surface settlement may take place. In this study, the interaction between adja-
cent tunnels excavated through soils in Saudi Arabia has been investigated 
using FE analysis and the range of the encountered soil properties. The inves-
tigation considered the effect of spacing between the twin tunnels and ground 
conditions on tunnel behavior. The analysis focused on the effect of con-
structing twin tunnels on ground surface settlement, contact pressure between 
lining and ground, and change in tunnel diameter. Based on the results ob-
tained, it was observed that as the compressibility ratio, c, and spacing be-
tween tunnels decreased, the interaction effect between tunnels increased. For 
compressibility ratio of 0.01, the excavation of the new tunnel caused an in-
crease in the lining deformation of the old one in the range of 0.1% to 0.3%. 
Furthermore, the excavation of the new tunnel leads to an increase in the 
contact pressure at the crown of the old one by 7% - 9%. At the spring line 
level, the excavation of the new tunnel had almost no effect on the far side of 
the old one. On the other hand, and for low compressibility ratio, the new 
tunnel excavation significantly affected contact pressure at the near side of the 
old one. For an expected tunnel life of 100 years, the results show an increase 
in the normalized contact pressure at the crown of the old tunnel due to the 
excavation of the new one in the range of 2% - 7% for compressibility ratio 
ranging between 0.01 - 0.1, respectively. 
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1. Introduction 

In large and crowded cities, the transportation system is a critical issue. Nowa-
days, countries pay much attention to the transportation system because it re-
flects their development and success. As the surface area in cities gets limited 
and is very expensive to develop new infrastructures for roads and rails, the need 
for underground tunnels to generate an effective and sustainable transportation 
system becomes crucial. Special care needs to be considered when constructing 
tunnels underneath cities because any failure could be catastrophic especially 
when tunneling through soils or weak rocks. During tunnel construction or even 
after construction (in squeezing ground), ground movement may lead to surface 
settlement which in turn may affect the super structures. During the last 70 
years, many researchers studied and investigated single tunneling behavior and 
its effect on the surrounding structures (e.g. Terzaghi [1]; Morgan [2]; Peck [3]; 
Deere et al. [4]; Cording et al. [5]; Peck et al. [6]; Kulhawy [7]; Wood [8]; Eins-
tein [9]; Ranken et al. [10]; Bieniawski [11]; Penzien [12]; Shalabi [13] [14]; Sha-
labi et al. [15] [16] [17] [18]). 

In order to minimize the cost of constructing a large diameter transportation 
tunnel especially in areas where ground conditions are expected to produce large 
deformations, constructing twin or adjacent tunnels is preferable. Twin tunnels 
may be constructed with horizontal, vertical, or inclined alignment as shown in 
Figure 1(a). 

Many investigators studied the interaction between tunnels and its effect on 
ground movement. Tsuchiyama et al. [19] used 3D finite element method ap-
proach to analyze the interaction at the intersection of a new access tunnel with 
an existing main tunnel in rock. They found that the influence zone around the 
main tunnel was in the order of 1D to 3D of the tunnel diameter (where D is 
tunnel diameter). Kim et al. [20] [21], based on tests on closely spaced tunnels 
excavated in clay, found that spring line and crown of the existed tunnel are the 
most affected parts. Liu et al. [22] studied the influence of excavating a new tun-
nel in rock on the support system of an existing tunnel using 3D FEM (Finite 
element method) and elasto-plastic material models. They found that the influ-
ence of the new tunnel on the supporting system of the existing tunnel is signifi-
cant when the face of the new one passes the support system of the old one. Do 
et al. [23] used 3D finite element difference analysis to investigate the construc-
tion process on the interaction between twin tunnels. The results of their analy-
sis showed that the excavation of twin tunnels with large lag distance would lead 
to higher forces and lining deformation than those excavated simultaneously. 
Chehade and Shahrour [24] studied the influence of relative position (vertical 
alignment vs. horizontal alignment) and construction procedures on the interac-
tion between twin tunnels using FEM and elastic-perfectly plastic models to si-
mulate soil behavior. The results showed that the vertical tunnels alignment has 
more ground surface settlement that that of the horizontal alignment. Sahoo and 
Kumar [25] investigated the stability of twin tunnels in cohesive soils using up-
per limit analysis in combination with FE analysis. In their work, the authors 
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Figure 1. (a) Twin tunnels configuration, (b) used tunnel geometry for the analysis, & (c) 
FE-Mesh. 
 
established a relation between a non-dimensional stability number (function of 
soil cover, cohesion, and unit weight) and the tunnels spacing for different tun-
nel diameter and soil properties. Fang et al. [26] presented a case of closely twin 
tunnels constructed beneath closely spaced twin tunnels. Their results showed 
that the trough of the ground surface settlement displayed a “W” shape, while 
after constructing the new twin tunnels the trough surface settlement displayed 
the “U” shape. Fargnoli et al. [27] studied the surface and structural settlement 
due to excavation of Milan metro twin tunnel through coarse grained soils. The 
results showed that the second tunnel resulted in an increase in settlement at the 
surface of the first tunnel. 

