
Open Journal of Earthquake Research, 2018, 7, 28-38 
http://www.scirp.org/journal/ojer 

ISSN Online: 2169-9631 
ISSN Print: 2169-9623 

 

DOI: 10.4236/ojer.2018.71002  Feb. 11, 2018 28 Open Journal of Earthquake Research 
 

 
 
 

On the Dynamical Analysis in Aftershock 
Networks 

Woon-Hak Baek1, Kyungsik Kim1*, Ki-Ho Chang2, Seung-Kyu Seo2, Jun-Ho Lee3*, Dong-In Lee4* 

1Department of Physics, Pukyong National University, Busan, Korea 
2Applied Forecast Meteorology Research Division, National Institute of Meteorological Sciences, Seogwipo, Korea 
3Trainning Ship Administrative Center, Pukyong National University, Busan, Korea  
4Department of Environmental Atmospheric Sciences, Pukyong National University, Busan, Korea 

 
 
 

Abstract 
We investigate the dynamical behavior of aftershocks in earthquake networks, 
and the earthquake network calculated from a time series is constructed by 
contemplating cell resolution and temporal causality. We attempt to connect 
an earthquake network using relationship between one main earthquake and 
its aftershocks from seismic data of California. We mainly examine some to-
pological properties of the earthquake such as the degree distribution, the 
characteristic path length, the clustering coefficient, and the global efficiency. 
Our result cannot presently determine the universal scaling exponents in sta-
tistical quantities, but the topological properties may be inferred to advance 
and improve by implementing the method and its technique of networks. Par-
ticularly, it may be dealt with a network issue of convenience and of impor-
tance in the case how large networks construct in time to proceed on earth-
quake systems. 
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1. Introduction 

Scientists have treated emerging problems in order to cover the basic concept 
and the important principle or clearly describe the scientific phenomenon. In 
several drifts of the complex system, they have pursued and settled many scien-
tific phenomena [1] [2] [3] [4] [5] such as agent-based model, economic net-
work, social interaction, neural and cerebral networks, world wild web, and eco-
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system, which we have been able to recognize exactly in the past. Furthermore, 
the research of complex systems has recently been applied to the method and its 
technique of studying the various financial time series [6] [7], wavelet transform 
approaches [8] [9], transport networks [10] [11], social network [12] [13], mul-
tilayer networks [14] [15] and earthquake phenomena [16]. 

Particularly, the remarkable potential to calculate and analyze the dynamical 
behavior of complex systems has gradually been an increasing trend in new 
fields of research in the natural, engineering, medical, social sciences over the 
last two decades. In the network theory, small-world and scale-free network 
models [17] [18] have been studied widely in various applications of these scien-
tific fields and played a crucial role in understanding complex phenomena [19] 
[20] [21]. Researchers have as yet concentrated on statistical and stochastic 
problems that the degree distribution for scale-free networks follows a power 
law, while that for random networks decays faster than exponentially. In com-
plex seismic time series [22] [23] [24] [25] [26], the shallow earthquake has con-
structed and analyzed the form of distributions in the relevant region that leads 
to many aftershocks [27] [28] [29]. The Gutenberg-Richter law [24] has used to 
measure the number of aftershocks, and the slip-size of faults or the seismic 
moment has followed a power law. The Omori-Utsu law [25] has analyzed the 
calculation of earthquakes by a theoretical formula, and the frequency of after-
shocks has decayed in a power law. Nanjo et al. [30] have investigated the seis-
micity modeled by the Gutenberg-Richter law and the Omori-Utsu law in M6.5 
quake of Kumamoto 2016. They speculated the reduction of the occurrence of 
larger shocks causing the notable increase in the b value and the large p value. 

Abe and Suzuki have analyzed the spatio-temporal properties of seismicity 
from the viewpoint of the Tsallis entropy under appropriate constraints [31]. 
They have argued the spatial distance and the time interval between two succes-
sive earthquakes in the characteristic of the nonextensive statistical mechanics 
[29]. The correlation function has particularly been a main issue in theoretical 
and numerical investigations of aftershock phenomena. Several theoretical for-
mulae have been used to carry out the calculation of earthquakes. It has been 
suggested to construct complex network from seismic data by Abe and Suzuki 
[16]. Baek et al. have studied the earthquake network by considering the cell res-
olution and the temporal causality based on earthquake activity data for the Ko-
rean Peninsula [32]. They mainly estimated and analyzed several global network 
metrics. Min et al. have performed the numerical computations for network me-
trics from seismic time series data taken in Japan [33]. They have investigated 
the topological robustness of the earthquake network against the spatial shift and 
the scale after constructing the earthquake network in a cubic cell. 

