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Abstract 
 
A similarity solution for the steady hydromagnetic convective heat and mass transfer with slip flow from a 
spinning disk with viscous dissipation and Ohmic heating yields a system of non-linear, coupled, ordinary 
differential equations. These equations are analytically solved by applying a newly developed method 
namely the DTM-Padé technique which is a combination of the Differential Transform Method (DTM) and 
the Padé approximation. A full analytical solution is presented, as a benchmark for alternative numerical so- 
lutions. DTM-Padé is implemented without requiring linearization, discretization, or perturbation, and holds 
significant potential for solving strongly nonlinear differential equations which arise frequently in fluid dy- 
namics. The regime studied is shown to be controlled by the slip parameter (), magnetohydrodynamic body 
force parameter (M), Eckert (viscous heating) number (Ec), Schmidt number (Sc), Soret number (Sr), Dufour 
number (Du) and Prandtl number (Pr). The influence of selected parameters on the evolution of dimen- 
sionless velocity, temperature and concentration distributions is studied graphically. Increasing magnetic 
field (M) is found to significantly inhibit the radial (f) and tangential (g) velocities, but to accentuate the axial 
velocity field (h); furthermore temperature () and concentration () are both enhanced with increasing M. 
Increasing Soret number (Sr) acts to boost the dimensionless concentration (). Temperatures are signifi- 
cantly elevated in the boundary layer regime with a rise in Eckert number (Ec). Excellent correlation be- 
tween the DTM-Padé technique and numerical (shooting) solutions is achieved. The model has important 
applications in industrial energy systems, process mechanical engineering, electromagnetic materials proc- 
essing and electro-conductive chemical transport processes. 
 
Keywords: Differential Transform Method, Padé Approximants, Thermal-Diffusion, Heat Transfer, Soret 

Effect, Boundary-Layers, Hydromagnetics, Slip, Dissipation, Electromagnetic Processing of 
Materials 

1. Introduction 
 
Hydromagnetic flow with heat and mass transfer from a 
rotating disk is a fundamental regime of interest in di- 
verse branches engineering including magnetic materials 
processing [1], industrial energy conversion [2], magne- 
tohydrodynamic tribological systems [3,4], rotating disk 
voltammetry in chemical synthesis [5] etc. Static mag- 
netic fields are frequently implemented in solidification 

processing for metallic alloys wherein they can be em- 
ployed strategically to regulate melt flow and solidify 
structures in the continuous casting of steels [6]. Elec- 
tromagnetic processing can significantly improve the 
quality of products in numerous mechanical and chemi- 
cal engineering technologies. In magnetohydrodynamic 
disk generators, high power density can be produced with 
low environmental issues, and such systems are increase- 
ingly being employed in modern thermal power systems 
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and incorporated into enhancing industrial energy man- 
agement [7,8]. Such applications have stimulated con- 
siderable interest in the mechanical engineering research 
community in theoretically and numerically simulating 
rotating disk hydromagnetic flows in the presence of 
various supplementary phenomena including, magnetic 
induction, slip, viscous heating, thermal radiation etc. 
Intani et al. [9] used the finite element method to study the 
velocity and induced magnetic fields in a rotating hy- 
dromagnetic disk generator. Aboul-Hassan and Attia [10] 
investigated the effects of Hall currents on hydromag- 
netic rotating disk flow in the presence of an axial static 
uniform magnetic field using a shooting method. Turky- 
ilmazoglu [11] studied the transient hydromagnetic con- 
vection flow from a porous spinning disk in the presence 
of uniform normal magnetic field, using a compact, un- 
conditionally stable, implicit spectral numerical integra- 
tion algorithm.  

