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Abstract 
In normal theory exploratory factor analysis, likelihood ratio (LR) statistic plays an important role 
in evaluating the goodness-of-fit of the model. In this paper, we derive an approximation of the LR 
statistic. The approximation is then used to show explicitly that the expectation of the LR statistic 
agrees with the degrees of freedom of the asymptotic chi-square distribution. 
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1. Introduction 
Factor analyis [1] [2] is used in various fields to study interdependence among a set of observed variables by 
postulating underlying factors. We consider the model of exploratory factor analysis in the form  

′= +Σ ΛΛ Ψ ,                                       (1) 
where Σ  is the p p×  covariance matrix of observed variables, Λ  is a p m×  matrix of factor loadings, 
and Ψ  is a diagonal matrix of error variances with ( )0 1, ,ii i pψ > =  . Under the assumption of multivariate 
normal distributions for observations, the parameters are estimated with the method of maximum likelihood and 
the goodness-of-fit of the model can be judged by using the likelihood ratio (LR) test for testing the null 
hypothesis ′= +Σ ΛΛ Ψ  for a specified m against the alternative that Σ  is unconstrained. From the theory of 
LR tests, the degrees of freedom, ν , of the asymptotic chi-square distribution is the difference between the 
number of free parameters on the alternative model and the null model. In (1), Σ  remains unchanged if Λ  is 
replaced by ΛT  for any m m×  orthogonal matrix T . Hence, ( )1 2m m −  restrictions are required to elimi- 
nate this indeterminacy. Then, the difference between the number of nonduplicated elements in Σ  and the 
number of free parameters in Λ  and Ψ  is given by  
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2. LR Statistic in Exploratory Factor Analysis  
2.1. Approximation of LR Statistiic  
Let S  be the usual unbiased estimator of Σ  based on a random sample of size 1N n= +  from the multi- 
variate normal population ( )N ,p µ Σ  with ′= +Σ ΛΛ Ψ . For the existence of consistent estimators, we 
assume that the solution Ψ  of ′= +Σ ΛΛ Ψ  is unique. A necessary condition for the uniqueness of the 
solution Ψ  up to multiplication on the right of Λ  by an orthogonal matrix is that each column of ΛT  has 
at least three non-zero elements for every non-singular matrix T  ([3], Theorem 5.6). This condition implies 
that ( )rank m=Λ . 

The maximum Wishart likelihood estimators Λ̂  and Ψ̂  are defined as the values of Λ  and Ψ  that 
minimize  

( ) ( )1 1tr logF p− −= − −Σ SΣ SΣ .                               (3) 

Then, Λ̂  and Ψ̂  can be shown to be the solutions of the following equations:  

( ) 1ˆ ˆˆ −− =S Σ Ψ Λ 0 ,                                     (4) 

( )ˆdiag − =S Σ 0 ,                                     (5) 

where ˆ ˆ ˆˆ ′= +Σ ΛΛ Ψ . The motivation behind the minimization of ( )F Σ  in (3) is that  

( )ˆLR nF= Σ ,                                      (6) 

that is, n times the minimum value ( )ˆF Σ  is the LR statistic described in the previous section. Under (4) and  
(5), 1ˆtr p− =SΣ  and ( ) ( )1 1ˆˆ ˆ ˆ− −− = −S Σ Σ S Σ Ψ  can be shown to hold. Hence,  

( ) ( ) ( )1 1 1ˆˆ ˆ ˆ ˆ ˆ= log log logp pnF n n n− − −− = − + − = − + −Σ SΣ I S Σ Σ I S Σ Ψ . 

From the second-order Taylor formula, we have an approximation of the LR statistic as  

( ){ } ( )2
2

1 2 1
ˆ1 ˆˆLR tr

ˆ ˆ2
ij ij

i j ii jj

s
n

σ

ψ ψ
−

<

−
≈ − = ∑S Σ Ψ ,                           (7) 

by virtue of (5) [1] [2]. While the approximation on the right hand side of (7) shows how the LR statistic is related 
to the sum of squares of standardized residuals [4], it does not enable us to investigate the distributional properties 
of hte LR statistic. To overcome this difficulty, we express the LR statistic as a function of ( )1 2n= −U S Σ . 

Let Ψ  and Λ  denote the terms of ( )1 2 ˆn −Ψ Ψ  and ( )1 2 ˆn −Λ Λ  linear in the elments of U . Then we 
have the following proposition.  

