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Abstract 
A numerical simulation scheme is proposed to analyze domain tessellation and pattern formation 
on a spherical surface using the phase-field method. A multi-phase-field model is adopted to 
represent domain growth, and the finite-difference method (FDM) is used for numerical integra-
tion. The lattice points for the FDM are distributed regularly on a spherical surface so that a most-
ly regular triangular domain division is realized. First, a conventional diffusion process is simu-
lated using this lattice to confirm its validity. The multi-phase-field equation is then applied, and 
pattern formation processes under various initial conditions are simulated. Unlike pattern forma-
tion on a flat plane, where the regular hexagonal domains are always stable, certain different pat-
terns are generated. Specifically, characteristic stable patterns are obtained when the number of 
domains, n, is 6, 8, or 12; for instance, a regular pentagonal domain division pattern is generated 
for n = 12, which corresponds to a regular dodecahedron. 
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1. Introduction 
The phase field model has been developed to simulate microstructures in materials, and various complicated 
patterns such as dendrite, cellular, lamellar, and polycrystalline structures have been successfully regenerated 
[1]-[4]. In addition, the model has been widely used not only in materials science but also in various fields such 
as topological optimization [5] [6]. We also applied the phase-field method to analyze the space-filling structure 
in two- and three dimensions [7] [8]. In the 2-D problem, an infinite plane can be divided into regularly repeti-
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tive patterns with typical symmetric unit shapes such as regular triangles, squares, and regular hexagons. In 3-D 
space, the repetitive space division is achieved using a regular truncated octahedron or a rhombic dodecahedron, 
which are also defined as the Voronoi tessellations of body-and face-centered cubic lattice points, respectively. 
Especially, the former is known as the Kelvin cell and is considered to have the best geometrical properties, i.e., 
the highest symmetry and smallest surface area. The author has further demonstrated 3-D space division by nu-
merical simulation using the phase field model [9], and successfully obtained these patterns. Moreover, it has 
been found that a significant advantage of the truncated octahedron is its stability. Microstructure modeling and 
simulation of foam or porous materials are some of the expected applications of this model.  

Now, our next target is region division on a curved surface. First, we focus on a spherical surface. In a flat 
plane, the most preferred unit is a regular hexagon because of its symmetry. However, region division on a 
spherical surface is not straightforward; it is impossible to divide the spherical surface into equally shaped hex-
agons. This is revealed by reviewing polyhedra or platonic solids. For instance, a regular dodecahedron consists 
of 12 pentagons, and a regular icosahedron consists of 20 regular triangles. This geometrical feature means that 
the surface division with regular pentagons or triangles is possible if slight distortion along the curved surface is 
allowed. However, these are only the exceptions, and it is well known that regular polyhedra are realized only 
for the tetra-, hexa-, and octahedron in addition to the dodeca- and the icosahedron. Similar types of problem 
have been investigated in geophysics and meteorology and developed as the discrete global grid system [10] 
[11], where the surface of the earth is divided into domains. Regular domain tessellation of curved surface has 
also been an intensive research subject in computer graphics [12]. As geometrical schemes, Voronoi tessellation 
and Delaunay triangulation are quite useful, and the computational algorithm has been improved [13] [14]. 
However, these techniques are intrinsically based only on geometrical features. Other candidates can be found in 
the molecular structures of fullerene, though they consist of two types of unit cells. For instance, a C60 consists 
of 12 regular pentagonal and 20 regular hexagonal faces. This type of semi-regular polyhedron, or Archimedean 
solid, helps to identify a better division; however, these cases also provide a limited solution. Therefore, we are 
motivated to find the space-dividing pattern by computer simulation, and apply the above mentioned phase-field 
method to this end, since the model can capture not only geometrical but also various kinds of physical and 
chemical features. Phase-field equations on the 2-D space are extended to the spherical surface. The fundamen-
tal equations to be solved are differential equations, and hence, numerical integration is required. The computa-
tional scheme as well as the phase-field equations is explained in Section 2, and the simulation results are pre-
sented in Sections 3 and 4.  

