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ABSTRACT 

The domains are of fundamental interest for engineering a ferroelectric material. The domain wall and its width control 
the ferroelectric behavior to a great extent. The stability of polarization in the context of Landau-Ginzburg free energy 
functional has been worked out in a previous work by a perturbation approach, where two limits of domain wall width 
were estimated within the stability zone and they were also found to correspond well with the data on lithium niobate 
and lithium tantalate. In the present work, it is shown that this model is valid for a wide range of ferroelectric materials 
and also for a given ferroelectric, such as lithium niobate with different levels of impurities, which are known to affect 
the domain wall width. 
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1. Introduction 

Below Curie temperature, the ferroelectricity is a very 
important property in solids that arises in certain crystals 
in terms of spontaneous polarization [1]. The ferroelec-
tric behavior is commonly explained by the rotation of 
domains and domain walls that are present in the crystal 
with uniform polarization [2-4], which is non-linear in 
terms of hysteresis of polarization (P) and the electric 
field (E) vectors. In Ref. [4], we used the Landau-Ginz- 
burg free energy (G) functional to explain this interesting 
behavior by giving perturbations on P, E and G (at the 
center of the domain wall, termed as x0) by taking the 
spatial variation of these parameters in terms of ordinary 
differential equations. This was based on a static soliton 
solution of Lines and Glass [5]. By treating it as an ei-
genvalue problem, the critical values of non-dimensional 
polarization (Pc) were found within the zone of stability 
through a linear Jacobian transformation. These values 
were estimated to lie between 1 and 1 3 , which also 
showed the possibility of a large memory. The corre-
sponding limits of half the domain wall width, i.e. higher 
limit at non-dimensional 1 3c sP P P   and lower 
limit at Pc = 1 (i.e. P = Ps) were also found in the case of 
lithium tantalate and lithium niobate ferroelectric crystals, 
whose switching and hysteresis behavior have been ex-
tensively studied [2,6]. While a lot of work has been 

done on domain wall and estimation of its half width, not 
much work has been done on the stability aspect [4] and 
on the dynamic behavior of the ferroelectric materials 
[7]. 

In ferroelectrics literature, the width of the domain 
walls has been very controversial, with many authors 
claiming that the walls are very wide. The pioneering 
work of Zhirnov, Vanderbilt et al., Yacoby et al. and 
Roytburd are mentioned in Ref. [7]. It is worth noting 
that an extensive first principle calculation by Vanderbilt 
group [8,9] (see the references therein) showed that this 
apparent width results instead from time-averaging data, 
which are based on rather wide spatial excursions taken 
by such domain walls. 

It is quite pertinent to mention that the first principle 
calculations have not established a stability zone for po-
larization in a given ferroelectric, due to various assump-
tions involved in such study and uncertainty due to cor-
rect estimate of born effective charge, as pointed out by 
Vanderbilt [9]. Moreover, there is a wide difference of 
values between those calculated by such studies (0.5 nm) 
and the powerful experiments by HRTEM images and 
other means (from about 1.5 - 2.1 nm up to about 4 - 6 
nm) [10] (see the other references therein). Yacoby group 
has done an extensive work on phase transitions in ferro-
electric materials through temperature dependence of the 
wall widths [11] (also see the references therein) in terms 
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of a phenomenological model that quantitatively accounts 
for both displacive type and order-disorder type proper-
ties of pervoskites, and also by Roytburd [12]. In an im-
pressive study by Bhattacharya and co-workers on the 
evolution of domain pattern involving electrostatic po-
tential, a relation was developed between domain switch- 
ing and electromechanical actuation [13,14] (see the ref-
erences therein). Landis and co-workers [15] also did an 
interesting work on the evolution of domain structures 
from the continuum thermodynamic framework taking a 
phase-field modeling approach. In Ref. [4], a stability 
zone was found out by giving perturbation in the middle 
of the domain wall and a simple equation was derived for 
the domain wall width, which shows a relation with im-
purity contents in the ferroelectrics. Recently, Floquet 
and Valot did some XRD work on barium titanate and 
related the presence of twin walls with different concen-
trations of point defects [16]. In the literature, there is too 
much discussion on impurity effect on the domain for-
mation and domain wall width, but it does not seem to be 
quite an easy task [3,17-19]. 

