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ABSTRACT 

We consider the solution of matching problems with a convex cost function via a network flow algorithm. We review 
the general mapping between matching problems and flow problems on skew symmetric networks and revisit several 
results on optimality of network flows. We use these results to derive a balanced capacity scaling algorithm for match- 
ing problems with a linear cost function. The latter is later generalized to a balanced capacity scaling algorithm also for 
a convex cost function. We prove the correctness and discuss the complexity of our solution. 
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1. Introduction 

Skew symmetric networks have become an important 
tool for the efficient solution of matching problems [1]. 
Going over from a matching problem to a problem of 
flow optimization often allows for simplification and 
speed-up of solution algorithms. Typical matching prob- 
lems do not only include maximizing a matching but 
often additionally minimizing the costs for the partici- 
pants involved. Typical examples include minconvex- 
problems as studied in [2,3]. For such minconvex prob- 
lems a convex function in the number of matchings has 
to be minimized for each participant. So far the solution 
of such problems using skew symmetric networks has 
not been demonstrated. 

In this paper we therefore consider the problem of 
minimizing a separable convex objective function over a 
skew-symmetric network with a balanced flow. This 
problem can be mapped on the aforementioned matching 
problems and allows for an efficient solution of the latter. 
Specifically, we will derive a balanced capacity scaling 
algorithm incorporating the additional problem of a con- 
vex cost function. 

In Section 2 we will shortly review skew symmetric 
networks and their connection to matchings. Section 3 
will be devoted to a short summary of necessary results 
for optimality. In Section 4 we will present the balanced 
capacity scaling algorithm for a linear cost function go- 
ing over in Section 5 to the description of the algorithm 
for a convex cost function. In Section 6 we will discuss 

some possible improvements of the aforementioned al- 
gorithm. We will conclude and sum up our results in 
Section 7. 

2. Skew Symmetric Networks and Matchings 

A graph  ,G V E  is a pair of disjoint, finite sets E 
and V corresponding to the edges and vertices of the 
graph. If the edges between vertices  are directed 
we have a directed graph. This allows for the definition 
of a network. 

 ij

Definition: network 
Let  ,G V E  be a directed graph and  

two functions. We call the triplet  a network 
and the functions v and w the upper and lower capacity 
bound. 

, :v w E 
w , ,G v

Definition: skew symmetric network [4] 
A skew symmetric network is a network  
 , cap,N G l  with the following properties 

- the vertices of N contain a source s and a drain t and 
two sets of vertices  1, , nX x x   and X   such 
that a bijection :V V   exist. 

- N contains edges    , , ,1i isx x t i i    n  
- the other edges appear pairwise between X and X   

meaning if  i jx x  exist then so does  i jx x  and 
vice versa 

- the capacities obey        ,i i i j jl sx l x t l x x l x x    i   

and     ,cap capi isx x t     cap capi j j ix x x x   for  

all edges in the network 
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Definition: flownetwork [5, p. 154] 
Let N be a network and s and t are vertices in  V N  

such that s is connected to t via edges in . A flow 
is a mapping . If a flow is defined on N 
the network is called a flow network. 

 E N
 :x E N 

The flow on the network should later allow to map it 
to a matching. Therefore additional constraints are nec- 
essary. The excess is defined as 

         jiji E N ij E N
e i x x

 
   ij         (1) 

This allows to define an admissible flow. 
Definition: admissible 
A flow on a network is admissible if  

 and .    capijl ij x ij     e s e t 
Definition: balanced 
A flow on a skew symmetric network is balanced if 

 and for all loops ,ij ji ijx x x    iix   is even. 
An admissible flow can always be turned into a circu- 

lation, meaning a flow where no excess is found on any 
vertex. We just have to introduce a vertex from t to s 
which has a flow value of  e t . Consequently is does 
not matter whether we consider circulation problems or 
flows. 

Admissible and balanced flows correspond to match- 
ings that we want to define below. 

Definition: matching [6, p. 213] 
Let  be a graph, ,  

. A graph 
 ,G V E

E 
 , :a b V 

, :c d  , MM V E
 a i

  with M is 
called a matching if at least  edges and at most 

 edges in M are incident with the vertex i in V and 
for every    i is incident with j at least 

E E

 b i
ij E  jc i  

times and at most  times. d ij 
Theorem: correspondence 
Every balanced admissible flow on a skew symmetric 

network corresponds to a matching on the corresponding 
graph with         , capa i l si b i si 

    , capj d ij ij  
,

  c ij l i . 
Proof: in [7], pp. 35-36 
This correspondence is illustrated in Figure 1 showing 

a graph with a matching and the corresponding skew 
symmetric flow network. 

