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Abstract 
Advances in the theoretical literature have extended the Hotelling model of spatial competition 
from a uniform distribution of consumers to the family of log-concave distributions. While a 
closed form has been found for the equilibrium locations for symmetric log-concave distributions, 
the literature contains no closed form solution for the socially optimal locations. We provide a 
closed form solution for the socially optimal locations: one mean-deviation away from the median. 
We also derive a formula for the excess differentiation ratio which complements the bounds pre-
viously derived in the literature, and establish the invariance of this ratio to a form of mean pre-
serving spread. The equilibrium duopoly locations of several types of commonly used distribu-
tions were discussed in [1]. This paper provides the closed form solutions for the socially optimal 
locations to the same set of distributions. We calculate welfare improvements arising from regula-
tion of firm location and show how these vary with the distribution of consumers. While regulat-
ing firm locations is sufficient to optimize welfare for symmetric distributions, additional price 
regulation is required to ensure social optimality for asymmetric distributions. These results are 
significant for urban policy over firm/store locations. 
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1. Introduction 
Transport costs are a primary driver of the location decisions of firms in models of spatial economics. Transport 
costs can occur in an enormous range of contexts: inputs costs for intermediate products or in commute times for 
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workers; or in output markets as search costs, shopping costs or delivery costs for consumers. A large, but by no 
means exhaustive, survey is provided by [2]. From a firm’s perspective the essential issue of spatial economics 
is that it cannot be close to everything1. Identifying how firms handle this trade-off in choosing locations, and 
how these choices impact on society, gives rise to a central research theme of the literature, and it is to this area 
that this paper contributes. 

Most theoretical firm location models assume a uniform consumer distribution; this is seldom observed in real 
life. In their seminal contributions [3] and [4] established the existence of price equilibrium for log-concave 
densities. [5] extended this line of research by providing sufficient conditions for the existence of pure strategy 
location-price equilibrium for log-concave consumer densities, and for the symmetric case, a closed form equa-
tion for the equilibrium locations and prices. 

The analysis of socially optimal locations in the literature has not established a closed form for the socially 
optimal locations and as a result the comparison of equilibrium and optimal locations—in terms of the ratio of 
competitive product differentiation to the optimal differentiation—has produced bounds but not an exact result. 
We fill this gap by providing explicit formulas for both the socially optimal locations and the ratio of equili-
brium to optimal differentiation. 

The research questions of this paper are: 1) what are the socially optimal locations of firms within the canon-
ical, quadratic Hotelling model; and 2) how do the equilibrium, firm level location decisions compare with the 
socially optimal locations? Our contribution is to extend the analysis of social optimality beyond the typical as-
sumption of uniformly distributed consumers. In most real world settings, non-uniform consumer distributions 
would be more realistic—our results apply to important specific densities like the Normal and Logistic. One of 
the few theoretical works, which utilizes a non-uniform consumer distribution, is that of [6] where a symmetric 
triangular density was used. This is extended in unpublished work by [7], where the consumer distribution can 
take several forms ranging from uniform (rectangular) to triangular (densities in-between the two assume a tra-
pezoidal shape). In [8], a state space approach where different states give rise to different consumer distributions 
was used to model uncertainty in spatial duopolies. 

[1] identified a list of distributions where unique pure strategy equilibrium exists and also determines their 
locations. This paper follows [1] and examines the socially optimal locations of these distributions. Although [9] 
showed that there is excessive differentiation in the uniform case of the two-stage location-price game, and [5] 
supports the existence of excessive differentiation by deriving bounds results about the social-optimum locations; 
we are the first to examine precisely excess differentiation for a wider range of specific distributions, including 
asymmetric distributions. 

The amount of differentiation and the total transport cost2 savings from government intervention are discussed 
in this paper. We also consider the effect of regulating the firms to the social-optimum locations and allowing 
them to set competitive prices. This decomposes the welfare gains from regulation into spatial and pricing deci-
sions. This separation is important in practice because location in many industries is much cheaper to regu-
late/monitor than prices. 

Using location as a form of regulation is of interest to governments. For example, the Australian Competition 
and Consumer Commission found in an inquiry into grocery stores in Australia that incumbent supermarkets 
have used planning objection processes to deter new entry thus lessening competition. Proceedings in the UK 
Competition Commission inquiry into Groceries [12] resulted in legal orders regulating the location related be-
havior of large grocery chains. Governments may use location regulation as a means to regulate competition. 

Pricing regulation is hard to administer when stores sell a variety of products. The Australian government at-
tempted to regulate prices of grocery chains by publishing the prices charged by each store for a basket of goods; 
this proved to be too costly and the website was shut down [13]. This may indicate that location regulation may 
be a more feasible way to ensure social welfare. 

