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ABSTRACT

We single out the polygonal paths of n,, —1 order that solve each of the L%J different longest non-cyclic

Euclidean Hamiltonian path problems in N (Kn:nodd (e“‘{‘ﬁ ),(dij )n n) networks by an arithmetic algorithm. As by

product, the procedure determines the winding index of cyclic Hamiltonian polygonals on the vertices of a regular
polygon.

K eywords: Hamiltonian Path; Extremal Problems; Euclidean Geometric Problem; Farthest Neighbor Tours; Traveling

Salesman Problem; Geometry of Odd Regular Polygons

1. Introduction

Our aim implies to determine the overall lengths of every
Longest Euclidean Hamiltonian Path Problems and the
composition and the orderings of the directed segments
that accomplish these longest Hamiltonian travels. The
identification regardless of planar rotation and orienta-
tion is done with the proposed algorithm [1-3].

This paper apart from the Introduction, Conclusion
and References contains §2 Algorithm and Hamiltonian
Paths in Nog-Gons and §3 Maximum Hamiltonian Path
Problems in Nog-Gons. §2 formulates specific Max.
Hamiltonian Problems and postulates the algorithm for
their resolutions. §3 devoted to the solution of the

Lno—;dJ different Max. Traveling Salesman Path Pro-

blems in N,qq-Gons [4,5].

2. Algorithm and Hamiltonian Pathsin
Nodga-Gons

This work is focused in the resolution of the L%J

different Maximum Traveling Salesman Path Problems
of order n,, —1 with inicial point at V, =(-1,0) and

final point at V, for 1<k< LgJ (see Figure 1) in the
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N Q)Kn‘”odd ( ™1 ),<dij )n n) networks. These structures
are built by the complete graph K~ on the odd regular
polygon vertices, i.e. "™/ | and weighted with the

Euclidean distances d; between nodes [6].

2.1. Intrinsic Geometry and Arithmetic

Let V,,---,V,, be the points of the e U1 set and let
them be clockwise enumerated by the integers modulo
n, Z,, from the vertex V, =(-1,0). For each k in

0<k< LEJ and each jeZ,, let L ; denote the seg-

ment that joins V; with V,,, while L ; denotes the
one that joins V; to V. =V, . From now onwards,
L, and L denoteto L, and L, respectively. Let
| be the diameter, it joins the vertex V; with its
only if n is even. LH and LH res-

2

2

opposite Vj no

2
pectively designate the quasi-diameters if N is odd (see
Figurel), [7].

If P, symbolizes a regular n-gon inscribed in the
unitary circle and with vertices in V,,---,V,,, P, can
be considered as the polygonal of sides L, L, ,--,L
[8]. From the vectorial interpretation of the Lﬁ, | seg-
ments, L,; can be interpreted as the resultant of the
polygonal of k sides of P, that joins clockwise V;
to V., while L ; is the resultant of the polygonal of
n—k sides that joins clockwise Vj to V., =V

j+n-k *
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Figure 1. L, segmentsin Nygg-Gons.

The segments L, ; and L ; are the respective chords
(or resultants) of the polygonals sn+k and rn+n-Kk
consecutive sides of P,, whichever are the integers s
and r. Therefore, it is natural to associate L, ; with
the integer e( L;’j):k, and likewise L ; with the
integer e( L ) =n—k=—-k(modn).

Definition 2.1.1 For any integer n, L isa L, seg-

ment if for any Kk, OSkSLEJ, and for any jeZ,,

L isequalto L ; or L=L;.
Definition 21.2 If L isan L, segment, the integer
associated to L", noted as e(L), is given by:

k if L=Ly,
e(L)= '

n-k=—k if L=L},

Definition 2.1.3 If S:{Ll,---,Lj} is a sequence of

L, segments, the integer associated to the path evolved

by S",isgivenby e(S)=Y'e(L;)(modn).

It should be taken into account the following facts:

e The consecutive collocation of two L, segments
from any vertex V, determines the vertex that
corresponds to collocate, from V, and in clockwise,
as many sides of P, as correspond to the sum of the
integers associated to each one of the two L,
segments. In other words, the resultant of a polygonal
built by two L, segments, is other L, segment and
its associated integer is the sum (modulo n) of the
integers associated to the components of the
polygonal.

e The L, segment is L;(L)’ ; by considering any fixed

value of |, when Ose(L)ﬁng. Otherwise, if

n is L N
H <e(L)sn.is L ) =L,

The concept of the associated integer e(L,) and its
addition modulo n, deploy the following geometric
correlate over the set of vertices {V, =(~1,0),-+,V,_}:
For each i, 0<i<n-1, the geometric place that
corresponds to the vertex V, coincides with the place
that correspondsto V,,, for each integer s. Snce the

segments L, and L., respectively connect the
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vertices V, to V, and V, to V=V, it is clear

n-k »
that for any integer k between 0 and EJ , the vertices

V, and V,, are symmetric with respect to the ho-
rizontal axis. Given a sequence of L, segments, hence-
forward the polygonal that they determine is in a one-
to-one relationship with the sum of each one of these
directed segments that belong to the sequence.

