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ABSTRACT 

Transmission of electromagnetic waves through a Si-based one dimensional photonic crystal has been investigated. The 
proposed structure works as an omni-directional reflector for a certain range of wavelength for an angle of incidence up 
to 55˚. The structure works as a narrow band TM-polarization filter for an angle of incidence more than 55˚, i.e. a filter 
which completely blocks TE-polarized waves but allows certain wavelengths of TM-polarized waves. But at an angle of 
incidence of 89˚, the structure works as a multiple narrow band TM-polarization filter even though no defect layer is 
introduced inside the structure. It is also found that this multiple narrow pass-bands of TM-polarized waves can be 
tuned to a desired range of wavelength by changing the temperature of the structure. 
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1. Introduction 

Since the pioneering works of Yablonovitch and John, 
the studies on the electromagnetic properties of photonic 
crystals (PCs) which are artificial structures with peri-
odically modulated dielectric constants has been attract-
ing a great deal of interest among researchers [1-7]. It 
was observed that periodic modulation of the dielectric 
functions significantly modifies the spectral properties of 
the electromagnetic waves. The electromagnetic spec-
trum in such structures is characterized by the presence 
of allowed and forbidden photonic energy bands similar 
to the electronic band structure of periodic potentials. For 
this reason, such a new class of artificial optical material 
with periodic dielectric modulation is known as photonic 
band gap (PBG) material [8]. Fundamental optical prop-
erties like band structure, reflectance, group velocity and 
rate of spontaneous emission, etc. can be controlled ef-
fectively by changing the spatial distribution of the di-
electric function [4,5]. 

A 1-D PC structure has many interesting applications 
such as dielectric reflecting mirrors, low-loss waveguides, 
optical switches, filters, optical limiters etc. It has also 

been demonstrated theoretically and experimentally that 
1-D PCs may exhibit absolute omni-directional PBGs 
[9-13]. In addition to the existence of wide photonic band 
gaps in some properly designed PCs, the feature of a 
tunability of PBGs in PCs attracts the attention of investiga-
tors in recent years. PBGs can be tuned by means of some 
external agents. For instance, band-gaps can be shifted by 
changing the operating temperature and it is generally 
known as the T-tuning. A superconductor/dielectric PC be-
longs to this type of photonic crystals. This happens because 
of the temperature-dependent London perturbation length in 
the superconducting materials [14-17]. 

However, in earlier reports the dielectric media taken by 
the researchers were considered to be independent of tem-
perature and non-dispersive. In the present communication, 
we consider semiconductor media as one of the constitu-
ents of a one dimensional photonic crystal, since the di-
electric property of semiconductors depends not only on 
temperature but also on wavelength. Here, we consider a 
Si/air multilayer system. The refractive index of air is in-
dependent of temperature and wavelength. But the refrac-
tive index of silicon layer can be taken as a function of 
temperature and wavelength both [18]. Therefore, this 
study may be considered to be more physically realistic. *Corresponding author. 
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2. Theoretical Analysis 

The schematic representation of one-dimensional pho- 
tonic crystal is shown in Figure 1. We consider air/(AB) 
NA/air structure in which A and B represent the high and 
low refractive index materials. To compute the transmis-
sion spectrum, we employ the transfer matrix method 
(TMM) [19]. 

In TMM method, the transfer matrix for each layer can 
be written as 

1;j j j jM D P D               (1) 

where, j stands for A or B layers and Dj and Pj  are called 
the dynamical matrix and the propagation matrix respec-
tively. The dynamical matrix is given by the following 
equations 
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where the phase is written as 
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The transfer matrix, for the structure embedded in air, 
the transfer matrix for the air/(AB)NAN/air structure can 
be written as 
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where, D0 is called the dynamical matrix for air. 
The reflection and transmission coefficients in terms 

of the matrix elements given in Equation (6) can be writ-
ten as 
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where , , cosi f i f i fq n ,  for TE wave and 

 , ,cosi f i f i fq n ,  

for TM wave, where the subscripts i and f correspond to 
the quantities respectively in the medium of incidence 

and the medium of emergence. Whereas, the reflectance 
and transmittance of the structure is given by 

2
  and  R r T t 2            (9) 

3. Proposed Structure and Structural 
Parameters 

We choose Si for the material A, air for material B and 
the number of unit cells, N = 10 in Figure 1. So, the pro-
posed structure will be [air/(Si/air)10Si/air]. We take sili-
con and air as the high and the low refractive index ma-
terials respectively. The geometrical parameters are so 
chosen that the thicknesses of high and low refractive 
index materials are same at 300 K temperature i.e. d1 = d2 = 
500 nm. The thermal expansion coefficient and melting 
point for silicon layer are 2.6 × 10–6/K and 1685 K re-
spectively [20]. Also, it is considered that there will be 
almost negligible expansion in Si layers with the varia-
tion of temperature and hence thermal expansion of Si 
can be safely neglected as compared to the dimensions 
considered here. The refractive index of air is independ-
ent of temperature and wavelength. But the refractive 
index of silicon layer is taken as a function of both 
wavelength and temperature. The refractive index of 
Silicon (Si) in the ranges 1.2 to 14 μm and 20 - 1600 K is 
represented as [18] 
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Figure 1. Schematic diagram of 1-D photonic crystal struc-
ture. 
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for   20 K ≤ T ≤ 293 K 
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for   293 K ≤ T ≤ 1600 K. 