The question of price regulation is only binding under asymmetry, and hence prior to our analysis of asym-
metric densities, price regulation could not be considered in any meaningful way3. There is of course more to the 

 

 

1Taking as an example facility location (see [10] or [11]), firms have to tradeoff the transport costs of inputs and outputs in choosing both 
their location and production. Even in a non-strategic setting this problem is technically difficult and frequently requires solution by numer-
ical operations research techniques. 
2Total transport costs are the standard welfare measure, since under inelastic demand and identical production costs only transport costs im-
pact on total surplus. 
3We refer here to the regulation of a single market price, as opposed to price discrimination which, since [14], has been extensively consi-
dered in the literature. 
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location of a firm than the stylized Hotelling model, but it is the workhorse of spatial competition and as we 
show the welfare implications are sensitive to the choice of consumer distribution. 

2. Social-Optimum Location in the Quadratic Transport Cost Model 
We use a quadratic transport cost model as specified in [9], but generalize beyond uniform consumer density. 
There are two firms on the real line and each produces a homogeneous good at a constant marginal cost, hence-
forth normalized to zero. Firm i is located at xi, where I = 1, 2. Without loss of generality, the firm on the left 
will be denoted as firm 1 and the firm on the right will be firm 2, x1 ≤ x2. There is a continuum of consumers, 
whose mass is normalized to unity without loss of generality. The transport cost incurred by the consumer lo-
cated at x from consuming the good at xi is: 

( )2
it x x−                                          (1) 

where t is the amount it costs to travel to purchase the good. For simplification, we let t = 1. 
The consumer density is ( )f x , ≥for all x, and its cumulative distribution function is denoted by ( )F x . We 

assume ( )f x  is twice differentiable on its support [a, b], where a may be −∞ and/or b can be ∞. 
The social-optimum problem is simply to minimize the aggregate transport costs, T, in serving consumers: 

( ) ( ) ( ) ( ) ( )2 2
1 2 1 2, d d ,

b

a
T x x x x f x x x x f x x

µ

µ
= − + −∫ ∫                       (2) 

where µ is the boundary between the group of consumers who go to firm 1 and those who go to firm 2. Since 
demand is inelastic and production costs are constant and identical across firms, the socially optimal value of µ, 
denoted µs, is 

( )1 2
1
2S x xµ = + .                                      (3) 

since it is clearly optimal to serve each consumer from the closer firm. 
Remark 1. As shown in [5], if ( )f x  is logconcave then the first order conditions yields the unique socially 

optimal locations, i.e. the unique solution to the programme 

( )
1 2

1 2,
min , .
x x

T x x                                        (4) 

2.1. Logconcave Consumer Densities 
Given Remark 1, we naturally restrict attention in this paper to logconcave densities. Although logconcavity is 
sufficient for the existence of a unique pair of socially optimal location, additional conditions are required to 
guarantee existence of a unique competitive equilibrium, see [5]. Table 1 contains the list of distributions prov-
en in [1] to satisfy the conditions for the existence of unique location-price equilibria. 

2.2. Social-Optimum Locations 
A generic set of implicit conditions for the social-optimum locations, in terms of integral equations, is given in 
[5]. The pair of social-optimum locations (which minimizes ( )1 2,T x x ) are the ( )1 2,S Sx x  that solve: 

( )
( )1 dSS

S a
S

F x
x x

F
µ

µ
µ

= − ∫                                    (5) 

and 

( )
( )2

1
d ,

1S

bS
S

S

F x
x x

Fµ
µ

µ
−

= +
−∫                                  (6) 

where µS solves 

( )
( )

( )
( )

1
d d .

1
S

S

b

a
S S

F x F x
x x

F F
µ

µµ µ
−

=
−∫ ∫                               (7) 
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Table 1. Standardized forms of the consumer densities considered. 

Density function Support Density function ( )f x  Cumulative distribution function ( )F x  

Uniform [ ]0,1  1 x 

Normal ( ),−∞ ∞  
2 21 e

2π
x−  1 1erf 2 1

2 2
x   +  

  
 

Logistic ( ),−∞ ∞  ( )2

e
1 e

x

x

−

−+
 

( )2

1
1 e x−+

 

Laplace ( ),−∞ ∞  1 e
2

x−  ( )( )( )1 1 sgn 1 e
2

xx −+ −  

Power ( )1c ≥  [ ]0,1  1ccx −  cx  

Weibull [ )0,∞  1e
cc xcx − −  1 e

cx−−  

Rayleigh [ )0,∞  2

2 e xx −  
2

1 e x−−  

 
Building on these results, we provide an explicit characterization of the socially optimal locations for symme-

tric distributions. 
Proposition 1. For any symmetric, log-concave distribution with a mean/median of M and mean-deviation 
( )E X M− , the social-optimum duopoly locations are one mean-deviation away from the median: 

( ) ( )1 2 and .s sx M E X M x M E X M= − − = + −                        (8) 

Proof. Let ( )f x  be a symmetric, log-concave probability density function with supports (−b, b) and median 
M = 0. [5] have shown that the socially optimal locations for duopoly firms are symmetric around the median for 
distribution ( )f x . The distance between either firms and the median is 

( )
( )

1
d .

1
b

M

F x
x

F M
−
−∫                                     (9) 

To prove the proposition, we need to show that this distance equals one mean deviation or 

( ) ( )
( )

1
d .