This first section summarized the previously known 
results on the correspondence between matchings and 
flow optimization which allows for efficient algorithms 
[5, p. 207]. 

3. Optimality of Network Flows 

Since we have now reviewed the mapping between 
matchings and network flows we want to state several 
important results on the optimality of network flows 
which can be directly carried over. e.g. a maximal ad- 
missible balanced flow on the skew symmetric network 
corresponds to a maximal matching [7]. We start with the 
following definition. 

Definition: restnetwork [7, p. 21] 
Let N be a flownetwork and x the flow on it. Then the 

residual capacity corresponding to x is given by: 

 
    

 


 
cap , for

rescap : , for

0, otherwise

ij

ij

ij x ij E N

ij x ij E N

 
 



     (2) 

 ij  is the backward edge, when the flow is negative. 
The edges  ij  with  together with the 
vertices that coincide with an edge form the restnetwork 

 rescap 0ij 

 N x . 
So far we have only introduced the correspondence of 

network flows and matchings. However, we want to 
compute optimal matchings with respect to a cost func- 
tion. This means that we have to consider problems on 
networks N of the type 

 
   

   

   

min

cap

, integer

0,

ij ij
ij E N

ij

ij ji ij

C x c x

l ij x ij

x x x

e i i V N



 



 



  



           (3) 

The additional complication compared to maximum 
balanced flow problems is the cost function. Therefore 
we want to introduce the necessary framework in order to 
deal with it. We start by the following 

 

 

Figure 1. The left side shows a graph with vertices that are matched once (thick lines) and not matched (thin lines). On the 
left side the corresponding skew symmetric flow network is shown with thick lines corresponding to flows of 1. 
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Definition: potential, reduced costs [8] 
The potential function  associates with 

each vertex  a number , the potential i. 
π :V  

 π ii V
The reduced costs of an edge are defined as 

.    π π πij ijc c j i  
The length of a path is then obviously defined as the 

sum of the reduced costs of the individual edges. The 
shortest valid path between two points in a network con- 
nects the two points via a valid path and the path has 
minimum length. 

Corollary: [8] 
For the reduced costs on a network N any path p from 

a vertex k to a vertex l fulfills 

       π π π πij ijji p ji p
c c l

 
    k

πc







     (4) 

and for any circle K 

   
π
ij ijji K ji K

c
 

             (5) 

Obviously we shouldn’t try to find a solution by en- 
hancing or decreasing the flow on arbitrary edges but we 
need a good measure for distance. 

Definition: skew symmetric distances 
Let Pi,j be the set of admissible paths in the restnet- 

work  with start-node  and end- 
node . Then we define the skew symmetric 
distance from i to j as 

 N x
j V

 i V N x
 N x

 
 

,

π, : min , min
i jp P ij

ij p

d i j c


     
    
       (6) 

We call  the distance to s and the corresponding 
function is called d. 

 d i

Definition: symmetric distances 
Let d be the set of skew symmetric distances on a flow 

network N then the symmetric distances are given by 
The corresponding set is denoted by sd. 

     1

2
sd i d i d i           (7) 

At this point we state a theorem that has been exten- 
sively used for proving optimality 

Theorem: Reduced Cost Optimality [8] 
Let x be an admissible flow then x is optimal if a po-

tential π exists such that for all edges  in the rest-
network 

 ij

π 0ijc  .                (8) 

The potential π is often called the dual solution. It also 
has a practical importance [9]. Let us assume we have a 
logistics company with several warehouses. The trans- 
port costs per unit load between the different warehouses 
correspond to the costs on the edges. Then the potential 
for an optimal solution corresponds to the costs per unit 

We need two further lemmas conce

load for storing them in a warehouse. 

rning the optimal- 
ity

 balanced flow on a network N that fulfills 
th

st optimality also 
w

 of network flows 
Lemma: 
Let x be a
e reduced cost optimality with respect to a potential π. 