Without going into a debate on the merits of first prin-
ciple studies and different experimental data, it can be 
safely said that a theoretical model must have a wider 
validity in terms of its applicability for a wider class of 
ferroelectrics with various preparation techniques and 
even with different measurement procedures. Moreover, 
the motivation of the present effort is to emphasize on 
various uncertainties that can be tackled if we assume a 
perturbation model, i.e. fluctuations in different con-
cerned variables that are used to describe ferroelectricity 
in terms of some so-called “material parameters” such as 
saturation polarization (Ps) in C/m2 and coercive field (Ec) 
in kV/cm. 

The basic formulations of this paper can be found out 
in Ref. [4] wherefrom Equation (26b) we get. 
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when the non-dimensional Pc values are 1 and 1 3  

respectively. The first value of Pc seems to refer to the 
most “stable situation” (i.e. an equilibrium situation) and 
the second one indicates the “limit of stability” in the P 
vs. E hysteresis diagram [4]. Here, a is the lattice spacing 
in nm, 1 is the first coefficient of the Landau-Ginzburg 
polynomial in m/F that is calculated from the dielectric 
data (33), and the other terms have their usual meaning. 

It is noteworthy that after the zone of stability, the 
system becomes chaotic. The temporal chaotic dynamics 
has been studied in details in Ref. [7]. Similar kind of 
work in the spatial regime is subject of our future work. 
On the issue of minimization of energy, it should be men- 
tioned that after getting the eigenvalues from Equation 
(17), Equation (21) and Equation (22) were derived in 
Ref. [4], which in turn gives the above inequality Equa-
tion (26) incorporating the critical polarization value Pc 
[4]. In this way the fundamental minimum energy condi-
tion is implemented in deriving XL and XU. As we are 
dealing with the system without any interaction, so the 
treatment done here is for a single domain, and then in 
other studies, as in Ref. [20] and Ref. [21], we also con-
sidered the many body dynamics of such systems with an 
interaction constant. Hence, the study done here is only 
for local energy criterion, which has also got a global 
appeal. It should also be indicated that our formulations 
are based on non-dimensional terms, and as the driving 
field (E) in Ref. [4] contains the coercive field term (Ec), 
which in turn is related to the impurity content [17,21]. 

Our preliminary estimate of the “half width” of such 
domain walls for only one crystal data of near-stoichiomet- 
ric lithium niobate (LN) and lithium tantalate (LT) showed 
that the lower limit corresponds well with the result of 
Padilla et al. [8] and the higher limit agrees well with 
that found by Gopalan et al. [2]. The present work was 
undertaken to see the validity of these equations, based 
on a continuum model of Landau-Ginzburg, on both LN 
and LT crystals with a wider variety of impurity contents 
(read Ec values). Moreover, wherever the material pa-
rameters such as Ps and Ec are known from a voluminous 
literature on the subject, the above equations were also 
used for those materials for the same objective. 

2. Results and Discussion 

It should be mentioned that the conventional solutions for 
the domains can also be tackled by variational problem by 
taking care of many terms in the Hamiltonian [20]. Fur-
thermore, the study carried out by Vanderbilt et al. [8,9] 
and Gopalan et al. [2] show the domain size by ab-initio 
calculation and experimental techniques respectively. In 
our case, we do such calculations by a well-known method 
such as perturbation technique. This is a very important 
point in this paper. So, our perturbation approach not 
only bench-marks the problem, but also shows a good 
correspondence with the values obtained by the above 
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two methods in terms of easier calculations and much 
realistic value. Although in Ref. [4], the model has been 
presented for single domain i.e. with zero dipole-dipole 
and other interactions, this kind of treatment may also be 
found in Ref. [20]. 