2. Fundamental Equations and Numerical Scheme 
2.1. Phase-Field Equations 
The multi-phase-field model is applied in this study. This model was originally proposed by Steinbach et al. to 
simulate phase transformation among multiple phases [15] and subsequently adopted to polycrystalline model-
ing [16]. In the present study, area division is achieved by setting the initial domain nuclei and growing the nuc-
lei using the phase-field equations. Each domain is represented by a multi-phase-field variable iφ  (i = 1 ~ N), 
where i indicates the i-th domain, i.e., the value of iφ  is 1 in domain i and 0 in the other locations. This varia-
ble changes continuously, but steeply, from 1 to 0 in the domain boundary, and the division pattern is 
represented by the boundary lines. The phase-field equations used in this paper are the following: 

( )2 g p c S
i ij ij ij ij ij
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and 

( ) 22S S
ij ij j i i jf K S S φ φ= − ∇ ∇                              (5) 

Here, g
ijf , p

ijf , and c
ijf  are based on Steinbach’s original model, though the notation is modified and the 

equations and parameters are standardized to dimensionless values. mij, aij, wij, and Δfij are parameters depending 
on the combination of i and j, and n is the number of phases on site. The last term, S

ijf , is an additional term to 
control the area to be uniform, where Si is the area of the i-th domain and S

ijK  is an adjusting coefficient. Note 
that the area Si has a relative value with respect to the total surface area of the large sphere. This term is intro-
duced to prevent domain overgrowth and to keep all domain area equal, because domain coarsening occurs due 
to the nature of the phase field model [8].  

2.2. Numerical Integration 
The multi-phase-field Equation (1) is solved numerically using the finite difference method (FDM). Grids are 
usually arranged on a rectangular lattice in 2-D FDM, but such gridding is not applicable on a curved face. Es-
pecially for a spherical surface, rectangles are unable to fill the surface completely. For example, the grid ar-
rangement based on latitude and longitude division unavoidably creates distortion around the polar area. Trian-
gular division has greater flexibility, and it is possible to fill the surface with mostly equally spaced grid lines, 
although precisely equal spacing is impossible. Even though the difference is negligible, grid symmetry cannot 
be realized. In a planar problem, each grid in the regular triangular division has six neighboring grids, but some 
of the grids on a spherical surface must have five neighbors, according to Euler’s theorem on the polyhedron. In 
this study, we create a triangular lattice by accepting this irregularity, and solve the conventional diffusion equa-
tion using the grids to check their validity before applying them to the phase-field equation.  

Figure 1 shows the grid arrangement; the sphere under consideration, with radius R, is approximated by the 
regular dodecahedron (Figure 1(a)) inscribed in the sphere. The 20 large triangle faces are divided into small 
regular triangles, and then the sub-grids are projected onto the spherical surface along the radial lines from the 
center of the sphere. Figure 1(b) represents the grid disposition when each dodecahedron edge is divided into 40 
grids; each grid is depicted by a small sphere and green color represents those originally disposed on the triangle 
edges. The projection involves distortion of the grid interval, and the distortion is adjusted to be approximately 
the same for all intervals. These operations do not produce precisely equal spacing, and deviation is unavoidable; 
Figure 1(c) represents the distribution of the average distance between the neighboring grids. Blue spots cor-
respond to the vertices of the dodecahedron; around them, the points have only five neighbors, whereas other 
points have six neighbors. The distribution is actually gradual, and the color range is so small that the antic-
ipated computational error is small enough for the current problem.  

The discretized equation for the simple diffusion equation 2a k a= ∇  is represented below: 
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(a)                                     (b)                                        (c) 

Figure 1. Grid arrangement on a spherical surface based on regular dodecahedron, and distribution of the local grid density 
expressed by the average distance between the neighbor grids. (a) Regular dodecahedron, (b) grid arrangement, (c) local grid 
density.                                                                                                
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where n is the number of neighboring grids, Δt is the time increment, and Δrij is the distance between the central 
i-th grid and the neighboring j-th grid. This is a type of isotropic integration and is the case of forward difference 
with respect to the time increment. This form is reduced for usual FDM calculations with a regular square lattice 
when n = 4 and Δrij = Δx. In the current stage of our study, the influence of the curvature on the numerical cal-
culation is not imposed.  