Since e( Lﬁ,i): e( L j) , whichever i and | are,
without loss of generality in the sequences of L, seg-
ments, the second subindices of these directed segments
are rooted out.

2.2. Resuming the Algorithm

Lemma 2.6 and Theorem 2.7 in [1] detail the proofs of
the following algorithmic statements.

Theorem 2.2.1 The pathway determined by a se-
quence S of L, segments starts and ends at the same
vertex V; ifand only if €(S)=0.

Theorem 222 A sequence S of n L, segments
determines a Euclidean Hamiltonian cycle C; of order
n if and only if any proper subsequence of order m<n
has associated integer neither N nor a multiple of n
and €(S)=0. )

Corollary 2.2.1 A sequence S of L, segments of
order m, 3<m<n, building a Euclidean closed poly-

gonal in ,/\/'(Kn(ei"{'ﬁ),(d
through certain or all ¢™ U1 vertices, has e(é)EO.

Since, e(é) is a multiple of n exists z less than or

) ) networks, passing once

1 Joxn

equal to LEJ which counts the times that S cw.

winds around the geometric centre of P,. We named
this specific integer as the “winding index”.

2.3. Applications of the Algorithm: Winding
Index in Special Cyclic Pathsin Nog-Gons

Let CJ, symbolize a cyclic polygonal in

N(Kn:nodd (ein{‘ﬁ),(dij )nxn) network, which does not

repeat vertices, with the exception of the first and the last

one, and which passes through certain m nodes,

m<n,, . Specially, C/* stands for Euclidean Hami-

ltonian cycles in N (Kn:nodd (e"‘(‘ﬁ),(dij )n n) network.
Exampe 2.1. Let ngL,, 1< ks{n‘%J. If K does

not divide ng, they are C/™ s of winding index k
[9]. Cl*™: ng, L{node is the Max TSP [10].

2
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Exampe2.2. Let

n
I‘|7+1’L[n ’in ’L{n ’L[n ’L[n > OSISL_J_Z
R B 2
BN BN BN
The angular cw. avance is proportional to:

|+1+2&”‘;’“J+1J {n‘;"J—Hzl{%J
+{%J—1+2Qn‘;ﬂ+1j (1+3) Ny,

then |+3 is the winding index. Algorithmic com-
putations render that these cycles are C*~**' and
Coi for networks built on Ny >7+21 . For

LI'H,L{EJ,L{EJ,L{EJ_I,L[gJ the algorithm prompts |+2

21 2
as winding index and singled out them as C

Co if Ny >5+21.In LHLH |_H
=1
2

=5+2I and

2
S
201

1< < g —1, the algorithm characterizes these cycles
as CQil in N(Kypes(€"¥1),d5,) with winding

index |.
Exampe 2.3. Table 1 deploys cycles living in

N (Ko (€79T). 050 ) ¥ Ny 2 035

Exampe 2.4. Table 2 shows Euclidean Hamiltonian
cycles in special N (Kn:nodd (ei"{‘ﬁ ),dnExn) networks.

N=Todd

3. Maximum Hamiltonian Path Problemsin
Nodgg-Gons
it n E n
In N(Kn:nodd (e \/I),dnxn) network for 1< kSLEJ ,

we study the trajectories built by a single L, segment,

Tablel €y, in N(K,.,,(e™1).a5,).

N(KW (e?“\"/f),dfm)); 1<k<|n/2]-1

Cow: Vi >ng Winding Index
Cont Luaps Luaps Huago L s w25 2
Con: Lo 3y 5 Ny 25 2
Cout Ly J"Ll"/J Lz L["ZJ Moy 27 3

X
%«ZHﬁa%uw%wHWw’mZ7 .
Cotit L 2K L, 5 ng 25 k
Cowt Lo Ly Ly 3 M 25 K
L
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nxn

Table2 Cj* in N(K,,, (e"31).df, ).