Furthermore sd denotes the symmetric distances with 
respect to the reduced costs π

ijc  then 
i) the flow x fulfills the reduced co

ith respect to the potential π π sd    
ii) the reduced costs π

ijc   a hre zero on t e shortest valid 
pa

e both statements one after the other: 

ths p and p’. 
Proof: 
We prov
i) Since x fulfills the reduced cost optimality  

   π 0, ij N x   . Furthermore since sd is ca
d paths we know: 

ijc
from the shortest vali

lculated 

     π ij sd j sd i c ij N x             (9) 

We use the definition of the reduced costs 

       π πsd j sd i c i j   

         
π

0 π π

0

ij

ij

ij

c i d i j d j

c 

    

 

    (10) 

ii) Let p be an st path and p' its bijection. For every 
edge (ij) in p, we have     π

ijd j d i c  . The same holds 
for the bijection. Therefore we have 

   π πc c d j d i   

   π π

0

0

ij ij

j i j ic c d i d j   



    
        (11) 

Lemma: 
flow x fulfills the reduced cost optimality on 

a 
Assume a 
flow network N. If we change the flow both on the 

shortest valid path p and its bijection p' by 

 
 

 

 

 

rescap ij
for

2balcap : min

rescap otherwise
ij p

ij p
p

ij


  
 
     
 
 

  (12) 

we find a new flow x' which also fulfills the reduced cost 
optimality with respect to the potential π π sd   . 

Proof: 
From the lemma above we know that the reduced costs 

ar

usly, an important ingredient is the solution of 
th

t to the combination of the results of Sec- 

e zero on p and p' with respect to π'. Therefore the re-
duced cost optimality cannot be violated if we enhance 
the flow by the maximum allowed capacity as defined 
above. 

Obvio
e shortest valid path problem. This has been discussed 

in detail in [10] and its complexity is  logO m n , where 
m is the number of edges and n is the tices in 
the network. 

We now ge

 number ver
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tio

4. Balanced Capacity Scaling 

ed capacity scaling 

enote this minimum capacity by Δ and we call 
ea

n 2 and 3 being an algorithm to compute optimal flows 
on skew-symmetric networks. 

In this Section we describe the balanc
algorithm for a linear cost function as in Equation (3) 
with the additional assumption that the costs are always 
positive. We will later generalize our result to a convex 
cost function. The idea of capacity scaling is to look at 
subgraphs in the restnetwork with some minimum capac- 
ity and to optimize the flow on these subgraphs success- 
sively. 

We d
ch phase of the algorithm where Δ does not change a 

Δ-scaling phase. We define two sets 

      
      

S i V N e i

T i V N e i

    

    
        (13) 

We can first calculate the maximum balanced flow 
through the network using one of the algorithms in [7] 
and use the result b as    e s e t b   . We now begin 
the algorithm with flow  0 such that the 
reduced cost optimality is fulfilled but the flow does not 
fulfill Equation (3) as far as the excess is concerned. 

For correctly prescribed Δ initially  

 0 and potential

       ,s T t    . We define S  : 1U e 
 U such th

s  and  

. This is the largest

14) 

We additionally need the following 

is defined as the network 
fo

start with 2log2 U    at not  
initially  S T  . Furthermore we define      

   
max 1ij

ij E N

c c


                 (

Definition: Δ-restnetwork 
The Δ-restnetwork  N   
rmed when only tak  edges in a flownetwork N 

into account with  rescap ij   . If the original flow 
network was skew s viously also 

ing the

mmetric, y ob  N   is 
skew symmetric. 

We now denote the balanced capacity scaling algo- 
rit

begin 

hm and afterwards prove its correctness. We state the 
algorithm in a form close to typical programming lan- 
guage. 

 

   0,π : 0, ,:x e s e t b     

     0, ,e i i V N s t    

 2
log 1

: 2
b     

while  do 
n 

very edge  in the Δ-restnetwork 

1 
begi

for e  ij
do 

if  rescap , 0ijij c  
rease flow on 

 then 
inc  ij  by resca  p ij  
increase flow on   j i   by  rescap ij  
recalculate the e(i)’s 

      
      

S

T i V N e i

i V N e i    

    
 

while    0, 0S T     do 
n 

x 
begi
take a verte   ,k S l T      

hortest path from l tcalculate the s o k in 
 N  or connect the two with an edge  

  
π π sd

 

 
 

  max with costs π πp c i jlk

enhance the flux by   min balcap ,p   
units on p and p  
update     , , N ,x S T    

end; 
2    

end; 
en

Theorem: 
d capacity scaling algorithm calculates a 

m

ve the theorem by induction in the Δ-scaling 
ph

 beginning we have so that the re- 
du

on to be optimal in the 2Δ- 
sc

d; 
 

The balance
aximal flow x on a skew symmetric network N with 

minimal costs. 
Proof: 
We pro
ases. 
In the  π 0ij ijc c   

lled. The nced cost optimality is fulfi etwork is skew 
symmetric in the beginning. 