4. Results and Discussion 

In this section, we present discussion on the transmission 
spectra of the proposed structure. By computing Equa-
tion (9) for TE and TM modes of polarization in one di-
mensional photonic crystal, we plotted the transmittance 
of the structure as a function of wavelength. Also, the 
plot of the refractive index as the function of wavelength 
and temperature is shown in Figure 2. From Figure 2, it 
is clear that the refractive index of silicon layer decreases 
with the increase in wavelength and increases with in-
crease in temperature. The rate of increase in refractive 
index with temperature is 0.02/100 K and the rate of de-
crease in refractive index with wavelength is 0.001/μm. 
Therefore, the overall refractive index contrast of the 
alternate layers of the structure will increase if the change 
in temperature of the structure is properly adjusted for 
certain change in wavelength. 

The transmission spectra of the proposed structure for 
TE and TM polarizations at 300 K are plotted in Figure 3. 
We choose three different angles of incidence to be at 0˚, 
 

 

Figure 2. Variation of refractive index (a) with temperature 
at constant wavelength; (b) with wavelength at constant 
temperature. 

 

Figure 3. Transmission spectra for TE (solid) and TM-po- 
larization (dashed) at 300 K. 
 
30˚ and 55˚ respectively. We observe from these Figures 
that the TE polarization has its omni-directional reflec-
tion range from 3.76 μm to 6.10 μm and the omnidirec-
tional reflection range for the TM polarization is from 
3.76 μm to 4.36 μm for the angles of incidence from 0˚ to 
55˚. Therefore, the range for which both the TE and TM 
polarizations exhibit omni-directional reflection (ODR) 
has the bandwidth (∆λ = λH – λL) of 0.60 μm for this 
range of the angle of incidence. This ODR range can be 
tuned by varying the temperature of the structure. 

The transmission spectra at 89˚ for the both polariza-
tions are shown in Figure 4. For the angle of incidence 
more than 55˚, we found that the ODR range of TE po-
larization is nearly the same as in the case of angle of 
incidence at 55˚ or less. But for the angle of incidence 
greater than 55˚, the TM polarization does not exhibit 
ODR region. So, for angles of incidence more than 55˚, 
the structure works as a multiple narrow band TM-po-
larization filter i.e. a filter which completely blocks the 
TE-polarized wave but allows certain extremely narrow 
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bands or peaks of wavelengths of the TM-polarized wave 
to be transmitted through the structure [21]. Particularly 
at an angle of incidence of 89˚, a few sharp transmission 
peaks are found in the transmission spectra rather. So, at 
the angle of incidence of 89˚, the structure works as a 
multi-channel optical filter even without introducing any 
defect in the geometry [17]. From Figure 4(b), it is also 
clear that if we increase the temperature of the structure, 
the transmission peaks shift towards the higher wave-
length region. 

This shifting behavior of transmission peaks can be 
explained by using the phase Equation (5). According to 
this phase equation, as refractive index of the Si layer in 
R.H.S. increase with temperature, the wavelength must 
increase accordingly to keep the phase (L.H.S.) un-
changed. The shifting of transmission peaks of TM po-
larization, which lie in the forbidden region of the TE 
polarization, is shown in Figure 5. The variation of cen-
tral wavelength of first transmission peak with tempera-
ture is shown in Figure 6. It is found that the central 
wavelength of transmission peak changes approximately 
 

 

Figure 4. Transmission spectra for (a) TE-polarization at 
300 K; (b) TM-polarization at 300 K (solid line) and 900 K 
(dotted line). 

 

Figure 5. Shifting of transmission peaks with temperature 
for TM-polarization at 89˚ (solid line for 300 K and dotted 
line for 900 K). 
 

 

Figure 6. Variation of central wavelength of first transmis-
sion peak (TM-polarization) with temperature at 89˚. 
 
linearly with temperature. Thus, the first transmission 
peak which are at 3.78 μm at 300 K are shifted to 3.92 
μm at 900 K. So, we can tune the transmission peaks at 
desired wavelength by changing the temperature of the 
structure. 
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5. Conclusion 

The proposed structure works as omni-directional reflec-
tor for an angle of incidence on the structure up to 55˚. 
For higher angles of incidence the structure works as a 
selective multiple narrow band TM-polarization filters. 
Also, at the angle of incidence of 89˚, the structure works 
as a multi-channel optical filter even without introducing 
any defect in the geometry. Such a structure can be used 
as temperature sensing device, narrow band optical filter 
and in many optical systems. 
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