Cx in N e ¥1),d5,);  Winding Index | n/2
(Ko (er97). %) 2]

Nogd-it1
Ces

Lli’ljin/z\’ L|7n/z\1 L\nz|5|1n/z\l L\ 2]

(n-1)/4 (n-1)/4-1

Rogd-it+3
Cpoeese

L;’ L[n 2]° L[n/ijl > L[n 2] L[n 2012 L[n/ZJ
- s

(n-3)/4 2 (n-3)/4

Ll’ LLn/zJ’L[nzjl’Lanj’ L[nzjl’L[nzj LL 2]-1° L[nzj

2 (n=3)/4-1 (n-3)/4-1

&HJ—kj directed L', segments, and QE J+k]
2 2 2

J,that is (1).

directed segments Lin
2
3.1. Lengths of Relevant Pathways

Our present concern is to study the Euclidean lengths and
the composition of the directed segments that build the
trajectories given by (1).

o + + n
Lk+pL[rI _I)L[n , pzng—k. 1)
F 2
Since for neIN the lengths L, of the segments

L., 1<k< LEJ verify the following relationships:
£ -£ <£ -£ ,
[LBJ_.J {L[;J—(Hl)j [LBJ—(HI)J [LBJ—(H-Z)]

Therefore, the overall traveled Euclidean lengths of
the pathways (1) are given by:

g(f)+ pﬂ['—[ul}r(n_ p_l)Q[L{ZJ} )

Therein, precisely we focusing on the Euclidean Ha-
miltonian cycles, C/* s, which accomplish the lengths

(2)in N(K”:rbdd( ”‘('/_),dnExn) network.

Next Theorem establishes the composition of the
directed segments that give birth to the sequences with
overall traveled lengths (2).

OJDM
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Theorem 3.1.1 The overall traveled lengths (2) in
N(K”:rbdd (em{‘ﬁ),(dij) ) are accomplished for any

nxn

sequence built by a single L, , QEJ -k- a]

n
. a L, p L, and Q—J+k—ﬂ) L{n
LH‘I LH* LH 2 2
directed segments if p:LgJ—k and ISkSLEJ if

the conditions in (3) are satisfied.

Zaﬁfépg}m%p ©
g ) (R 6 R
g8 U B

n[EJ—lJ+2k+l+3a+ﬂ: mn
From the constraints 0 <a < LgJ -k and

0<f< EJ +k follows

n

2k+1+3a+ﬂ:{m—uEJ—lﬂns2n—1, m should

be m= LgJ and hence

2k+14+3a+ f=n=3a+ f =2p. Therefore, the admis-
sible couples (a,f) for the lengths (2) should verified
3).o

Backward recurrence over the traveled length in steep-

est descent steps from the max noddL{Lln J] to L, con-

2
straint and the lack of Hamiltonian cycles for
S +(p-DL,, +(n-p)L,,, 1< psFJ—z
LH“’ LH‘I LH 2
Ay
state that (4) is the Euclidean Hamiltonian Maximum
Path length when I:[n J = I:; is rooted out.
2

pL(L[nJ"J+(n°dd_p_l)I{LM} 1< pngJ—l. 4)

MaxL (R ! )
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3.2. Specific Directed Segmentsfor the M ax.
Traveling Salesman Path Problemsin
Nogg-Gons

We confirm in Theorem (3.3.1), Theorem (3.3.2) and
Theorem (3.3.3) the existence of Euclidean Hamiltonian
cycles that attain the overall Euclidean lengths given by
the sequences (1) and the assignments (3).

1) For py, if @ {%J and ﬂ:L%J+2 in

(3) exists C™ s with overall traveled length (2). See
Theorem (3.3.1) at pg. 4.
2)For Py

a) «a 2% =/f in (3) exists C s with whole
traveled length (2). See Theorem (3.3.2) at pg. 5,

b) az%—l and f=a+4 in (3) exists C™ s
with whole traveled length (2). See Theorem (3.3.3) at pg. 5.
3.3. Orderings of the Directed Segmentsfor the

Max. Traveling Salesman Pathsin Nygg-Gons

P« symbolizes any Euclidean Hamiltonian path that
resolves the Max Traveling Salesman Path Problems
with initial vertex V, =(-1,0) and final vertex V,, that

n
N for 1<k< L—J ,
EJ—P 2
between the starting and ending points.
Observation 3.1 Proofs of Theorem 3.3.1, Theorem

3.3.2 and Theorem 3.3.3 result from direct application of
Theorem 2.2.2 of the proposed algorithm.

is whichever be the bridge, I:; = [[

Theorem 3.3.1Let pyy = LgJ —k an odd integer for

ke{l,---,LgJ—l}. The pathways (5) and (6) build

P~ s in N(Kn:r‘odd (e"i{‘ﬁ),(di’j)nxn) networks if
Ny = 2 Pogg +3 -
R T i R

S B )
Podd 2
2

Podd i
2

0OJDM
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for M=(N-1)—(2p,q +2).0

Let F.R and BR denote, respectively, the for-
ward and backward readings of any sequence of L,
segments.