Proposition 1. An approximation of the LR statistic is given by  

1 1tr tr
2 2

−ΦUΦU ΦUΦΨ ,                                  (8) 

where ( )ijφ=Φ  is defined by  
1 1 1 1− − − −′= −Φ Ψ Ψ ΛΓ Λ Ψ ,                                  (9) 

with 1−′=Γ Λ Ψ Λ . 
Proof. By substituting , U Λ , and Ψ  into (4) and (5) and considering only linear terms, we have  

( ) 1−− =U Σ Ψ Λ 0 ,                                     (10) 

( )diag − =U Σ 0 ,                                      (11) 
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where ′ ′= + +  Σ ΛΛ ΛΛ Ψ . From (10) we derive  

( ) 1 1− −′= − −ΛΓ U Ψ Ψ Λ ΛΛ Ψ Λ   , 

( )′ ′= − −ΛΛ U Ψ ΠΨ ΛΛ ΠΨ   , 

where 1 1 1− − −′=Π Ψ ΛΓ Λ Ψ . Then  

( )
( ) ( )
( ) ( ) ,

′ ′= − −

′= − − − +

′= − − − +

ΛΛ ΨΠ U Ψ ΨΠΛΛ

ΨΠ U Ψ ΨΠ U Ψ ΠΨ ΨΠΛΛ ΠΨ

ΨΠ U Ψ ΨΠ U Ψ ΠΨ ΛΛ ΠΨ

  

  

  

 

by virtue of =ΨΠΛ Λ . Thus,  

( ) ( ) ( ) ( )
( )( )( )

( ) .

p p

′ ′− = − − −

= − − − − − + −

= − − −

= −

U Σ U Ψ ΛΛ ΛΛ

U Ψ U Ψ ΠΨ ΨΠ U Ψ ΨΠ U Ψ ΠΨ

I ΨΠ U Ψ I ΠΨ

ΨΦ U Ψ ΦΨ

  

   





              (12) 

By replacing ( )1 2 1ˆˆn −−S Σ Ψ  in (7) with ( ) ( )1−− = − U Σ Ψ ΨΦ U Ψ Φ , we have  

( ) ( )1 tr
2

− −Φ U Ψ Φ U Ψ  , 

since =ΦΨΦ Φ . It follows from (11) and (12) that  

( )diag − =Φ U Ψ Φ 0 ,                                 (13) 

thus establishing the desired result. 

2.2. Evaluating Expectation  
For the purpose of demonstrating the usefulness of the derived approximation, we show explicitly that the 
expectation of (8) agrees with the degrees of freedom, ν , in (2) of the asymptotic chi-square distribution. We 
now evaluate the expectation of (8) by using  

E ab cd ac bd ad bcu u σ σ σ σ= + ,                               (14) 

see, for example, Theorem 3.4.4 of [1]. By noting tr tr p m= = −ΦΣ ΦΨ , we see that the expectation of the 
first term in (8) is  

( )

( ){ } ( ) ( ){ }
, , , , , ,

2 2

1 1 1Etr E
2 2 2

1 1tr tr .
2 2

ad bc ab cd ad bc ac bd ad bc
a b c d a b c d

u u

p m p m

φ φ φ φ σ σ σ σ= = +

= + = − + −

∑ ∑ΦUΦU

ΦΣ ΦΣ
             (15) 

To evaluate the expectation of the second term in (8), we need to express Ψ  in terms of U . Let the symbol 
  denote the Hadamard product of matrices, and define ( )ijξ=Ξ  by = Ξ Φ Φ . Because Φ  is positive 
semidefinite, so is Ξ  [5]. If Ξ  is positive definite, then (13) can be solved for Ψ  in terms of U  [3]. An 
expression of iiψ  is  

trii iψ = ΦΘ ΦU ,                                     (16) 

where iΘ  is a diagonal matrix whose diagonal elements are the i-th column (row) of ( )1 ijξ− =Ξ  [6]. An 
interesting property of iΦΘ Φ  is  

[ ] gi gi
i jg gj jg ijjj

g g
φ ξ φ ξ ξ δ= = =∑ ∑ΦΘ Φ ,                           (17) 
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where ijδ  is the Kronecker delta with 1ijδ =  if i j=  and 0ijδ =  if i j≠ . Hence, we have  

( )

[ ]

[ ] ( )

[ ] [ ]

, ,

, , , ,

, , , ,

1 1Etr E tr
2 2

1 E
2
1
2

.

ia ib ab i
i a b

ia ib i ab cdcd
i a b c d

ia ib i ac bd ad bccd
i a b c d

i iii ii
i i

u

u u

p

φ φ

φ φ

φ φ σ σ σ σ

=

=

= +

= = =

∑

∑

∑

∑ ∑

ΦUΦΨ ΦΘ ΦU

ΦΘ Φ

ΦΘ Φ

ΦΣΦΘ ΦΣΦ ΦΘ Φ



                    (18) 

By combining (15) and (18), we obtain the desired result. 
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