2.3. Validation of Current Method 
The presented numerical integration scheme is validated by solving a conventional diffusion problem. The non- 
dimensional heat conduction equation is solved for an initial temperature T = 0.0 in entire domain. Then, the 
temperature in one of the polar domains, i.e., the area where the normal vector is inclined up to five degrees in 
the positive direction of the z axis, is fixed at T = 1.0. Figure 2(a) represents the temperature distribution at the 
3000-th and 10,000-th time steps. Heat conduction occurs radially from the polar domain and the isothermal 
lines form concentric circles; Figure 2(a) fairly represents this tendency. Figure 2(b) shows the temperature 
variation at selected points. The plot points A, B, and C follow the meridian lines inclining 10˚, 45˚, and 60˚ 
from the x axis, and the numbers following the alphabets represents the angle from the polar direction, as 
represented in the inset in Figure 2(b). The curves at the same latitude show mostly identical variation, which 
indicates that isotropic radial heat conduction is reasonably obtained by the present method. Actually, these 
curves are not exactly identical, but the difference is considered to be in the allowable range for the present qua-
litative study. 

3. Simulation Results without Size-Controlling Term 
3.1. Model and Conditions 
A simple situation is first considered to validate the present method. Grids shown in Figure 1(b) is used for nu-
merical integration, where the total number of grids is approximately 16,000. As shown in Figure 1(c), the in-
terval between neighboring grids shows a slight deviation. The maximum interval is set to be Δxmax = 0.50, and 
the minimum interval is then Δxmin = 0.33. The sphere radius R is set as R = 50Δxmax. 

The original phase and growing phases are expressed by 0φ  and iφ  (i = 1 ~ N), respectively, and the para-
meters are listed in Table 1. The parameters with the subscript ij generally consist of independent values be- 

 

 
(a)                                             (b) 

Figure 2. Temperature distribution and variation at selected points according to the preliminary calculations. (a) Tempera-
ture distribution, (b) variation of temperature.                                                                  

 
Table 1. Simulation parameters applied in this paper.                                                           

 mij aij
 wij  Δfij 

S
ijK  Δx Δt 

for i ≠ j 0.14 2.38 1.15 for i or j = 0 2.55 0 0.50 0.02 

for i = j 0 0 0 for others 0 0 in Section 3 
250.0 in Section 4   
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tween the i-th and j-th phases; however, in this study, identical values are applied for each combination. Para-
meter Δfij represents the difference in free energy between two phases, and this value is assumed non-zero only 
for the interaction between the original phase and growing phases. First, the effect of the size-controlling term is 
excluded to observe the stability of the formed pattern. Then, to investigate the instable cases, this term is turned 
on by applying a non-zero value to S

ijK . This value is given only between the growing phases, so that the 
growths against the original phase are not affected. 

The nuclei of the growing phases are set as follows: Case 1: intersection points of the spherical surface with 
the x, y, and z axes (6 points). Case 2: intersection with the equivalent eight directions denoted by vector (±1, ±1, 
±1) (8 points). Case 3: Case 1 plus Case 2 (14 points). The phase-field value 1iφ =  is assigned for the grids 
within radius rn = 0.01 from the i-th nuclei point and 0 1φ =  is assigned for the other grids. 

3.2. Results for Case 1 

The simulation results for Case 1 are shown in Figure 3. The color indicates the value of 1
2
i

N
i φ
=∑ . This value  

equals 0 in the original phase (the region where 0 1φ = ) since i = 0 is not included in the equation; it equals 1 in 
the growing phase, where one of the values of iφ  equals 1; and it takes value between 0 and 1 at the boundary 
domain. These values are colored in blue for 0, red for 1, and continuous gradation between 0 and 1. Each illu-
stration shows a snapshot projected on the x-y plane, unless otherwise noted, at the time steps noted below each 
figure.  