Corollary 33.11In /\/(KHDcld (ei"\”/f),(dij ). n)

networks if Ny =2 P,y +3, forward and backward
readings of the sequences (5) and (6) are P,L“’“d'l.
Consequently, F.R and BR of the sequence (5) and

(6) account for 2 plus to ZL%J distinct sequences,

respectively. Furthermore, F.R and BR of the path-
way (5) and paths (6) build (pocId +1) C s if the di-
rected segment I:{n

2

J is initially appended to these
~ Podd

sequences. O

Theorem 3.3.2 Let pg,, :LEJ—k an even integer

for k e{l,---,LgJ—l}. The pathways (7) and (8) build
Pl s in N(Kn:nodd (e’"{‘ﬁ)a(di,j) ) networks if

nxn

Nogg = 2 Peen +3, With f=a = % is the number of

LH_] and LH,respectively.
2

S e e e ™y @

P 2 Pam
2 2
T e e e e ™ e
e, % Pem
2 2
+L{2J+L{2J‘l +12J+Lm_] +L[2J 0<i SpTe"e”—l
i 2 i+1

®
for M=(N—1)—(2Pgen+2) O
Corollary 3.3.2 In N(Kn:nwd (ei“{‘ﬁ),(d”) ) net-

nxn
works if N 22pP,+3, forward and backward
readings of the sequences (7) and (8) are P«
Particularly, the enumeration of the distinct P} ™'s
given birth from the forward and backward readings of
the sequences (8) depend on the pT”’e“ evenness. Speci-
fically,

1) If Pen odd, since (Mj —1-i#i+1
2 2 odd

Copyright © 2013 SciRes.

every sequence in (8) is not a palindrome [1]. Moreover,

the (%) —1 sequences defined in (8) are in
odd

couples F.R and BR Specifically, the F.R path
P« determined by i=0 coincides to BR path

Pw! determined by i :%—2 , i=1 F.R path
coincides with B.R  of the sequence defined by
i =pT°’e”—3 and so on. That is the F.R paths defined

Peven -3

by (8) with i€40,-, 22 coincide with the

BR paths determined by (8) with

Peven

Paet 5. 2
2 )

ie

Therefore, exists (%} —1 distinct PJu'g
odd

which correspond with each one of the F.R determined

by (8). Since F.R of (7) is different to its B.R, both
PY«'s should be added to the final enumeration. In

conclusion, the distinct P« s are (MJ +1.
odd

2) If Peven is even, since (hj —1-i=i+1,
2 even

Poen |
. 2 P . . .
then | =% = T"’e”—l this index in (8) builds

a Pﬁ"dd’l which is a palindrome [1]. In addition, FR
paths defined by (8) with ie {0,---,%—2} coincide

with the BR paths determined by (8) with
ie Peven
2
peven _ Tt Nodd —1 . :
(—j 2 distinct B™ ™ s which correspond with
2 even
cach one of F.R paths determined by (8). Since FR
of (7) is different to its B.R, both P« s should be
added to the final enumeration. In conclusion, the distinct

Pl s are (Mj +1.0

even

—2,---,pT°’e”} . Therefore, exists

Theorem 3.3.3 Let p,,, :LQJ—k an even integer

0OJDM
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for ke {1EJ—1} The pathways (9) build P
in N(Kn:”odd (e“‘(l/i)’(dti)nxn) networks if
Nogg = 2 Poen +3 , meanwhile o :%—1 >0, is the

number of L[”J1 and ﬂ=a+4=%+3 the amount
n

L.

"B

T Tk T e

Peven ;. 2

—=—1-i
2 2

e e

i 2 i

0<i<Peom_y
2
(€))
for M=(N—1)—(2Pyen+2). 0
Corollary 3.3.3 In /\/(Kn:nodd (ei“{‘ﬁ),(dij )nxn) net-

works if N, >2p,,., +3, forward and backward read-
ings of the sequences (9) are P ™'s. Particularly, the

enumeration of the distinct P[~'s given birth from the
forward and backward readings of the sequences (9)

Peven

depend on the —1 evenness. Specifically,

—1 is even, then
odd

) 1f Pem is odd, ie. (Mj
2 2

(Mj —1-i=i, therefore the sequence in (9) build
odd

2
(pevenj _1
2 odd

by this index i= 5

is a palindrome [1].