The coercive field data with different impurity con-
tents for LN crystals have been collected from Ref. [17], 
wherein a lot of data from Gopalan et al. [19] are also 
included, and those for LT crystals are taken from Tian et 
al. [2,18]. The values of saturation polarization have 
been made to vary linearly between the two extremes, 
since they do not seem to show significant variations 
with impurity content. Although a table is not shown 
here with the relevant data, these data are available in the 
above literature, particularly in Ref. [19]. 

For both these cases, it is seen that irrespective of the 
impurity content (read, different Ec values), the lower 
limit of “half the domain wall width” (DWW) is re-
markably constant at 0.74 - 0.77 nm, which is just about 
1.5 times the lattice spacing of these crystals (i.e. 3 times 
the lattice spacing for the “full width”, (see Zhirnov et al. 
in Ref. [7])). Since, this represents the most stable situa-
tion, it can be said that in the lower limit, the DWW will 
vary between 1 - 2 lattice spacing and the observed value 
might result from a time-averaging mechanism, as ex-
plained in the Section 1. As will be shown below, this is 
also true for a wider class of ferroelectric materials. 
Whatever may be the “averaging” mechanism, it can be 
stated that the lower limits of DWW will not go below or 
above 1.5 times the lattice spacing that are based on the 
experimental data. 

The upper limit of half of DWW shows a large varia-
tion with the experimental impurity content or coercive 
field data. It is quite interesting to plot these values of XU 
against impurity content, as shown in Figure 1. This up-
per limit falls sharply up to a particular impurity content 
(0.133 mol%) that corresponds to an Ec value equal to 40 
kV/cm for LN crystals, and then it decreases asymptoti-
cally towards the congruent side. This is the most inter-
esting observation in that Gopalan et al. found it rela-
tively easier to work in this zone for the hysteresis study 
with an appropriate thickness of the sample [2,6,21]. 

The data for LT crystals with lower Ec values (1.61, 
13.9, 17 and 210 kV/cm respectively) than those of LN 
crystals are not plotted here due to the paucity of the data 
in the intermediate range and also due to the lack of pre-
cision of the impurity contents, but they show the same 
trend as that of LN crystals when plotted against Ec val-
ues. Qualitatively speaking, the lower values of XU for 
LT crystals (2213, 257, 211 and 19 nm respectively) 
show their relative usefulness as non-linear optical mate-
rials from the application point of view [19]. 

We have also analyzed 7 more ferroelectric crystals 
with a wider variety of chemical and physical character-

istics with important implications for non-linear optical 
and other applications. However, it has been observed 
that here again the lower limit of DWW (XL) is almost 
constant at 1.810 - 1.883 nm and it is equal to about 1.5 
(1.454 - 1.499) times the lattice spacing (i.e. again the 
“full width” is found to be equal to 3 times the lattice 
spacing). At the outset, these data encompass quite a wide 
range of ferroelectric materials, where our perturbation 
model for estimating DWW seems to be valid, obviously 
assuming that the L-G equation is valid for all such crys-
tals. However, the question can be raised about samarium 
and calcium doped lead titanates and barium titanate that 
are not included in our analysis since these data do not 
fall in the smooth curve of Figure 2, these materials are 
known to undergo a first order phase transition. 

 

 

Figure 1. Upper limit of half the domain wall width in nm 
against impurity content (mol% × 100) for lithium niobate 
ferroelectrics. 