Now we assume the soluti
aling phase and go over to the Δ-scaling phase. New 

edges added in the Δ-scaling phase may have negative 
reduced costs. For them  rescap 2ij     holds and 
we can enhance the flow on them by  ij  since 
the costs are negative. In this case they are  of the 
Δ-restnetwork. Since the same has to hold for the bijec-
tion the network will be skew symmetric again. Conse-
quently the reduced cost optimality is fulfilled after the 
first part. 

In the s

rescap
 not part

econd part we enhance the flow on shortest 
valid paths so that the reduced cost optimality will be 
fulfilled. If an edge  lk  is introduced with costs 

   max π – πc i j  the costs are so high that the edge 
the final solution. 

We only need to show that the a
will not be part of 

lgorithm obtains an 
admissible flow for Δ < 1. However, for Δ < 1 no vertex 
can exists with an excess greater than one. However, due 
to the correspondence theorem the problem can only 
have integer flow variations so that no vertex with an 
excess smaller than one can exist. 
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Therefore we have found an optimal solution which 
ha

 solve the Balanced 
M

5. Convex Costs 

neralization of the problem in 

       (15) 

The function is a mapping from 

s to be maximal since e(s) was assumed to be the 
maximal flow through the network. 

We therefore have an algorithm to
in Cost Flow Problem on skew symmetric networks. In 

the next section we want to discuss the additional com-
plication of a problem with a convex cost functions.  

We first define the ge
Equation (3) with a convex cost function: 

   min C x C x 
   

   

   

cap

, integer

0,

ij ij
ij E N

ij

ij ji ij

l ij x ij

x x x

e i i V N



 

 



  

 

:ijC D  D    
into the real num  know that for all  

, , , , 1x y D
bers and we

        

    ij ij ijc x y c x c y            (17) 

For a balanced capacity scaling algorithm for t
le

ion by 
lin

h step we double the number of 
po

nsidered 
th

he prob- 
m in Equation (15) we follow [11, pp. 556-560]. 
The idea is to approximate the convex cost funct
ear interpolation. This interpolation can be improved 

step by step until it is exact for all integer values as illus- 
trated in Figure 2. 

In the figure in eac
ints in between which we assume the function to be 

constant. The frequency polygon therefore becomes a 
better approximation of the original function until we 
approximate the function at each integer value. 

Since only integer flow values need to be co
e solution will be exact. In every Δ-scaling phase only 

changes of the flow values by  ,0,   need to be 
considered. Therefore we define ity and cost 
function for a Δ-scaling phase as: 

the capac

   

 

   

   

, if cap
cap

0, otherwise

, if
cap

0, otherwise

ij

ij

ij ij ij ij

ij

ij ij ij ij

j i

ij x
ij

x
j i

C x C x
cc

C x C x
cc







   


   


   
  


    


  



 




    (18) 

In the previous algorithm we additionally defined cmax 
w
work can have costs of: 

hich we have to do here as well. No edge in the net- 

 

Figuare 2. successive approximation of a convex cost func-
tion. 
 

  
   

max 1ij
ij E N

cc C e s


          (19) 

 e s  
rough 

is chosen again to be the maxim
th the network. We denote now the algorithm and 
prove i

um flow value 

ts correctness for solving problems of the type as 
in Equation (15) afterwards. 
 
begin 

   : 0,π : 0, ,x e s e t b      

     0, ,e i i V N s t    

 2
log 1

: 2
b     

while 1   do 
begin 

r eve  fo ry edge  ij  in the Δ-restnetwork 
do 
if π π0,ij j ic c   0  hen  

ease flow on 
t

and on  j i incr  ij  by Δ 
if  then π π0, 0ij j ic c   
reduce flow on  ij  and on  j i   by Δ 
rec )’s alculate the e(i

      
      

S e i

T i V N e i

i V N    

    
 

while    0, 0S T     do 
begin 

 a vertex take   ,k S l T     
shortest path from l calculate the to k in 

 N   or con nnect the two with a  edge  lk p  
with costs    max π – πcc i j  
π π sd   enhance the flux by  

  ap ,pmin balc   
units on p and p’ 
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update  and the reduced 

en

     , , ,x S T N  
costs 
d; 