Figure 3(a) represents the initial condition. The nuclei are set at the positive and negative directions along the 
x, y, and z axes. Theoretically, these phases should grow isotropically, according to the characteristics of the 
phase-field equations, because anisotropic properties are not included. Figure 3(b) and Figure 3(c) show the 
concentric growth from all nuclei, and hence, it can be concluded that the numerical scheme introduced here is 
valid. The growth rates from each nucleus are also the same, and the domains collide at four points, in the visi-
ble range, at the same time. Phase transformation is completed in the entire surface by the 1500-th time step, and 
the domain boundary is formed, as shown in Figure 3(d). Continuing the computation, no change is observed by 
the 5000-th time step, as shown in Figure 3(e) and Figure 3(f), and this shape is considered stable. Figure 3(g) 
shows the projection on the x-z plane at the 5000-th time step, which clearly indicates that each domain has the 
same morphology both in size and shape, and each domain has a barrel shape with a curved boundary and four 
triple junctions at the corners. Figure 3(h) is the view from another angle, and the color range is modified to 
emphasize the triple junctions. In a planar calculation of the current phasefield model, it is proved that the hex-
agonal space division is stable. Each hexagon consists of six triple junctions with 120˚ angle at the corner and 
six straight equal-length edges, i.e., 120˚ junction and straight boundary is the stable state for the present phase 

 

 
(a)                   (b)                   (c)                  (d) 

 
(e)                 (f)                   (g)                   (h) 

Figure 3. Variation of the domain shape for Case 1. Color indicates the value 2
iφ∑ . (a) 0 step, 

(b) 500 steps, (c) 1000 steps, (d) 1500 steps, (e) 2000 steps, (f) 5000 steps, (g) x-z steps, (h) ro-
tated angle with enhanced color.                                                       
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field model. In this simulation, as shown in Figure 3(h), the triple junction locally has a 120˚ angle. This stabil-
ity is considered to yield total equilibrium in the macroscopic morphology over the energy loss due to the curved 
boundaries.  

3.3. Results for Case 2 
The simulation results for Case 2 are presented in Figure 4. Free growth from the nuclei occurs properly. The 
first collisions are observed on the x-y, y-z, and z-x planes, and straight boundaries are formed. Phase transfor-
mation is completed by the 1500-th time step, and the cross-shaped boundaries are generated, as shown in Fig-
ure 4(c) and Figure 4(d). This state is stable; no change is observed by the 5000-th time step, as shown in Fig-
ure 4(e) and Figure 4(f). Moreover, a view on the x-z plane shows the same shape in Figure 4(g). Figure 4(h) 
shows another view from a rotated angle. Each phase region is surrounded by three boundaries, producing a tri-
angular domain. The border lines are, of course, globally curved along the spherical surface, but here, we con-
sider the line along the maximum circle of the sphere to be straight. In this state, four domains intersect perpen-
dicularly (with 90˚ angels) at a point to make a quad-junction. As mentioned in Section 3.2, the phase field 
model yields a stable state for a 120˚ junction with a straight boundary. In Case 2, the junction is not stable, but 
the straight edge is preferable. In the planar calculation, a similar tendency is observed; the square division with 
a 90˚ quad-junction shows meta-stability. On a spherical surface, the triangle domain is considered equivalent to 
the square division on the flat plane. Since this state is not stable, but metastable, a slight fluctuation causes the 
state to collapse. Actually, it is confirmed that this pattern is destroyed when a slight deviation in the initial nuc-
lei position is provided, and the results are shown in Figure 5. Almost the same pattern is generated by the 
1500-th time step (Figure 5(a) and Figure 5(b)), but the quad-junction is soon segregated into two triple junc-
tions, as shown in Figure 5(c). Then, the domain shape is globally modified and a barrel-shaped pattern similar 
to Case 1 is obtained, as shown in Figure 5(e), and no change was observed by continuing the calculation. It 
was also confirmed that the pattern obtained for Case 1 was stable under the same type of fluctuations.  

