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Abstract 
We give a characterization of the boundaries of smooth strictly convex sets in 
the Euclidean plane 2R  based on the existence and uniqueness of inscribed 
triangles. 
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1. Introduction 

The reader unfamiliar with the theory of convex sets is referred to the books [1] 
[2] [3] [4] [5]. Let M  be a set in the n -dimensional Euclidean space nR . In 
the following we shall denote by int M , clM , Mϑ , convM  the interior, the 
closure, the boundary and respectively the convex hull of the set M . With 
( ),d x y  we denote the Euclidean distance of the points x  and y  and with 
( ),L x y  the line determined by the points x and y. The diameter diamM  of a 

set M  is ( ){ }diam sup , : ,M d x y x y M= ∈ . For a point 2p R∈  and a real 
number r  we shall denote with ( ),C p r  and ( ),D p r  the circle and respec- 
tively the disc with center p  and radius r . The distance ( ),d p M  between a 
point p  and a set M  in 2R  is ( ) ( ){ }, inf , :d p M d p x x M= ∈ . With ] [,x y  
we denote the open line segment with endpoints x  and y , that is  
] [ { } { }, conv , \ ,x y x y x y= . For 3 nonlinear points ,x y  and z  in 2R  we 
denote with ( )max , ,x y z∠  the maximum angle of the triangle ( ), ,x y z∆ . A 
convex curve is a connected subset of the boundary of a convex set. 

2. Preliminaries 

In the chapter 8 of the book [4] of F.A. Valentine the author says the following: 
“It is interesting to see what kind of strong conclusions can be obtained from 
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weak suppositions about any triplet of points of a plane set S .” In [6] Menger 
gives such a characterization of the boundary of a convex plane set S  based on 
intersection properties of S  with the seven convex sets in which the space 2R  
is subdivided by the lines ( ) ( )1 2 2 3, , ,L x x L x x  and ( )3 1,L x x  determined by an 
arbitrary triplet of noncollinear points { }1 2 3, ,x x x  from S . In [7] K. Juul 
proved the following: 

Theorem 1. A plane set S  fulfils  
1) { }{ }, , : int conv , ,x y z S S x y z∀ ∈ ∩ =∅ , if and only if S  is either a subset 

of the boundary of a convex set, or an X -set, that is a set { }1 2 3 4 5, , , ,x x x x x  
with ] [ ] [ { }1 2 3 4 5, ,x x x x x∩ = . 

A survey of different characterizations of convex sets is given in the paper [8]. 
The results of K. Menger and that of K. Juul give characterizations of the boun-
daries of convex sets. 

In the years 1978 [9] and 1979 [10] we have proved the following two theorems 
giving a characterization of the boundaries of smooth strictly convex sets: 

Theorem 2. A plane compact set S  is the boundary of a smooth strictly 
convex set if and only if the following two conditions hold: 

1) { }{ }, , : int conv , ,x y z S S x y z∀ ∈ ∩ =∅ , 
2) For every triangle ( )1 2 3, ,p p p∆  in 2R  there is one and only one triangle 
( )1 2 3, ,p p p′ ′ ′∆  homothetic to the triangle ( )1 2 3, ,p p p∆  inscribed in the set S , 

i.e. such that 1 2 3, ,p p p S′ ′ ′ ∈ . 
Theorem 3. A plane compact set S  is the boundary of a smooth strictly 

convex set if and only if the following two conditions hold: 
1) For every p S∈  and every 0>  there is a positive number ( ),pδ   

such that for every triplet of nonlinear points , ,r s t  in ( )( ){ }int , ,S D p pδ∩   
we have ( )max , , πr s t∠ > −  . 

2) For every triangle ( )1 2 3, ,p p p∆  in 2R  there is one and only one triangle 
( )1 2 3, ,p p p′ ′ ′∆ , homothetic to the triangle ( )1 2 3, ,p p p∆  inscribed in the set S , 

i.e. such that 1 2 3, ,p p p S′ ′ ′ ∈ . 