1
b

M

F x
E X M x

F M
−

− =
−∫                              (10) 

Since X is symmetrically distributed, on the left-hand-side, 

( ) ( ) ( ) ( )
0

d 2 d .
b b

b
E X M E X x f x x xf x x

−
− = = =∫ ∫                     (11) 

Integrating by parts gives 

( ) ( ) ( ) ( )
00 0 0

2 d 2 2 d 2 2 d
b b bb
xf x x xF x F x x b F x x= − = −∫ ∫ ∫                    (12) 

and on the right-hand-side, 

( )
( ) ( ) ( ) ( )

0 0 0 0

1
d 2 1 d 2 d 2 d 2 2 d ,

1
b b b b b

M

F x
x F x x x F x x b F x x

F M
−

= − = − = −  −∫ ∫ ∫ ∫ ∫           (13) 

which establishes the result for M = 0. Extension to M ≠ 0 is trivial. ■ 
For log-concave densities, symmetry of the density is sufficient to make the socially optimal locations of the 

two firms symmetric about the median/mean of the consumer density. One might expect that as consumer loca-
tions become more dispersed, the locations of the two firms should also become further apart. We show in 
Proposition 3 on spread that this loose intuition is precisely true to the degree that dispersion of consumer pre-
ferences is measured by the mean deviation. With a formula for the socially optimal locations in hand, it is now 
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possible to analyze the excess differentiation of the competitive locations compared to the socially optimal loca-
tions. Using results from Proposition 1, we solve the system of equations4 for each of the density functions 
which satisfy [5]’s three conditions (i.e. the distributions listed in Table 1)—the results are given in Proposition 
2. 

Proposition 2. The socially optimal locations and transport costs for five of the logconcave distributions giv-
en in Table 2, where S

ix ’s are the social-optimum location for firm i, and TS’s are the social-optimum trans-
portation costs. 

Proof. See online working paper at: http://dx.doi.org/10.2139/ssrn.1615884. ■ 
The results for the Uniform case are already well known; the results for the other four distributions are new 

and allow for an analysis of spatial competition in the Hotelling framework which is no longer tied to the uni-
form distribution. The Rayleigh distribution is asymmetric and has socially optimal locations which are not 
symmetric about either its mean (≈0.886) or its median (≈0.833). Thus the symmetry result for the first four dis-
tributions in Proposition 1 does not hold in general for asymmetric densities. In the Rayleigh case the left firm is 
located in the dense left part of the distribution and the right firm is located well out into the long right tail 
which goes off to infinity. The locations are sufficiently to the right to place the boundary µS to the right of the 
median and the mean. 

Table 2 shows that the optimal differentiation between the two firms varies considerably with the shape of the 
consumer density function and therefore the choice of density utilized in analyzing the Hotelling model could 
have a significant impact on the results. We benchmark the impact of the distribution shape below in two ways. 
First, in Section 3, we compare the socially optimal locations with the competitive equilibrium locations and 
find how savings on transportation costs varies across distributions. Second, in Section 4, we go beyond the 
standardized functional forms above to compare the social optimum results for different distributions as the dis-
persion of the distributions increases. 

The “standardized” versions of the Power and Weibull distributions depend on the parameter c, and as a result 
the socially optimal locations also depend on c. The more involved results for these two families are presented in 
the next section. 

2.3. Special Cases: Asymmetric Distribution 
Next, we look at the social optimum locations of two asymmetric families of distributions, specifically, the 
Weibull and the Power distributions. 

2.3.1. The Weibull Distribution 
The Weibull distribution has no explicit solution for µS. In this section, we look at the solution to the Weibull 
distribution in detail. µS for the Weibull distribution solves the following equation: 

( )
( )

( )
( )

( )
0

0

1
d d

1
1 e 1 d e e d

e 1

S

S

cc cS S
c

SS

S S

x x

F x F x
x x

F F

x x

µ

µ

µ µ
µµ

µ µ
∞

∞− −

−

−
=

−

⇒ − =
−

∫ ∫

∫ ∫
                          (14) 

Equation (Weibull) involves the integral of e
cx−  of which the closed form cannot be determined for c > 2. 

The Exponential and the Rayleigh distributions are the Weibull with c = 1 and c = 1 respectively. For the expo-
nential distribution, we find that 1 0.5936Sx = , 2 2.5936Sx =  and µS = 1.5936. However, as proven in [1], the 
Exponential distribution does not satisfy the conditions for the existence of unique location-price equilibria. 
Thus, for the class of Weibull distributions, only the Rayleigh distribution will be discussed in the subsequent 
sections. For the Rayleigh distribution, we find that µS = 0.97213, and the social-optimum locations are 

1 0.58634Sx = , 2 1.3579Sx = . 

2.3.2. The Power Distribution 
Similarly, there is no explicit solution for the Power distribution either. Here, we find µS that solves the integral 
equation for the Power distribution: 

 

 

4Equations (5), (6) and (7). 

http://dx.doi.org/10.2139/ssrn.1615884
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Table 2. Social-optimum locations for density functions which satisfy the conditions in [5]. 