The main purpose of this work is to study the effect of spacing between twin 
tunnels and ground conditions on lining deformation, contact pressure between 
lining and ground, and ground surface settlement. The study will consider the 
visco-elastic soil properties in different locations in the major and big cities in 
Saudi Arabia (Riyadh, Jeddah, & Dammam) to model the soil behavior. Finite 
element method (FEM) using ABAQUS software [28] will be used in the analy-
sis. The results are expected to layout a foundation and a framework that will 
help in the design and constructing process of twin tunnels in Saudi Arabia. 
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2. Numerical Modeling 

2D Visco-elastic model was used to perform the analysis. The soil material engi-
neering properties were selected to cover the soil properties encountered in Sau-
di Arabia. Power law creep model was used to simulate the viscous behavior of 
the selected soils. This model describes the relationship between the strain rates, 
stress, and time according to the following formula: 

n mA tε σ=                            (1) 

where ε  is the stain rate, σ is the stress difference, t is the time, A, m, and n are 
the creep model parameters and they depend on the temperature. According to 
Ouyang [29] and to have reasonable results, A and n should be positives, and m 
needs to be between −1.0 and 0.0. Power law creep model is available in ABAQUS 
software and can be used directly for time dependent analysis. Table 1 shows the 
used concrete lining properties and encountered soil properties for shallow 
tunneling in Saudi Arabia. 

3. Simulation of Loading and Excavation Process 

Figure 1(b) & Figure 1(c) show the geometrical arrangement and FE mesh of 
the analyzed tunnels. In this case, circular cross-section tunnels with diameters 
of 10.0 m and thickness of 0.5 m were excavated at a depth of 25 m from the 
ground surface to the tunnel center and with different spacing, s. The analyses 
were performed using ABAQUS FE software through step analysis. The gravity 
loads were applied first throughout the whole model. The excavation process in-
side the tunnel was simulated by removing the inner soil elements of the left 
(old) lining, then erecting its lining by activating the concrete elements. The 
right (new) tunnel was built in subsequent steps using the same procedures as of 
the left tunnel. Time dependent behavior was introduced at later steps using 
power law creep model for a tunnel lifetime of 100 years. 

4. Results and Discussion 
4.1. Ground Surface Settlement 

Ground surface settlement above the centerline of right tunnel (new) when ex-
cavated with the presence of the left (old) tunnel is shown in Figure 2. The 
compressibility ratio, which correlates the relative stiffness between the ground 
medium and tunnel lining, was evaluated based on Peck et al. [6] equation: 
 
Table 1. Concrete lining and soil properties. 

Creep Properties Unit Weight kN/m3 Poisson’s Ratio, ν Modulus, E (Pa) Material 

 25 0.2 10 × 109 Concrete Lining 

A = 2.0 × 10−17 
m = −0.5 

n = 3 

17 0.3 5 × 106 Soil 1 

18 0.3 20 × 106 Soil 2 

20 0.3 50 × 106 Soil 3 
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Figure 2. Ground surface settlement above the C.L. of new (RGT) tunnel with the presence of the old (LFT) one. 
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where El, vl, R, and t are the lining modulus of elasticity, Poisson’s ratio, radius, 
and thickness, respectively, and Em and vm are the ground medium modulus of 
elasticity and Poisson’s ratio, respectively. 

In this figure, it can be seen that as the compressibility ratio increases, the 
surface settlement increases. This effect becomes almost negligible for compres-
sibility ratio greater than 0.04. In addition, this figure shows that as the spacing 
between the twin tunnels decreases, the ground surface settlement increases. The 
effect of spacing on surface settlement is also negligible for compressibility ratio 
greater than 0.04. Figure 3 shows the effect of excavation of right (new) tunnel 
on ground surface settlement above the centerline of left (old) tunnel. In this 
figure, the increase in the surface settlement is between 25% - 30% for compres-
sibility ratio of 0.01 and the effect on surface settlement decreases as both the 
compressibility ratio and the spacing between the twin tunnels decreases. 