 

 
(a)                    (b)                    (c)                (d) 

 
(e)                    (f)                   (g)                  (h) 

Figure 4. Variation of the domain shape for Case 2. Color indicates the value 2
iφ∑ . (a) 0 step, (b) 500 steps, (c) 1000 

steps, (d) 1500 steps, (e) 2000 steps, (f) 5000 steps, (g) x-z steps, (h) rotated angle with enhanced color.                 
 

 
(a)                 (b)                  (c)                (d)                   (e) 

Figure 5. Variation of the domain shape with a slight deviation causing instability of the domain shape. (a) 1000 step, 
(b) 1500 steps, (c) 3000 steps, (d) 5000 steps, (e) 10,000 steps.                                                
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3.4. Results for Case 3 
The simulation results for Case 3 are shown in Figure 6. The nuclei are set at 14 points, and circular growth is 
observed, as shown in Figure 6(b). The phase transformation is completed by the 1000-th time step. Unlike the 
previous two cases, the 14 sites are not all equivalent, and collisions of the growing domain occur at two types 
of sites. As a result, two types of domains are formed, as shown in Figure 6(c): one is quadrangle, whose center 
falls in the <100> directions, and another is triangle, whose center falls in the <111> directions. Such inhomo-
geneity brings instability in the phasefield model, and the formed pattern does not last long. The triangle do-
mains shrink gradually and the quadrangle domains grow larger, and, finally, the triangle domains vanish by the 
4000-th time step (Figures 6(d)-(h)). The preserved quadrangle domains adjust their shapes, and settle into the 
same pattern as that obtained in Case 1 by the 4000-th time step, as shown in Figure 6(h). Since this state is sta-
ble, no change is observed by continuing the calculation.  

4. Results and Discussion with Size-Controlling Term 
4.1. Simulation Condition 
In the Case-3 simulation, the small triangular domains disappear soon after formation. This result reflects the 
natural tendency of the phasefield model, but this feature sometimes limits its application. In this section, simu-
lations are demonstrated by imposing a condition to prevent the domain size from reducing. The other condi-
tions and parameters are set the same as those in the previous section, except that an extra term S

ijf  is activated 
with parameter S

ijK . The nuclei are set as in Case 3 (Section 4.2) and at random sites (Section 4.3).  

4.2. Results for Case 3 with Size-Controlling Term 
The simulation results are presented in Figure 7. The initial domain growth is identical to that presented in Fig-
ure 6 since the original phase is excluded from the sizecontrol. Domain tessellation is completed by the 1000-th 
time step, and triangular and quadrangular domainsare formed. Unlike the case in Figure 6, the triangular do-
mains do not shrink thereafter, and the triangular shape is maintained, as shown in Figure 7(c) to Figure 7(g). 
Instead, the quadrangle domains change their shape; they are initially nearly square (the central domain in Fig-
ure 7(c)), but change to rhomboid by the 6000-th time step, as shown in Figures 7(d)-(g). Figure 7(h) is a view 
from another angle at the 6000-th time step, where the color range is adjusted to enhance the position of the do-
main junctions. Indeed, every junction is not a single quad-junction, but two closely spaced triple junctions. 
Accordingly, the domains that appeared triangular are actually hexagons composed of three long edges and three 
very short ones. As for the rhombic domain, there are two types of directions, which are arranged alternately to 
make a unique domain-tessellation pattern.  

 

 
(a)                    (b)                   (c)                    (d) 

 
(e)                   (f)                   (g)                     (h) 

Figure 6. Variation of the domain shape for Case 3. Color indicates the value 2
iφ∑ . (a) 0 step, (b) 

500 steps, (c) 1000 steps, (d) 1500 steps, (e) 2500 steps, (f) 3000 steps, (g) 3500 steps, (h) 4000 steps.    
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(a)                    (b)                   (c)                    (d) 

 
(e)                   (f)                   (g)                     (h) 

Figure 7. Variation of the domain shape for Case 3 using the size-controlling term. Color indicates the 
value 2

iφ∑ . (a) 0 step, (b) 500 steps, (c) 1000 steps, (d) 1500 steps, (e) 2500 steps, (f) 4000 steps, (g) 
6000 steps, (h) rotated angle with enhanced color.                                              