3. Main Results 

The main result of this paper is Theorem 4 giving another characterization of 
the boundaries of smooth strictly convex sets in the Euclidean plane 2R  which 
uses also condition (2) of the Theorem 2 and Theorem 3. 

Theorem 4. A compact set S  in the Euclidean plane 2R  is the boundary of 
a smooth strictly convex set if and only if there are verified the following three 
conditions: 

1) For every triangle ( )1 2 3, ,p p p∆  in 2R  there is one and only one triangle 
( )1 2 3, ,p p p′ ′ ′∆  homothetic to the triangle ( )1 2 3, ,p p p∆  inscribed in the set S , 

i.e. such that 1 2 3, ,p p p S′ ′ ′ ∈ . 
2) For any two distinct points p S∈  and q S∈  there are at least two points 

1t  and 2t  such that 1 1t S H∈ ∩  and 2 2t S H∈ ∩ , where 1H  and 2H  are 
the two open halfplanes generated in 2R  by the line ( ),L p q . 

3) The set S  does not contain three collinear points. 
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For the proof of Theorem 4 we need the following theorem from the paper 
[11] and three lemmas: 

Theorem 5. Let ( ), ,a b c∆  be a triangle in the Euclidean plane 2R . Suppose 
that S  is a strictly convex closed arc of class 1C . Then there exists a single tri-
angle ( )1 1 1, ,a b c∆  homothetic to the triangle ( ), ,a b c∆  inscribed in the set 
S , in the sense that 1 1 1, ,a b c S∈ . 

Lemma 1. The convex hull convS  of a compact set S  in the Euclidean 
plane 2R  verifying the condition (2) from Theorem 4 is a strictly convex set. 

Proof. Let us suppose the contrary. Then there are two distinct points  
{ }, convp q Sϑ∈  such that the line segment { }conv , convp q S⊂ . The convex 

hull of a compact set is also a compact set (see [5] Theorem 2.2.6). The line 
( ),L p q  is thereby a supporting line for the compact set convS . Denote with 

1H  and 2H  the two open halfplanes generated by the line ( ),L p q  such that 
{ }1convS cl H⊂  and 2 convH S∩ =∅ . By Carathodory’s Theorem (see [5] or 

[12] Theorem 2.2.4) the point convp S∈  can be expressed as a convex combi-
nation of 3 or fewer points of S . 

If the point p  can be expressed only as a convex combination of three (and 
not of fewer) points 1 2 3, ,x x x  of S  then it follows that we must have  

{ }{ } { }1 2 3int conv , , int convp x x x S∈ ⊂  in contradiction to the fact that  
{ }convp Sϑ∈ . 

If the point p  can be expressed only as a convex combination of 2 (and not 
of fewer) points of S , there are 1x S∈  and 2x S∈  such that  

{ } { }1 2 1conv , convp x x S cl H∈ ⊂ ⊂ . Then the points 1x  and 2x  must be on 
the supporting line ( ),L p q . As 2 conv ,H S∩ =∅  this is in contradiction with 
property (2) of the set S . 

Thereby we must have p S∈ . By an analog reasoning for the point q  we 
can conclude that we have also: q S∈ . Thus we have proved the existence of at 
least 2 different points of S  on the supporting line ( ),L p q  of convS  in 
contradiction to the property (2) of the set S . 

Lemma 2. The boundary { }convSϑ  of the convex hull of a compact set S  
in the Euclidean plane 2R  verifying the condition (2) from Theorem 4 is a 
subset of the set S, i.e. { }convS Sϑ ⊂ . 

Proof. Let { }convp Sϑ∈  be an arbitrary point from the boundary of the 
convex hull of the compact set S . Each boundary point of the compact convex 
set convS  in 2R  is situated on at least one supporting line of the set convS  
(see for instance [3] pp. 6). We distinguish now the following two cases: 

1) There is only one supporting line 1L  of the set convS  going through the 
point p , i.e. the boundary { }convSϑ  is smooth in the point p . By Lemma 1 
it follows that the convex hull convS  is a strictly convex set and thereby we 
have 1convS L p∩ = . 