Density Function µS 1
Sx  2

Sx  TS 

Uniform 0.5 0.25 0.75 0.02083 

Normal 0 −0.7979 0.7979 0.3634 

Logistic 0 −1.3863 1.3863 1.3863 

Laplace 0 −1 1 1 

Rayleigh 0.9721 0.5863 1.358 0.07315 

 

( )
( )

( )
( ) ( )

( )

0 0

1

1 1 1d d d 1 d
1 1

11 1
1 1

S S

S S

c c
c c

S S S S

c
S

S Sc c
S S

F x F x
x x x x x x

F F

c

µ µ

µ µµ µ µ µ

µµ µ
µ µ

∞ ∞

+

−
= ⇒ = −

− −

−+
⇒ = − +

− −

∫ ∫ ∫ ∫
                (15) 

The above can only be solved explicitly for fixed levels of c. Hence the value of µS depends on c. To examine 
the relationship between µS and c, the following total differential equation is obtained. 

( ) 2 2 1 1 2 1 1

ln 1
d 1 d

2 2 4

c c
S S S

S S S c c c c c
S S S S S S S

c
c

c c c c
µ µ µ

µ µ µ
µ µ µ µ µ µ µ+ + + +

− +
= − −

− + + − + −
              (16) 

The first part on the right-hand-side, ( )1S Sµ µ− − , is positive. To determine the sign of the second part, we 
check the first order conditions and concavity of the numerator and denominator. The result shows that both 
functions are positive given the constraints c ≥ 1, [ ]0.5,1Sµ ∈  and Equation (15) holds. Therefore, the value of 
µS increases with c, where c determines the curvature of Power distribution’s density function. 

Knowing the direction of change of µS resulted from a change in c, we can now derive the change in 1
Sx  and 

2
Sx  from Equations (5) and (6). The deviation of firms’ location from µS is 

( )
( )

d .
1

S S
a

S

F x
x

F c
µ µ

µ
=

+∫                                   (17) 

A check on the second order conditions for dµS/dc shows that it is a concave function with maximum value at 

µS = 0.5 and c = 1, i.e. ( ),
d

max 0.153
dS

S
c cµ

µ
= . We then have 

,
1 1

S S S

c c c
µ µ µ+ ∆

<
+ ∆ + +

                                   (18) 

since the denominator increases at a faster rate than the numerator. From here we know that the deviation of 
firms’ locations from µS decreases as µS approaches 1. As such, product differentiation decreases as the curva-
ture of the density function increases. 

To illustrate, we plot the graph of µS against c and solve numerically for Power distributions with integer val-
ues 2 ≤ c ≤ 10. The graph and values are in Figure 1 and Table 3 respectively. 

It can be observed that µS is increasing in c and the two socially optimum locations get closer as c increases. 
However the increase of the market boundary for firm 1 does not translate in to an increase in market share for 
firm 1 because the density is also changing shape in c. For example, at c = 2, firm 1 serves 38.2% of the market 
while at c = 10 firm 1’s market share falls to 24.5%. The amount of differentiation will be discussed in detail in 
the next section. 

3. Equilibrium and Social-Optimum Differentiation 
[1] derive the bounds for the ratio between social-optimum and equilibrium differentiation for symmetric distri-
butions. Specifically they find 
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Table 3. The social-optimal locations under the Power distribution. 

c µS 1
Sx  2

Sx  

2 0.6180 0.4120 0.8240 

3 0.6914 0.5186 0.8643 

4 0.7413 0.5930 0.8895 

5 0.7773 0.6478 0.9069 

6 0.8046 0.6896 0.9195 

7 0.8259 0.7226 0.9291 

8 0.8430 0.7493 0.9367 

9 0.8571 0.7714 0.9428 

10 0.8688 0.7898 0.9478 

 

 
Figure 1. Graph of µS against c. 

 
1 2 ,
3 3

R≤ ≤                                      (19) 

where 

2 1

2 1

.
S S Sx x xR

x x x∗ ∗ ∗

− ∆
= =

− ∆
                                 (20) 

R is inversely proportional to the amount of excess differentiation. These bounds show there is always sub-
stantial excess differentiation in the location-price game [5], also show that increasing the dispersion of con-
sumers (in the form below) increases the equilibrium differentiation5. In contrast, we now show that the excess 
differentiation ratio is invariant to this kind of increase in the dispersion of consumers. 

Proposition 3. If consumers are distributed according to a continuous, log-concave, symmetric density f on 
[ ],M b M b− +  which satisfies the technical restrictions of [5]6 then 

( ) ( ) ( )4
3

sxR f E X M f M
x∗

∆
≡ = −
∆

                            (21) 

and the differentiation ratio, ( )R fσ , is invariant to the mean preserving spreads of the form  

( ) 1 x Mf x M f
σ σ

− − =  
 

, with σ > 0, i.e. 
( )d

0
d

R fσ
σ

= . 