The aftershocks represent many smaller earthquakes that it occurs after a 
large earthquake. Our method is to construct the network between one main 
earthquake and its aftershocks, different from the Abe and Suzuki method 
[16]. It is as yet an open problem that the statistical quantities in earthquake 
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networks find the universal property and the regular feature. In the future, we 
think that this is an important problem coming to a settlement. In this paper, 
we study and analyze the topological property and its feature in the aftershock 
network. After constructing an aftershock network, we mainly examine some 
topological properties such as the mean degree, the degree distribution, the 
characteristic path length, the clustering coefficient, and the global efficiency 
from seismic data of California. Section 2 describes the theoretical method of 
complex networks. In section 3, we treat the numerical calculation and its re-
sult, and our case is particularly compared to both the Abe and Suzuki net-
work and the random network in earthquake networks. Our result is summa-
rized in section 4. 

2. Theoretical Method 

In this section, we mainly consider the theoretical background of the several 
global network metrics. First of all, there are some important ingredients of 
complex networks, and these are different from ingredients of random networks. 
The mean degree k  is defined as 

1

1 N

m
m

k k
N =

= ∑ ,                        (1) 

where km is the degree of a node m, and N is the number of total degrees. The 
random network is that it constructed by randomizing the earthquake network 
under fixed links and nodes. From our method for constructing network, a 
newly creating node of the growing earthquake network is linked with preferen-
tial attachment probability. A network generated with this rule characterized by 
power-law connectivity distribution. The degree distribution that is the proba-
bility distribution function as a function of degrees k is represented in terms of 

( ) ~P k k γ− ,                          (2) 

where γ  is the degree exponent. Theoretically, the scaling exponent γ  of the 
scale free network [18] [33] is in the range between 2 to 3. The clustering coeffi-
cient Ci for a node i is defined as the fraction of links that exists among its near-
est-neighbor nodes to the maximum number of possible links among them. The 
clustering coefficient of a node with degrees k follows the scaling law 

( ) ~C k k β− ,                          (3) 

where the scaling exponent β  is a hierarchy coefficient. The network with the 
mentioned feature of Equations (2) and (3) is called the scale free network. 

The characteristic path length is defined the statistical quantity that the sum of 
all the shortest path length between two nodes is divided by all links of nodes. 
We introduce the characteristic path length L given as 

( )
1

1 1

2
1

N N

mn
m m i

L L
N N

−

= = +

=
− ∑ ∑ ,                   (4) 

where Lmn is the shortest path length between nodes m and n [34]. We consider 
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that the diameter of the network is the largest of all the shortest path lengths. If 
the averaged shortest path length is proportional to logN, it can be ascertained 
that the property of a network is satisfied the small-worldness. The average clus-
tering coefficient C is calculated as 11 N

mmC N C
=

= ∑ . Here, the clustering coef-
ficient Cm for a node m is defined as the fraction of links that exist among its 
nearest neighbor nodes to the maximum number of possible links among them. 
The global clustering coefficient Cg is defined as the transitivity ratio that is the 
fraction of the closed triangles over the whole triangles. 

The global efficiency is defined as the average of inverses of the global distance 
for all nodes [35]. We calculate the global efficiency as 

( )
1

1 1

2 1
1

N N

g
i j i ij

E
N N L

−

= = +

=
− ∑ ∑ .                     (5) 

When we construct a network for the neighbors of node m, the local efficiency 
Elc can be calculated to be the average value of the efficiencies of node as 

11 N
lc mmE N E

=
= ∑ , where Em is the subgraph efficiency of the neighbors of the 

m-th node. 
From Equations (1)-(5), we mainly calculate and analyze the topological 

measures in the complex network in next section. These methods and tech-
niques are able to be treated in the study of the diverse earthquake models. Fur-
ther result of other phase metrics will appear in a future publication. 