Let us now suppose the point p S∉ . From 1convS L p∩ =  and p S∉  
follows then 1S L∩ =∅ . Denote with oH  the open halfplane generated by the 
line 1L , which contains the set S . As S  is a compact set we have then  

( ){ }1min , : 0r d x L x S= ∈ > . Consider then in the open halfplane oH  a line 
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1L′  parallel to the line 1L  at distance r  to the line 1L . Denote with oH ′  the 
open halfplane generated by the line 1L′  and such that o oH H′ ⊂ . It is evident 
that { }op cl H ′∉ . From the definition of the constant, r  folows { }oS cl H ′⊂  
and { } { }conv oS cl Hϑ ′⊂  in contradiction to { }convp Sϑ∈ . Thereby our 
supposition p S∉  is false, i.e. we must have p S∈ . 

2) There are two supporting lines 1L  and 2L  of the set convS  going 
through the point p . Denote then with 1L′  and 2L′  the two halflines with 
endpoint p  of the line 1L  and respectively 2L  such that  

{ }1 2conv convS L L′ ′⊂ ∪ . 
Let us suppose that p S∉ . From the compactness of S  follows then the ex-

istence of a real number 0r >  such that for the disc ( ),D p r  with the center 
p  and the radius r  we have: ( ),D p r S∩ =∅ . Consider then the points 

( )1 1,q C p r L′= ∩  and ( )2 2,q C p r L′= ∩ , where ( ),C p r  is the circle with 
center p  and radius r . Let 1H  be the open halfplane generated by the line 
( )1 2,L q q , which contains the point p  and 2H  the other open halfplane gen-

erated by the line ( )1 2,L q q . We have then evidently 1S clH∩ =∅  and there-
by 2S H⊂ . From the inclusion 2S H⊂  it follows also that 2convS H⊂ . As 
{ }convS Sϑ ⊂  we have also: { } 2convS Hϑ ⊂  in contradiction to our supposi-

tion { }convp Sϑ∈ . Therefore the point p  must belong to the set S . 
So we have proved in both cases (1) and (2) that { }convp Sϑ∈  implies  

p S∈ , i.e. { }convS Sϑ ⊂ . 
A characterization of compact sets S  in the Euclidean plane 2R  for which 

we have { }convS Sϑ=  is given in the following: 
Lemma 3. A compact set S  in the Euclidean plane 2R  has a strictly convex 

hull and coincides with the boundary of its convex hull { }convSϑ  if and only if 
there are verified the conditions (2) and (3). 

Proof. Let S  be a compact set in the Euclidean plane 2R , which has a strictly 
convex hull convS  and such that { }convS Sϑ= . Consider then two arbitrary 
points 1p  and 2p  of the set S  and the two open halfplanes generated by the 
line ( )1 2,L p p  in 2R . Because S  has a strictly convex hull it is then evident 
that we have verified condition (2) and (3). 

To prove the only if part of the lemma let us consider a compact set S  in the 
Euclidean plane 2R , which verifies conditions (2) and (3). By Lemma 1 the 
convex hull convS  of S  is a strictly convex set. By Lemma 2 we have then for 
the set S  the inclusion { }convS Sϑ ⊂ . Let us now suppose that we would 
have { }convS Sϑ⊂/ , i.e. there is a point p S∈  such that { }convp Sϑ∉ . 
Then the point p  must be an interior point of the convex hull convS . Let L  
be an arbitrary line such that p L∈ . Then it is obvious that the line L  intersects 
{ }convSϑ  in two different points 1t  and 2t  such that { }1 2conv ,p t t∈ . From 
{ }convS Sϑ ⊂  it follows that 1t S∈  and 2t S∈  in contradiction to the con-

dition (3) of the set S . So we conclude that { }convS Sϑ⊂ . This inclusion to-
gether with the inclusion { }convS Sϑ ⊂  gives then { }convS Sϑ⊂ . 