Proof. From [5], the conditions on f give 
( )

* 3
2

x
f M

∆ = . The expression for R then follows from direct 

 

 

5Subsequently, [1] compared the Uniform, Normal and Logistic for the sensitivity of location to changes in variance, as they are most com-
monly used to describe populations. 
6These technical restrictions are important because symmetric densities do not necessarily have symmetric location equilibria, see [6]. 



K. J. Meagher et al. 
 

 
438 

substitution of the previous proposition: 

( )

( )
( ) ( )

2 4 .
3 3

2

s E X Mx E X M f M
x

f M
∗

−∆
= = −

∆
                        (22) 

Using this explicit expression we now derive the invariance result, without loss of generality assume M = 0. 
Let Eσ denote the expectation with regard to the distribution fσ, then 

( ) ( ) ( ) ( )0 0 0

1 12 d 2 d 2 d .
b b byE X yf y y yf y z f z z E X

σ σ
σ σ σ σ σ

σ σ σ
 = = = = 
 ∫ ∫ ∫           (23) 

where z = y/σ. Simple substitution gives the result with M ≠ 0. Thus for the mean preserving spread given by fσ 
we have 

( ) ( ) ( ) ( ) ( )4 4 1 0 .
3 3

R f E X M f M E X f R fσ σ σ σ
σ σ

 = − = = 
 

                (24) 

For this type of mean preserving spread, the increase in the absolute deviation from the median/mean is linear 
in σ while the decrease in the density of the mean is at the rate 1/σ, so the two effects exactly balance. That is, in 
this case the tendency for socially optimal locations to increase because of greater dispersion is proportionally 
the same as the tendency for competitive locations to move apart due to decreased competition for the marginal 
consumer at M. 

The exact amount of differentiation that each distribution results in is shown in Table 4 and Table 5. As [5] 
observe that amongst the symmetric distributions the Uniform and Laplace distributions exhibit the greatest and 
least divergence respectively. However, in extending the analysis to asymmetric distributions, we see that 
asymmetric distributions have greater divergence than any of the symmetric distributions in the group. 

For the Power distribution, under a duopoly location-then-price game, the product differentiation7 is 

( )
( )

( )

1
1 2

2

1
1 2 2 2 1 1 .

1 1 1 1

c
c c c c cx c c

c c c c c c
∗  + +  +∆ = + = + +    + + + +   

                 (25) 

The first derivative is 

( )
1 2

d 1 1 0,
d 2 11

1
c

x c c
c c c

c

∗∆ +
= >

+ +
+

                            (26) 

so the amount of product differentiation increases as c increases. Examples are given in Table 5. Since the 
product differentiation increases under equilibrium and decreases under social-optimum conditions, the amount  
 
Table 4. Amount of differentiation (x2 − x1) for equilibrium and social-optimum locations and their ratios. 

Density Function 2 1
S S Sx x x− = ∆  * * *

2 1x x x− = ∆  *SR x x= ∆ ∆  

Uniform 0.5 1.5 0.333 

Normal 2 2 1.596
π

=  3 2 π 3.760
2

=  4 0.424
3π

=  

Logistic 4ln2 = 2.773 6 2/3ln2 = 0.462 

Laplace 2 3 2/3 = 0.667 

Power (c ≥ 1) Depend on c (see Table 5) 

Rayleigh 0.772 2.496 0.309 

 

 

7See online working paper at: http://dx.doi.org/10.2139/ssrn.1615884. 

http://dx.doi.org/10.2139/ssrn.1615884
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of divergence, R, increases with c. 
As c increases for the Power distribution, it can be observed that the optimum amount of product differentia-

tion decreases while the equilibrium amount of differentiation increases. The divergence between the two gets 
larger as c increases. The need for government intervention may increase as the distribution gets more skewed 
(Figure 2). 

Savings from Optimum Allocation 
The social-optimum locations are transport cost minimizing; there will be a saving on transport cost if the social- 
optimum locations are used instead of the equilibrium. The differences in transportation costs between equili-
brium and social-optimum outcomes show the savings in transport cost and are detailed in Table 6 and Table 7. 
We introduce a saving ratio (S) which is calculated as savings over transport costs (incurred with the equilibrium 
locations) 

.
ST TS

T

∗

∗

−
=                                     (27) 

The Power distribution, having the greatest divergence of equilibrium from optimum, has the greatest saving 
ratio. Whereas, the Laplace distribution, having the least divergence, exhibits the lowest saving ratio. The saving 
ratios imply that in a two stage location-price game, the Laplace distribution results in a cost closest to the so-
cial-optimum. On the other hand, when moving from equilibrium to social-optimum locations, it is most effi-
cient in cost-reduction under the Power distribution. We can infer a negative relationship between R and the  
 

 
Figure 2. Plot of R against c for power distribution. 