4.3. Results for Random Nuclei Arrangement 
Finally, the pattern formation initiated with randomly arranged domain nuclei is simulated. Figure 8 shows a 
typical result obtained by 12 domain nuclei, whose initial state is shown in Figure 8(a). The domain growth is 
isotropic, and circular growth is observed in the initial stage (Figure 8(b)). The collision of the neighboring do-
mains occurs intermittently, and an irregular shape is generated (Figure 8(c)). Quadrangles, pentagons, and 
hexagons are observed at this time. These domains vary in shape, so that balance is achieved between neighbor-
ing domains (Figures 8(d)-(g)). Finally, they settle into a steady state presented in Figure 8(h), where the color 
range is modified to enhance the domain boundaries. This pattern is constructed by 12 pentagons. The lengths of 
the edges of each pentagon are almost identical, and the five angles are also the same; hence, the spherical sur-
face is divided into regular pentagons. This pattern resembles a regular dodecahedron, which has 12 regular 
pentagons as its surfaces. Notably, although the 3-D phase-field simulation generates a rhombic dodecahedron 
with 12 faces, its shape is not pentagonal but rhombic. This implies that the present model properly reproduces a 
stable state by not only the face area but also a totally favorable domain tessellation.  

A variation in the domain size and area distribution is drawn in Figure 9. The domain size R denotes the dis-
tance between the furthest apexes in a pentagon, and the maximum and minimum values in the 12 pentagons are 
represented as Rmax and Rmin, respectively. The value length is expressed in Δx unit. The maximum and mini-
mum areas Smax and Smin are also plotted in the same figure, where the area is expressed in the ratio to the aver-
age area of all domains. Variation of the domain area shows that each domain area increases by the 1000-th time 
step, when free domain growth is completed. Then, the maximum area starts decreasing, while the minimum 
area keeps increasing. This means that large domains shrink and small ones keep enlarging, and hence, the size 
adjustment works effectively. The domain size variation does not necessarily follow this trend if the shape is not 
the same even if the area is equivalent. In Figure 9, both the area and size become identical at around the 
8000-th time step, revealing that the steady state is achieved. Actually, it was confirmed that no change in the 
pattern was observed by continuing the calculation further.  

5. Conclusion 
Numerical analyses were carried out to investigate the space-dividing pattern on a spherical surface. The phase-
field model was applied to simulate the domain distinction and its growth. A simple method was introduced for 
the finite-difference calculation on a spherical surface, and its validity was confirmed by solving a conventional 
diffusion equation resulting in concentric isolines. Pattern formation simulation was subsequently demonstrated 
and unique patterns were obtained; a stable barrel-shaped pattern with six faces was formed, whereas triangular 
division with cross-boundaries was meta-stable. The size-controlling term allowed the reproduction of a wider  
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(a)                    (b)                    (c)                      (d) 

 
(e)                      (f)                     (g)                   (h) 

Figure 8. Variation of the domain shape for random nuclei arrangement using the size-controlling 
term. Color indicates the value 2

iφ∑ . (a) 0 step, (b) 500 steps, (c) 1000 steps, (d) 1500 steps, (e) 
3000 steps, (f) 5000 steps, (g) 7500 steps, (h) 10,000 steps with enhanced color.                      

 

 
Figure 9. Variation of the maximum and minimum domain size and area.                    

 
variety of patterns, and a dodecahedral division with 12 pentagons was exhibited as an example. Consequently, 
the present method reveals to be valid and effective for pattern formation analysis. In this study, only a limited 
number of models were investigated, i.e., N = 6, 8, 14 for regular nuclei arrangement, and N = 12 for random 
arrangement. Nevertheless, many other patterns have been obtained for different values of N. These data will be 
analyzed in our next study based on geometrical theory in relation to the surface area and boundary or edge 
lengths. Furthermore, this method will be applicable for some practical purposes. For example, this method is 
expected to be utilized in materials design by coupling the geometrical features with interfacial energy and some 
other physical and chemical properties. 
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