4.2. Lining Deformation 

Tunnel lining deformation (∆D/D) of the right (new) tunnel with the presence 
of the left (old) tunnel at the crown and spring line shows increasing values with 
the decrease in compressibility ratio, c, as shown in Figure 4 and Figure 5 re-
spectively. In these figures, the results show that the change in tunnel diameter is 
in the range of 1% to 2% for compressibility ratio of about 0.01. The results also 
indicate that as the spacing between the tunnels decreases, the lining deformation  
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Figure 3. Increase in ground surface settlement above the C.L. of the old (LFT) tunnel due to the excavation of the new (RGT) 
one. 
 

 
Figure 4. Change in tunnel diameter at crown of new (RGT) tunnel with the presence of the old (LFT) one. 

0

0.01

0.02

0.03

0.04

0.05

0 0.02 0.04 0.06 0.08 0.1 0.12

In
cr

ea
se

 in
 g

ro
un

d 
su

rf
ac

e 
se

ttl
em

en
t a

t C
.L

. o
f L

FT
 tu

nn
el

, m
Compressibility ratio, C

Increase in ground surface sett. of CL of LFT Tunnel 
due to excavation of new (RGT) tunnel

Clear Space = 1.0 D

Clear Space = 0.5 D

Clear Space = 0.25 D

Clear Space

LFT RGT

GS

0

1

2

3

4

5

0 0.02 0.04 0.06 0.08 0.1 0.12

Δ
D

/D
 (%

)

Compressibility ratio, C

Change in Tunnel Diam. at Crown-Invert of RGT Tunnel
with presence of LFT tunnel

Clear Space = 1.0 D

Clear Space = 0.5 D

Clear Space = 0.25 DClear Space

LFT RGT



F. I. Shalabi 
 

106 

 
Figure 5. Change in tunnel diameter at spring line of the new (RGT) with the presence of the old (LFT) one. 

 
increases and these deformation are almost negligible for compressibility ratio, c 
greater than 0.04. Considering the effect of new tunnel excavation on the defor-
mation of the old one, Figure 6 and Figure 7 show that there is an increase in 
lining deformation in the range of 0.1% to 0.3% for compressibility ratio of 0.01. 
Moreover, those figures show that lining deformation decreases as the spacing 
between the tunnels increases. 

4.3. Lining-Ground Contact Pressure 

Lining contact pressure, P, normalized to the overburden pressure at the crown 
(σvo) of the right (new) tunnel shows a decrease in the value as the compressibil-
ity ratio increases, as shown in Figure 8. It can be noticed that the normalized 
contact pressure is within the range of 0.86 to 0.92 for compressibility ratio of 
0.01. For the left (old) tunnel, the normalized contact pressure is higher than 
that of the right (new) one and it is in the range of 0.92 - 1.0, as shown in Figure 
9. This indicates that, due to the excavation of the new tunnel there was an in-
crease in the contact pressure at the crown of the old tunnel in the range of 7% - 
9% for compressibility ratio of 0.01. At the spring lines of the two tunnels, the 
results of normalized contact pressure show different and interested observa-
tions, as can be seen in Figure 10 through Figure 13. For the right (new) tunnel, 
the contact pressure (P) normalized to the overburden pressure at the spring line 
level (σvo) is almost identical for both sides, as can be seen in Figure 10 and 
Figure 11, and it is in the range of 1.12 - 1.20 for compressibility ratio, c of 0.01. 
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Figure 6. Increase in tunnel diameter change at the crown of the old (LFT) tunnel due to the excavation of the new (RGT) one. 

 

 
Figure 7. Increase in tunnel diameter change at the spring line of the old (LFT) tunnel due to the excavation of the new (RGT) one. 
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Figure 8. Normalized contact pressure at the crown of the new (RGT) tunnel with the presence of the old (LFT) one. 

 

 
Figure 9. Normalized contact pressure at the crown of the old (LFT) tunnel after excavating the new (RGT) one. 
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Figure 10. Normalized contact pressure at the right side of the new (RGT) tunnel with the presence of the old (LFT) one. 

 

 
Figure 11. Normalized contact pressure at the left side of the new tunnel (RGT) with the presence of the old (LFT) one. 