 
Table 5. Amount of differentiation (x2 − x1) and their ratios for the Power distribution. 

c 2 1
S S Sx x x− = ∆  * * *

2 1x x x− = ∆  *SR x x= ∆ ∆  

2 0.4120 1.3472 0.3059 

3 0.3457 1.3649 0.2533 

4 0.2965 1.4044 0.2111 

5 0.2591 1.4442 0.1794 

6 0.2299 1.4805 0.1553 

7 0.2065 1.5125 0.1365 

8 0.1973 1.5408 0.1216 

9 0.1714 1.5657 0.1095 

10 0.1580 1.5879 0.0995 
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Table 6. Savings and saving ratios for the set of density functions. 

Density Function TS T* T* − TS Savings Ratio (S) 

Uniform 0.021 0.271 0.250 0.923 

Normal 0.363 1.534 1.171 0.763 

Logistic 1.368 3.972 2.604 0.656 

Laplace 1 1.25 0.25 0.200 

Power (c ≥ 1) Depend on c (see Table 7) 

Rayleigh 0.07315 0.7885 0.7154 0.907 

 
Table 7. Savings and saving ratios for Power distribution with integers c such that 2 ≤ c ≤ 10. 

c TS T* T* − TS Savings Ratio (S) 

2 0.0155 0.2293 0.2139 0.9325 

3 0.0111 0.2369 0.2259 0.9533 

4 0.0081 0.2381 0.2300 0.9658 

5 0.0062 0.2337 0.2275 0.9735 

6 0.0049 0.2265 0.2216 0.9785 

7 0.0039 0.2180 0.2141 0.9821 

8 0.0032 0.2092 0.2060 0.9847 

9 0.0027 0.2004 0.1977 0.9866 

10 0.0023 0.1920 0.1897 0.9882 

 
saving ratio. 

The savings ratio does not reflect the effect on producers as equilibrium prices are different for both sets of 
locations. Take for example the uniform distribution, the equilibrium locations are (−1/4, 5/4) and price is 3/2 
(thus total profits are 3/2), social optimum locations are (1/4, 3/4) and price is 1/2 (total profits are 1/2). Al-
though overall welfare is improved (net welfare improvement is 1/4, see Table 6), the loss in total profits from 
changing to the social-optimum location is 1. This fall in profits is due to the decrease in product differentiation. 
A larger R would mean less excessive differentiation and thus a smaller drop in profits if firms are made to lo-
cate at the social optimal locations. 

4. The Impact of Consumer Dispersion 
In [5], it was determined that variance affects the equilibrium outcome of the location game. Subsequently, [1] 
compared the Uniform, Normal and Logistic for the sensitivity of location to changes in variance, as they are 
most commonly used to describe populations. Figure 3 shows the effect of variance on the amount of differen-
tiation in the social optimum outcomes. 

We find that the socially optimum amount of differentiation is the most sensitive to variance under the Uni-
form distribution; distance between firms increase at a faster rate compared to the Logistic and the Normal dis-
tributions. The Logistic is the least sensitive to changes in variance. This result is consistent with the equilibrium 
analysis in [1]. 

We calculate R to test the effects of changes in variance on the amount of divergence of equilibrium from op-
timum, Table 8 contains these values. As derived in Proposition 3, variance does not have any effect on the 
amount of divergence of the equilibrium from the optimum (R). The amount of divergence from the equilibrium 
is largest for the logistic distribution and smallest for the uniform distribution. 
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Figure 3. Distance between firms and variance (v). 

 
Table 8. General form: social-optimum locations. 

Distribution Variables Uniform Normal Logistic 

v b2/12 σ2 π2b2/3 

µS 1/2b 0 0 

1
Sx  1/4b 2

π
σ−  −2bln2 

2
Sx  3/4b 2

π
σ  2bln2 

DS 3 v  
2 2

π
v  

2

34 ln 2
π
v  

D* 
18
12

v
v

 3 2 π
2

v  
2

36
π
v

 

R 1/3 4/3π = 0.424 2/3ln2 = 0.462 

Note: the values of D* are found in [1]. 

5. The Duopoly Price Game at Social-Optimum Locations 
5.1. Equilibrium of the Price Game 
The social-optimum conditions require the cost of transportation to be minimal, and thus consumers should only 
buy goods from whichever firm is closer to them. However, consumers’ decisions do not depend only on the 
cost of transportation, but also on the prices charged by the firms. A consumer located at x will buy one unit of 
the good from the firm, where the following mill price, 

( )2S
i ip x x+ −                                       (28) 

is lower. pi is the price charged by firm i. From [5], given the location combination ( )1 2,S Sx x , firms maximize 
profits by setting prices at: 

( ) ( )
( )1 2 12 ,

S
S S

S

F
p x x

f

ξ

ξ
∗ = −                                  (29) 

and 

( ) ( )
( )2 2 1

1
2 ,

S
S S

S

F
p x x

f

ξ

ξ
∗

−
= −                                (30) 
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where ξS is the indifferent consumer uniquely determined by the equality of full prices,  
( ) ( )2 2

1 1 2 2–S S S Sp x x p x x+ = + − . Hence, 

( )
2 1

1 2
2 1

1 .
2

S S S
S S

p px x
x x

ξ
 − = + +
 − 

                              (31) 

To minimize the transportation cost, the indifferent consumer must be at the mid-point between x1 and x2, i.e. 
( )1 21 2S S S

Sx x xµ= = + . This requires both firms to charge equal price, i.e. p1 = p2. We check if the location 
combination ( )1 2,S Sx x  support equal price for each of the distributions mentioned previously. For any given 
symmetric density function, the prices of the two firms will be equal8. This is not true for asymmetric distribu-
tions, such as the Power and Rayleigh distributions. 