A similar result as that of Lemma 3 without the compactness of the set S  but 
with the additional assumption of the connectedness of the set S  was obtained 
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by K. Juul in [7]: 
Theorem 6. A connected set S  in 2R  is a convex curve if and only if it ve-

rifies condition (1) from Theorem 1. 
Proof of Theorem 4. 
For the proof of the if-part of the theorem let S  be the boundary of a com-

pact smooth strictly convex set in the Euclidean plane 2R . It is then easy to ve-
rify conditions (2) and (3) for the set S . Condition (1) follows immediately 
from Theorem 5. 

For the proof of the “only if”—part of the theorem let S  be a compact set in 
the Euclidean plane 2R , which verifies conditions (1), (2) and (3). By Lemma 3 
it follows that the convex hull convS  of the set S  is strictly convex and that 

{ }convS Sϑ= . 
It remains to prove that convS  is also a smooth set. Let us assume the con-

trary: there is a point { }1 conva Sϑ∈ , which is not a smooth point of the boun-
dary of S , i.e. there exist two supporting lines 1L  and 2L  for the set convS  
at the point 1a . For { }1, 2i∈  denote with iH  the closed half-plane generated 
by the supporting line iL , which contains the set S . Denote with C  the con-
vex cone 1 2C H H= ∩ . We have then evidently the inclusions: S C⊂  and 
convS C⊂ . As convS  is a strictly convex set we have also the inclusion 

1\ intS a C⊂ . For { }1, 2i∈  denote with iL′  the closed halfline of the line iL  
with origin 1a  such that iL Cϑ′ ⊂ . Consider then the isosceles triangle  
( )1 2 3, ,a a a∆  with ( ) ( )1 2 1 3, ,d a a d a a=  and such that angle 2 1 3a a a∠  has the 

same angle bisector as the boundary angle of the cone C  formed by the hal-
flines 1L′  and 2L′  with the vertex 1a  and such that the angle 2 1 3a a a∠  is 
greater than the boundary angle of the cone C . By condition (1) there exists 
then three points , 1, 2,3ia S i′∈ =  such that triangle ( )1 2 3, ,a a a′ ′ ′∆  is homothetic 
to the triangle ( )1 2 3, ,a a a∆ . Because the angle 2 1 3a a a∠  is greater than the 
boundary angle of the cone C  the point 1a′  cannot coincide with the point 

1a . From this fact and the inclusion 1\ intS a C⊂  we can conclude that we 
have: intia C′∈  for 1, 2,3i = . From the homothety of the triangles  
( )1 2 3, ,a a a′ ′ ′∆  and ( )1 2 3, ,a a a∆  it follows then that  

{ }{ } { }1 1 2 3int conv , , int conva a a a S′ ′ ′∈ ⊂  in contradiction to { }1 conva S Sϑ′∈ = . 
So we have proved that the convex hull convS  is a smooth strictly convex set. 

4. Conclusions 

As we have seen condition (1) is used and is essential in the proofs of the Theo-
rem 2, Theorem 3 and Theorem 4. We emit now the following: 

Conjecture: A compact set S  in the Euclidean plane 2R  is the boundary of 
a smooth strictly convex set if and only if there is verified the condition: 

For every triangle ( )1 2 3, ,p p p∆  in 2R  there is one and only one triangle 
( )1 2 3, ,p p p′ ′ ′∆  homothetic to the triangle ( )1 2 3, ,p p p∆  and inscribed in the set 

S  i.e. such that 1 2 3, ,p p p S′ ′ ′ ∈ . 
P. Mani-Levitska cites in his survey [8] the papers [7] and [9] and says reffer-

ing to these, that he has not encountered extensions of these results to higher 



H. Kramer 
 

76 

dimensions. We also don’t know generalizations of our results to higher dimen-
sions. 
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