Moreover, [hj —1 sequences defined in (9) are in
odd

couples F.R and BR with the exception of that

o
2 odd
2

F.R and BR is exactly the same pathway at all.
Specifically, the FR path P}« determined by
i=0 coincides to B.R path PP*™" determined by

given birth by the index i= which its

i :[Mj -1, i=1 FR path coincides with
2 odd

Copyright © 2013 SciRes.

BR of the sequence defined by i= (%) -2 and
odd

().
so on, until the index i :2—0‘“ at which F.R

and BR beget only one path. That is the FR paths
defined by (9) with the downgraded indexes

coincide with the BR

paths determined by (9) with

+1

(pevenj 4
(pevenj 1. 2 odd
odd

2 2

distinct Pf's
odd
which correspond with each one of the FR path
determined by (9).

In conclusion, exists (%)

2) If (MJ is even, i.e p—""e”—l is odd, since
even 2

2

none of them are palindrome [1]. In addition, FR

(pevenj —1—i#i, then sequences (9) build pHnodd—l s
even

Peven )

paths of the indexes O’M’ZT coincides with

B.R paths of the downgraded indexes

peven_2
Peen ... _2
2 772

+1¢, respectively. In conclusion,

exists (Mj distinct P*™'s vis-a-vis with each
even

one of the F.R path determined by (9). 0

Observation 3.2 Corollary 3.3.1, Corollary 3.3.2 and
Corollary 3.3.3 result from Theorem 3.3.1, Theorem
3.3.2 and Theorem 3.3.3, respectively.

In conclusion, the PP<™'s which resolve the Max.

Euclidean Hamiltonian Path Problems with the I:ln J
=|-p
2

as the bridge between the endings of the Hamiltonian
paths are evolved by the sequences (5) and (6) if Pyyq -
Otherwise by the orderings (7)-(9). Moreover, with the
exception of the palindromes their backward readings
also resolve these specific Max. Traveling Salesman

0OJDM
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Problems.

3.4. Bicoupled Nygg-Gons TSP Conjeture

We choose the geometric paths that start up at
C=(-1,0) of the quasi-spherical mirror of unitary
radius, touch n times-including the last touching-
anywhere on the hollowed mirror, and end up at
B=(cos B,sin ), with —t<B<0. In this geometry
each n array of angles («,---,a,,/), see Figure 2,
denoted (;, ), determines a path with n+1 vertices-
including the initial and arrival points- and n linear
branches, [8,11,12]. This path may have two or more
coincident vertices and linear branches shrunk to a point.
For each Be[-m,0] the n-1 angles o IR are
selected (see Figure 2) as independent variables of the
overall traveled length function of the paths F, (e, ).

The length of the geometric path determined by
(o, p), is given by (10)

Fo(a, ):Zn:\/Z—Zcos(oci —a,) o, =ma,=p.

(10)

When f=-m, (BEC) , for any polygonal cyclic
trajectory, there is an n-array (al,u-,anfl,—n) which
characterizes them. In particular, amongst these path-
ways are those that have as vertices the "Y1 points,
with m<n. See [10] Theorem 2.1.1. and Appendix A,

from page 78 to 80 [8]. Let H’™* (a,r)

Nodd
Hznodd (ai’r): 22\/l+r2—2r005(0(i—0!i,1), (11)

i=1

be a generalized length of (10), where ¢«; are the
analogous angular parameters with the restraints o, ==
and o, =-m, and r in (0,1) is the structural
parameter for the locations of the coupled vertices of the
inner Ny, -polygon,

N(K (ei" /1, re” %Q/T),d,ﬁxN) networks [3].

Herein, see Figure 3, we pose the following conjeture:
Are Max. TSPs in bilayer

N=2ngqq

N(KN=2rbdd (ei" /] e ”odg/f)’d,st) networks baited
for the regular shapes of the Max. TSP in
N(Kn:nodd (ei" %Q/I),drin) networks?

4. Conclusion

This paper is an offspring of a series of previous works
about Hamiltonian maximum overall traveled lengths in
N(Kn(e’“(‘ﬁ),(dij) ) networks. Herein are singled

nxn

out all the Euclidean Hamiltonian pathways that resolve

Copyright © 2013 SciRes.

Figure 2. Measure of a; angular parameter.

Max. TSP in N(KnN=2n,,, ('™ Mod¢/T, re'™ ™od¢/T), dﬁx N)

Figure 3. Max TSP in coupled Nygg-Gons.

the LEJ different maximum traveled Hamiltonian paths

oforder N, —1 in N(K., ™™ %/1),dE,
networks. As a by-product the proposed algorithm allow
us to determine the winding index of specific cyclic
polygonals. The approach is a step forward on the in-
trinsic geometry and inherent arithmetic of the vertex
locus of the N,44-Gons.
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