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 0.02 0.04 0.06 0.08 0.1 0.12

N
or

m
al

iz
ed

 c
on

ta
ct

 p
re

ss
ur

e,
 P

/σ
vo

Compressibility ratio, C

Normalized contact pressure P/σvo at right side of new (RGT) tunnel
with presence of old (LFT) tunnel

Clear Space = 1.0 D

Clear Space = 0.5 D

Clear Space = 0.25 D

Clear Space

LFT RGT

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 0.02 0.04 0.06 0.08 0.1 0.12

N
or

m
al

iz
ed

 c
on

ta
ct

 p
re

ss
ur

e,
 P

/σ
vo

Compressibility ratio, C

Normalized contact pressure P/σvo at left side of new (RGT) tunnel
with presence of old (LFT) tunnel

Clear Space = 1.0 D

Clear Space = 0.5 D

Clear Space = 0.25 D

Clear Space

LFT RGT



F. I. Shalabi 
 

110 

The values of normalized contact pressure decrease with c and become almost in 
the range of 1.02 - 1.06 for c greater than 0.04. For the left (old) tunnel, the re-
sults in Figure 12 and Figure 13 show that the normalized contact pressure at 
the side close to the new tunnel is higher (ranges between 1.24 - 1.38) than that 
at the opposite side (value is equal to 1.1) for compressibility ratio of 0.01. In ad-
dition to that, the close side of the old tunnel shows a decrease in the contact 
pressure with the compressibility ratio, and for c equal to 0.1, the new tunnel has 
no effect on the normalized contact pressure, and the value is almost constant 
and equal to 1.1. 

4.4. Time Dependent Behavior 

Time dependent behaver of the increase in normalized contact pressure at the 
crown of the left (old) tunnel due to the excavation of the right (new) tunnel is 
found to be decreases with both, the increase in compressibility ratio and the 
spacing between the twin tunnels, as shown in Figure 14 through Figure 16. As 
can be seen in these figures, the increase in the normalized contact pressure on 
the crown of the old tunnel lining increases with time in a decreasing rate, and it 
starts to level of after almost 10 years. For an expected tunnel life of 100 years, 
the increase in the normalized contact pressure with tunnel spacing is almost 
equal, and it is in the range of 2% to 7% for compressibility ratio ranging be-
tween 0.01 and 0.1, respectively. 
 

 
Figure 12. Normalized contact pressure at the right side of the old (LFT) tunnel after excavating the new (RGT) one. 
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Figure 13. Normalized contact pressure at the left side of the old (LFT) tunnel after excavating the new (RGT) one. 

 

 
Figure 14. Increase in normalized contact pressure vs. time at the crown of the old (LFT) tunnel due to the excavation of the new 
(RGT) one. c = 0.01. 
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Figure 15. Increase in normalized contact pressure vs. time at the crown of the old (LFT) tunnel due to the excavation of the new 
(RGT) one. c = 0.037. 

 

 
Figure 16. Increase in normalized contact pressure vs. time at the crown of the old (LFT) tunnel due to the excavation of the new 
(RGT) one. c = 0.1. 
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5. Conclusions 

In big and crowded cities, having an efficient and sustainable transportation sys-
tem is a big challenge. Transportation tunnels are considered a good solution to 
this problem. In critical situations, it is sometimes necessary to build new trans-
portation tunnels adjacent to old ones. The interaction between the new tunnel 
and the old one, and their effects on the overall stability in terms of deformation, 
contact pressure, and ground surface settlement become a real issue. In this 
study, the interaction between twin tunnels was investigated. The study focused 
on the ground surface settlement above the centerline of the tunnel, lining de-
formation, and lining-ground contact pressure. Based on this study, the follow-
ing conclusions are drawn: 

1) The interaction between twin tunnels is affected by the compressibility ra-
tio and spacing between tunnels. As the compressibility ratio and spacing be-
tween tunnels decrease, the interaction effect increases. 

2) The excavation of the new tunnel leads to an increase in the contact pres-
sure at the crown of the old one by 7% - 9%. At the spring line level, the excava-
tion of the new tunnel has almost no effect on the far side of the old one. On the 
other hand, and for low compressibility ratio, the new tunnel excavation signifi-
cantly affects the near side of the old one. 

3) For compressibility ratio of 0.01, the excavation of the new tunnel causes an 
increase in lining deformation of the old one in the range of 0.1% to 0.3%. 

4) The increase in the ground surface settlement above the centerline of the 
old tunnel due to the excavation of the new one is between 25% - 30% for com-
pressibility ratio of 0.01. 

5) For an expected tunnel life of 100 years, the increase in the normalized 
contact pressure at the crown of the old tunnel due to the excavation of the new 
one is in the range of 2% to 7% for compressibility ratio ranging between 0.01 
and 0.1, respectively. 
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