3. Numerical Calculations and Results 

The aftershocks have a trend occurring during definitive time intervals after one 
main earthquake occurs. If an aftershock is larger than the main shock, then the 
aftershock is considered as the role of the main shock and the previous main 
shock is designated as a foreshock. Aftershocks are formed as the crust around 
the displaced fault plane adjusts to the effects of the main shock. Hence, we sug-
gest our method to construct complex network using the property of after-
shocks. An earthquake network is constructed by segmenting the whole region 
into three-dimensional cubic cells and making a link between consecutive 
events. Each cubic cell is regarded as node of a network, and the network con-
structed in that manner is basically directed, but we transform it into an undi-
rected one because we focus on the topology of the network. 

Our network is introduced the method constructing in aftershock, while 
Abe-Suzuki network constructs in earthquakes for all the time series data con-
secutive earthquake events. Our method constructing the network is compared 
to that of Abe-Suzuki. Our procedure is as follows: 1) We segment the whole re-
gion into cells, each of which has the same size. 2) If the magnitude of second 
earthquake is smaller than the first one, we link two earthquakes. 3) If the mag-
nitude of third earthquake is smaller than the second one, we also make a link 
between first earthquake and third one. In this manner, smaller earthquakes as 
the role of aftershock are linked with a main shock. Otherwise, if the magnitude 
of third earthquake is bigger than that of second earthquake, the third one be-
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comes a main shock. 4) If two consecutive events belong to the same cubic cell, 
then their link is disregarded. 5) The number of links, if two directed links form 
between two cubic cells. 6) Hence, we regard the links made by all events be-
longing to the cubic cell with others in another cubic cell as links of a network, 
by considering each cubic cell as a node. Next, the method of Abe-Suzuki is as 
follows: 1) We segment the whole region into N-by-N-by-L cubic cells, each of 
which has the same size. 2) We link two earthquakes occurring consecutively. 3) 
If two consecutive events belong to the same cubic cell, their link is disregarded. 
4) If two directed links form between two cubic cells, the number of links is 
counted as one. 5) By considering each cubic cell as a node, we regard the links 
made by all events belonging to the cubic cell with others in another cubic cell as 
links of a network. 

We construct and analyze seismic data collected from California of USA. The 
data sources are USGS [36] that the time intervals are between 20th May 2001 
and 19th May 2010. The region covered is 32˚N - 37˚N latitude and 115˚W - 
120˚W longitude to the depth of 797 km on California. The maximal magnitude 
is 7.2, and the data for the total numbers of events is 147,193. We configure two 
different earthquake networks, that is, the OAS and the ASN. We have formed 
11 networks with various cubic cell scales from (1˚/10) × (1˚/10) × 10 km3 to 
((1˚/20) × (1˚/20) × 10 km3. 

In Figure 1, the number of links versus the number of nodes plots in the OAS 
and the ASN. Due to the different method to construct the network, our after-
shock networks have smaller links than the ASN, compared to Table 1. Figure 2 

 

 
Figure 1. The number of links versus the number of nodes in our aftershock network 
(OAS, circle) and the Abe-Suzuki network (ASN, cross). 
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Table 1. Numerical computation of statistical quantities performed from seismic time se-
ries data taken in Japan. The statistical quantities N, k, <k>, L, Cl , and Eg denote the 
number of nodes, the number of links, mean degree, characteristic path length, average 
clustering coefficient, and global efficiency, respectively. We summarize the values of 
these statistical quantities at the 11 cell widths from 1˚/10 degree and 1˚/20 degree, and 
the depth is 10 km. Here, the two networks are our aftershock network (OAS) and 
Abe-Suzuki network (ASN). 