5.2. Social-Optimum Locations of Asymmetric Distributions 
In this section, we pay particular attention to the asymmetric distributions. Due to the asymmetric nature of the 
consumers’ distribution, firms do not set equal prices when they are at the social-optimum locations, thus caus-
ing deviation from cost minimization. The following sections explain this in detail. 

5.2.1. Social-Optimum Outcome for Asymmetric Distributions 
Lemma 1. For any single-mode asymmetric distribution with median M, M ≠ µS, where µS is the indifferent 
consumer location under social optimality (from Equation (7)). The indifferent consumer is not located at the 
median. 

Proof. We prove this lemma by contradiction. Assuming that M is a solution to Equation (7), we have the 
following: 

( )
( )

( )
( ) ( ) ( )1

d d 2 d 2 1 d .
1

M b M b

a M a M

F x F x
x x F x x F x x

F M F M
−

= ⇒ = −
−∫ ∫ ∫ ∫                 (33) 

Rearranging terms, we have: 

( ) ( ) ( )d d d d .
M b b b

a M M a
F x x F x x x F x x b M+ = ⇒ = −∫ ∫ ∫ ∫                    (34) 

Again, using integration by parts on the left hand side: 

( ) ( ) [ ]d .
bb

a a
F x x xf x x b M b E X b M− = − ⇒ − = −∫                     (35) 

However, for any asymmetric distribution with single mode, ( )E X M≠ . Equation (35) contradicts our as-
sumption that X has an asymmetric density function. As such, M is not a solution to Equation (7). ■ 

Lemma 2. If prices are equal in the location-then-price duopoly game, the indifferent consumer is located at 
the median and the locations of the firms are symmetric about the median. 

Proof. Suppose the consumers are distributed with median M. According to [5], in a duopoly price game, the 
equilibrium prices, pi (i = 1, 2), and the indifferent consumer, ξ, are determined by 

( ) ( )
( )1 2 12 ,

F
p x x

f
ξ
ξ

= −                                (36) 

( ) ( )
( )2 2 1

1
2 ,

F
p x x

f
ξ

ξ
−

= −                               (37) 

( ) ( )
( )1 2

1 21 .
2

F
x x

f
ξ

ξ
ξ

−
= + +                              (38) 

 

 

8A symmetric density with median M will have symmetric social-optimum locations (i.e. x1 + x2 = 2M), this implies that: 

( )
2 1

1 2 .x xp p
f M
−

= =                                            (32) 

Therefore, if firms were given the freedom to set prices, they will set equal prices which can be calculated by using (equal price). 
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From Equations (36) and (37), equating p1 and p2, we have ( ) 0.5F ξ = , and hence ξ = M. In addition, subs-
tituting ξ = M into Equation (38), we have ( )1 21 2 x xξ = + . Therefore, the locations of the two firms are sym-
metric about the indifferent consumer when the prices are equal. ■ 

Having proven the above two lemmas, we are now ready to prove the following proposition. 
Proposition 4. The social optimum cannot be achieved by sole regulation of locations if consumer distribu-

tions are asymmetric. Prices regulations are also required. 
Proof. Consider first the case of socially optimal locations ( )1 2,S Sx x  and competitive prices. By Lemma 1, 

the median M is not a solution (for asymmetric distributions) to Equation (7), i.e. M ≠ µS. The social-optimum 
locations are symmetric about µS as implied by Equations (5), (6) and (7). Hence these social-optimum locations 
are not symmetric about the median M. Taking the contrapositive of Lemma 2 implies that firms’ competitive 
prices are not identical at the socially optimal locations. Next, we show that this set of locations with non-equal 
prices are not welfare maximizing. 

The indifferent consumer, ξS, is not at ( )1 21 2 x x+ . Suppose ξS > µS, consumers located at the interval (µS, ξS) 
would pay a higher transportation cost to buy goods from firm 1 while it incurs less cost to buy the same goods 
from firm 2. On the other hand, if ξS < µS, buying goods from firm 2 would incur higher transportation cost for 
consumers in the interval (ξS, µS). The transportation costs spent by consumers in the interval (min(ξS, µS), 
max(ξS, µS)) are not minimized while that spent by all the other consumers are. We then arrive at the conclusion 
that the society’s transportation costs are higher when ξS is different from µS. Thus, we have shown that the sole 
regulation of locations do not eventually result in transportation cost minimization. What happens if prices are 
regulated too? 