 

 

Figure 2. Upper limit of half the domain wall width in nm 
against coercive field in kV/cm for a very wide range of 
ferroelectric crystals (triangles represent 7 samples with 
known dielectric data). 
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These materials might contain different levels of im-
purities, even they are not known with precision. How-
ever, the plot of XU vs. Ec (read, impurity content) is 
shown in Figure 2. The behavior is quite similar to that 
shown for LN crystals from XU value of 709 nm (i.e. Ec = 
4 kV/cm) for KLN crystal up to a low value around 36 
nm (i.e. Ec = 45 kV/cm) for SBiVN crystal, and then it 
remains almost constant towards higher Ec values (i.e. 
congruent side). It is to be noted that this near constant 
value is 19 - 38 nm, which is about 1 2  to 1 order of 
magnitude higher than that found by Floquet and Valot 
by a combination of HRTEM images and XRD data 
[10,16], as mentioned in the Section 1. However, it is 
difficult to explain this anomaly at this stage, considering 
that both the preparation techniques (incorporating dif-
ferent levels of impurities) and measurement procedures 
(i.e. experimental errors) could be quite different from 
sample to sample. 

A large variation of the XU value seems to indicate a 
wide variation in the impurity levels. It is quite pertinent 
to mention that in our above model, no effect of the 
crystal strain is included, as done by Gopalan et al. [3], 
and also by Bhattacharya and coworkers [13,14] and 
others [15], which is expected to decrease the dielectric 
constant and thereby increase the value of the Landau 
coefficient, which is so fundamental in the estimation of 
DWW. However, from such an interesting correspon-
dence of experimental data with our perturbation model 
on various ferroelectric crystals, it is our considered 
opinion that the “observed trend” (as shown in Figures 1 
and 2) might not change significantly, if we take strain 
energy into account. There is a need of more work in this 
area, particularly on the effect of impurity and strain on 
the domain wall width from a dynamic point of view, as 
also emphasized by Gopalan et al. [3]. 

This work shows that due to fluctuation in both the 
driving force and order parameter, the lower limit of 
DWW is remarkably constant showing its independence 
on the switching behavior or Ec, whereas the upper limit 
of DWW shows a relatively stronger functional depend-
ence on the impurity content (i.e., on Ec) at the initial 
values before showing the asymptotic behavior that 
might indicate the beginning of a pinning effect. This 
signifies the need to work with near-stoichiometric sam-
ples containing some impurities for photonic and other 
applications [20-23]. It is pertinent to mention here that 
for lithium nobate system, after the third point from the 
left of Figure 1, all the other points can be approximated 
by a straight line. At this third point, the switching field 
is 40 kV/cm (equivalent to an “antisite niobium defects” 
content of 0.133 mole%), where there is an effect of pin-
ning observed [24]. This was recently described by a 
detailed quantum calculations of two-phonon bound state 
(TPBS) by phonon hopping coefficient via Fourier Grid 

Hamiltonian method through our discrete Hamiltonian 
[21,23], as detailed in Ref. [24]. For the data of other 
ferroelectrics, a detailed quantum calculations are being 
carried out, although in this case (Figure 2) the breaking 
point is around 40 - 45 kV/cm . 

3. Conclusion 

The perturbation or fluctuation model shows the lower 
limit of half the domain wall width to be remarkably 
constant due to some averaging mechanism taking place 
within a given crystal system during switching study for 
a wide variety of crystals and for a given crystal with 
different impurity contents, which signifies the most sta-
ble situation. The upper limit of half the width, after an 
initial decrease, shows an asymptotic behaviour with the 
coercive field (read, impurity content) after a particular 
value for both lithium niobate and lithium tantalate crys-
tals respectively, whereas it is almost constant for other 
ferroelectrics towards the congruent side. An attempt will 
be made in future to use the “switching data” for esti-
mating the temporal width of these domain walls from a 
dynamic system analysis, as done on such materials [7]. 
Moreover, the strain data instead of being normalized 
into L-G equation should be explicitly included in this 
type of model. This work not only shows the establish-
ment of our simple mathematical model for domain wall 
width, but also it predicts a sort of critical point of impu-
rity in various ferroelectrics, after which the wall width 
becomes almost asymptotic. Detailed quantum calcula-
tions already show some changes due to pinning in lith-
ium niobate system [24] and for other ferroelectrics, mi-
cro-level calculations would be the future directions of 
study. 
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