cell width N 
k <k> L Cl Eg 

OAN ASN OAN ASN OAN ASN OAN ASN OAN ASN 

1˚/10 2,616 32863 50465 25.12 38.58 2.66 2.49 0.41 0.59 0.37 0.71 

1˚/11 2,963 34501 53604 23.29 36.18 2.70 2.52 0.38 0.57 0.36 0.69 

1˚/12 3,309 36735 57832 22.20 34.95 2.76 2.56 0.35 0.53 0.35 0.66 

1˚/13 3,660 38557 61386 21.07 33.54 2.79 2.59 0.33 0.51 0.34 0.64 

1˚/14 4,041 40156 64690 19.87 32.02 2.84 2.63 0.30 0.49 0.33 0.62 

˚/15 4,350 41154 67578 19.66 31.07 2.86 2.66 0.29 0.47 0.33 0.60 

1˚/16 4,691 43245 70811 18.44 30.19 2.91 2.68 0.27 0.45 0.33 0.57 

1˚/17 5,063 44186 72824 17.45 28.77 2.94 2.70 0.25 0.44 0.32 0.56 

1˚/18 5,408 45764 75902 16.92 28.07 2.99 2.74 0.23 0.42 0.31 0.54 

1˚/19 5,783 46499 77580 16.08 26.83 3.01 2.76 0.21 0.39 0.31 0.51 

1˚/20 6,127 47955 80398 15.65 26.24 3.04 2.79 0.20 0.38 0.30 0.49 

 

 
Figure 2. Mean degree versus the cell width in the OAS (blue circle) and the ASN (blue 
cross). The red circle (red cross) denotes our (Abe-Suzuki) random network. 
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plots the mean degree as a function of the cell width in our aftershock network 
and the ASN. We show that the mean degree of the earthquake network be-
comes relatively smaller than that of random network as the cell width ap-
proaches to small values. 

In Figure 3, the characteristic path length plots in the OAS and the ASN. We 
also show that the average shortest path length of the earthquake network is rel-
atively smaller than that of random network, as the cell width approaches to 
smaller value. Figure 4 shows the average clustering coefficient as a function of 
the cell width, and the global efficiency is plotted as a function of the cell width 
in Figure 5. Since the random network constructs from mixed or shuffled time 
series data, it is certain that the values of the global efficiency and the average 
clustering coefficient are different from those of the regular network. In the OAS 
and the ASN, both the global efficiency and clustering coefficient are larger than 
those of random networks. 

We find that the scaling exponent in the degree distribution [32] has 1.53 and 
1.60 (1.37 and 1.36) in the case of (1˚/20) × (1˚/20) × 10 km3 and (1˚/10) × 
(1˚/10) × 10 km3 in the OAS (the ASN), respectively. Table 1 summarizes the 
numerical computation of statistical quantities in various scales performed from 
seismic time series data taken in California of USA. We compare the OAS to the 
ASN, and these are the values of these statistical metrics at the 11 cells from 
1˚/20 to 1˚/10 and 10 km of the depth. 
 

 
Figure 3. Characteristic path length in our network (blue circle) and Abe-Suzuki network 
(blue cross). The red circle (red cross) denotes our (Abe-Suzuki) random network. 
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Figure 4. Average clustering coefficient in the OAS (blue circle) and the ASN (blue 
cross). The red circle (red cross) denotes our (Abe-Suzuki) random network. 

 

 
Figure 5. Global efficiency versus the cell width in the OAS (blue circle) and the ASN 
(blue cross). The red circle (red cross) denotes our (Abe-Suzuki) random network. 
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4. Summary 

In this paper, we have calculated and analyzed the fundamental network metrics 
such as the mean degree, degree distribution, characteristic path length, average 
clustering coefficient, and global efficiency from seismic data of California. We 
have compared the OAS and the ASN to their random networks. Through other 
works, the seismicity has taken the features of complex network for the average 
clustering coefficient. Min et al. have found the values of average clustering coef-
ficient between 0.85 and 0.90 in the cell widths between 60 km and 100 km [33]. 
We show that the average clustering coefficient in our case has smaller values 
than that of ASN in the cell widths between 1˚/20 and 1˚/10. 

We have novelly treated the network of aftershocks in the field of complex 
networks. In the future, we think that this method will extend and measure its 
topological metrics to other earthquake networks how to show a universal prop-
erty in networks of other regions. We conclude from the results of the calcula-
tion that our aftershock network is a scale free network and has the hierarchical 
structure. Particularly, our method is able to perceive one way to construct the 
aftershock network, significantly different from the constructing method of the 
ASN. 

The results of this investigation may provide useful and effective information 
for prediction of scaling behaviors under the impacts of earthquake network 
changes in other earthquake regions. Our findings support that a recent network 
approach to earthquake analysis is very useful and reliable in three-dimensional 
cells. In order to argue our suggestion, a further work about the calculation of 
network constructions in other nations is needed. It is anticipated that the for-
malism of our analysis can be extended to both discrimination and the characte-
rization of various aftershocks and earthquakes. 
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