Suppose the firms are required to set equal price, 1 2
S Sp p= . Equations (36) and (37) can be disregarded as 

firms do not have the freedom to set the prices. According to Equation (31), the indifferent consumer, ξS, is now 
located at ( )1 21 2 x x+ , which is exactly the location of µS. All consumers would then buy goods from whi-
chever firm that is closer to them. The society’s total transportation cost is minimized as each single consumer’s 
transportation cost is minimized. That completes the proof of the proposition. ■ 

In the following sections, we discuss two examples of asymmetric distributions which appear in the previous 
parts of the paper (these are distributions where unique pure strategy equilibrium exists). They are the Power 
and the Rayleigh distributions. 

5.2.2. The Power Distribution 
We examine a subset of this distribution, where 2 ≤ c ≤ 10. Equations (29), (30) and (31) are applied to solve ξS, 

1
Sp  and 2

Sp . The results are listed in Table 9. 
Comparing Table 3 and Table 9, one finds that if firms at the social-optimum locations were given the free-

dom to set their own prices, the indifferent consumer, ξS, deviates from µS. Comparing Table 7 with Table 9,  

one finds that savings ratio has fallen for all cases, recall that ,
ST TS

T

∗

∗
−=  this denotes the savings in trans-  

port costs as a result of switching from the equilibrium locations to the social-optimal. In Table 7 firms are as-
sumed to set equal prices, in Table 9 firms are allowed to set their own price; as a consequence, there is less 
savings in transport costs. For integer values of [ ]2,10c∈ , ξS > µS. This means consumers located at the interval 
(µS, ξS) would buy goods from firm 1 while it incurs less transportation cost to buy from firm 2. Therefore, the 
society’s costs are not minimized in this case. 

5.2.3. The Rayleigh Distribution 
Similarly for the Rayleigh distribution, we apply Equations (29), (30) and (31) to solve ξS, 1

Sp  and 2
Sp . The 

resulting indifferent consumer is at x = 0.8787, which is on the left of µS. Consumers located at 0.8787 < x < 
0.9721 would buy goods from firm 2 while it incurs less transportation cost to buy from firm 1. The transporta-
tion costs for consumers in this interval are not minimized, and hence society’s total transportation cost is not 
the minimum. The saving ratio (S) for the Rayleigh distribution is 0.900 and is smaller than when the firms are 
forced to set equal prices where S = 0.907. 

6. Conclusions 
In [5], an implicit system of equations was provided which we build upon to give an explicit closed form solu-  
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Table 9. Social-optimal attributes for the Power distribution. 

c ξS 
1
Sp  2

Sp  Savings Ratio (S) 

2 0.67784 0.27928 0.32856 0.92405 

3 0.76058 0.17529 0.22311 0.94195 

4 0.80898 0.11993 0.16008 0.95471 

5 0.84091 0.08715 0.12011 0.96335 

6 0.86361 0.06618 0.09333 0.96942 

7 0.88061 0.05195 0.07455 0.97387 

8 0.89382 0.04186 0.06090 0.97726 

9 0.90438 0.03445 0.05067 0.97990 

10 0.91302 0.02884 0.04281 0.98203 

 
tion for the social-optimum locations for symmetric consumer densities—each firm should be located one mean- 
deviation away from the median. With this result we are also able to provide an explicit formula for the ratio of 
excess differentiation R (socially optimal differentiation relative to equilibrium differentiation). We show that 
the excess differentiation ratio is invariant to a multiplicative increase in the dispersion of consumers around 
their mean/median. 

We derive the social-optimum locations and prices for densities with unique pure strategy equilibria in a two- 
stage location-price game and examine the degree of excess product differentiation. The results show that firms 
under the Uniform and Rayleigh densities have the greatest excess differentiation at their equilibrium locations. 

This paper also looked at the potential saving from the regulation of firm decisions via the calculation of the 
savings ratio (S) in Section 3.1. We found that the Laplace has the lowest S and thus give governments the least 
incentive to intervene. The Power, Uniform and Rayleigh distributions exhibit high savings ratios and would 
benefit the most from government intervention. Policy makers and urban planners should consider consumer 
distributions when deciding to regulate firm location decisions. 

The implicit social-optimum locations provided by [5] apply to both symmetric and asymmetric densities as 
they are transport cost minimizing. But the solution does not take into account the redistributive effect of prices 
in the pricing stage. The social-optimal locations for symmetric densities are chosen such that firms will natu-
rally choose equal prices at the pricing stage. As long as prices are equal, the indifferent consumer remains at the 
median and transportation costs are minimized. On the other hand, under asymmetric densities (such as the 
Rayleigh distribution) firms will not choose equal prices (at the pricing stage) due to the asymmetric nature of 
the distribution. When prices are unequal, more consumers go to the cheaper firm (than socially optimal); this 
will cause transportation costs to deviate from the minimum. Thus, the sole regulation of location will not work 
for asymmetric densities as firms will not choose symmetric prices. This problem can be tackled by price regu-
lation or one can work out an alternative location solution which will minimize transport costs where firms can 
set their own prices. The latter is a question open for future research. 
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