2   
en

end; 
 

 have to prove that the algorithm is correct. 
Theorem: 

lates a 
m  x on a skew symmetric network with a 
co

e problem into 
the algorithm is correct. In the beginning 

d; 

We

The balanced capacity scaling algorithm calcu
aximal flow
nvex cost function with minimal costs. 
Proof: 
We first show that the conversion of th

   .S s T t   
and     2e s e t      so that not more than Δ flow 
units can be shifted in the first phase. D  
of Δ this ext Δ-scaling phases  

    2e i i N      . Consequently it is sufficient 
to only consider changes of the flow by  . 

at the reduced cost optimality 
is always fulfilled. In the beginning we have 

ue to the choice
holds also for the n

We now have to show th

   

   

0
0ij ij

ij

C C
cc  

 

0
: 0ij ij

j i

C C
cc  




 

 


       (20) 

so that the reduced cost optimality is fulfilled. 
Now let us assume that x is the flow after the 2  

ow 

nction 

-scaling phase. We have the following cases for the fl
in

since we woul e 

 the Δ-scaling phase: i): π π0, 0ij jic c  , ii)  
π π0, 0ij jic c  , iii) π π0, 0ij jic c  , iv) π π0, 0ij jic c  . 
The case iv) cannot occ ex cos

d hav
ur for a conv t fu

   
   

   
   

       

π π 0

π π 0

ij

ij ij ij ij

ij ij ij ij ij ij ij ij

i j

C x C x
i j

C x C x C x C x

  


  
  


       

  (21) 

However, from the definition of a convex cost function 
we know 

'ij ij ijC x C x  

     2 ijC x

       
ij ij ij ij ij

ij ij ij ij ij ij ij ij

C x C x

C x C x C x C x

    

     
  (22) 

and we have the disagreement. 
The case i) fulfills the reduced cost optimality and we 

 ii) we resolve this issue 
by
are left with ii) and iii). In case

 enhancing the flow by Δ flow units. After the 2Δ- 
scaling phase we have 

       2 2 π 2 π 0ij ij ij ijC x C x i j         (23) 

and we have 

       π π 0ij ijC x C x i jij ij            (24) 

From the inequality from the 2Δ-scaling phase follows 

       
       

2 π π

π π 0ij ij ij ij

C x C x i j

C x C x i j

       ij ij ij ij

        
  (25) 

and the inequality follows since the last line of E
(25) is smaller than zero by Equation (24) and conse- 

quation 

quently Equation (23) follows. 
The reduced costs have to be identical on  j i   since 

the network is skew symmetric. We can treat case iii) 
completely analogous. 

Everything we still need to show is that the reduced 
cost optimality is also fulfilled if we enhance the flow by 

 balcap p and not by Δ. We consider π 0ijc   and we 
obtain for the reduced costs 

  
  
balcapneu

ij ij ijcc C x p   

     
       

balcap π π

π π

ij ij

ij ij ij ij

C x p i j

C x C x i j

 

  

       

   (26) 

Consequently the reduced cost optimality is still ful- 
filled. The same can be shown for the edge  j i  . 

roblem
At the end we will therefore obtain an admissible flow 

which is the solution to the Min Cost Flow P  on a 
skew symmetric network with a convex cost function. 

We will finally get to the complexity of this problem 
using the above algorithm. 

Theorem 
The balanced capacity scaling algorithm has a com- 

plexity of   2log ,n m O U m S  with the complexity 
 ,n m  of computing a shortest valid path. 
Proof: 

e end of each 2Δ-scaling phase we have 

S

At th
 2T    or  2S    so that at most there is 2n  

of flo
tionally we 

w that can be shifted along in the next phase. Addi- 
chang t the beginning of the Δ- 

scaling phase by at most 2m  so that the total excess 
can be at most 

e the flow a

 2 n m  . In every iteration at least 
2  flow units are shifted so that we w ave at most ill h
 O m  iterations of the shortest val ath algorithm so 

that the com e ty is  
id p

pl xi  ,O mS n m . We can have at 
most 2log U   so that the complexity follows. 

6. Possible Improvements 

One can 

p

still improve the above algorithm by noticing 

hases

that for 2   there can be no edge  ij  with 
 rescap 1ij  . In this case shortest paths in the network 

nd we can use the simpler  al- are always valid a Dijkstra
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ps ha see
so that one on
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