The above studies did not consider thermo-diffusion or 
diffuso-thermal effects. Thermodiffusion, also called 
thermal diffusion or the Soret effect corresponds to spe- 
cies differentiation developing in an initial homogeneous 
mixture subjected to a thermal gradient. On the other 
hand, the Soret effect has been also utilized for isotope 
separation and in mixture between gases with very light 
molecular weight, such as 2H  or He  and of medium 
molecular weight, such as 2H  or air. In many studies 
the Dufour and Soret effects are neglected, on the basis 
that they are of a smaller order of magnitude than the 
effects described by Fourier’s (thermal conduction) and 
Fick’s (species diffusion) laws. However, in certain in- 
dustrial processing operations, such phenomena may 
arise and infact exert an important role. Postelnicu [12] 
studied numerically the influence of a magnetic field on 
heat and mass transfer by natural convection from verti- 
cal surfaces in porous media considering Soret and Du- 
four effects. Bhargava et al. [13] used the finite element 
method to analyze the oscillatory reactive double-diffu- 
sive magnetohydrodynamic boundary layer flow with 
Soret and Dufour effects. Bég et al. [14] used shooting 
quadrature to simulate the influence of Soret and Dufour 
effects on natural convection hydromagnetic flow from a 
stretching sheet in porous media. Maleque and Sattar [15] 
have also studied MHD natural convection flow with 
mass transfer incorporating the influence of thermal- 
diffusion effects.  

Dissipation effects may also contribute significantly to 
flow and heat/mass transfer characteristics in magneto- 
hydrodynamic transport phenomena. These may be si- 
mulated as viscous dissipation and Joule heating (Ohmic 
dissipation). Attia [16] considered transpiration and Oh- 
mic heating effects on rotating disk hydromagnetic flow 
with ionslip. Zueco et al. [17] used network simulation 

methodology to simulate the combined effects of viscous 
and Joule heating, thermophoresis and thermal conduc- 
tivity variation on hydromagnetic convection boundary 
layers. Bég et al. [18] have studied viscous and Joule 
heating effects on transient magnetohydrodynamic plas- 
ma flow in a porous medium channel, using network 
simulation. Osalusi et al. [19] have employed shooting 
quadrature to analyze the combined Soret, Dufour, vis- 
cous and Ohmic heating effects on hydromagnetic slip 
flow from a spinning disk. Sibanda and Makinde [20] 
used a Newton-Raphson shooting method along with 
fourth-order Runge-Kutta integration algorithm to study 
the steady hydromagnetic convection from a spinning 
disk embedded in a porous medium with viscous and 
Ohmic dissipation, and additionally Hall currents. They 
showed that magnetic field inhibits the flow due to the 
opposing Lorentz force generated by the magnetic field 
and that both magnetic field and the Eckert number (dis- 
sipation parameter) enhance the heat transfer efficiency.  

In the present study we consider a similar regime to that 
studied by Osalusi et al. [19], using a novel technique, the 
DTM-Padé method [21], which can be applied directly 
to nonlinear differential equations without requiring lin- 
earization, discretization and therefore, is not affected by 
errors associated with discretization. This technique 
therefore provides mechanical engineering researchers 
with a very robust benchmark for verifying purely nu- 
merical solutions. In this article we obtain approximate 
analytic solutions by the combination of the DTM and the 
Padé approximants for rotating hydromagnetic flow, heat 
and mass transfer from a spinning disk with Soret, Dufour, 
viscous and Joule heating effects.  

Therefore, this paper has been organized as follows. In 
section 2, the mathematical flow model is developed. In 
sections 3 and 4 we elaborate the fundamentals of the 
DTM approach and the theory of Padé approximants, 
respectively. In section 5, we extend the application of the 
DTM-Padé to construct the approximate solutions for the 
transformed, nonlinear, coupled, ordinary differential 
equations governing the rotating magnetohydrodynamic 
flow regime. In section 6 the graphical results are pre- 
sented with a detailed discussion. Conclusions are sum- 
marized in section 7. 
 
2. Mathematical Model 
 
We consider the steady, hydromagnetic, incompressible 
Von Karman convective and slip flow due to a rotating 
disk in the presence of viscous dissipation and Ohmic 
heating with effects of thermo-diffusion (Soret effect) 
and diffusion-thermo (Dufour effect) effects on com- 
bined heat and mass transfer [19]. Figure 1 shows the 
physical model with coordinate system. 

Copyright © 2011 SciRes.                                                                                 WJM 



M. M. RASHIDI  ET  AL. 219 
 

The disk rotates with constant angular velocity   
and is placed at  where  is the vertical axis in 
the cylindrical coordinates system with  and 

0,z  z
r   as 

the radial and tangential axes, respectively. The com- 
ponents of the flow velocity are  in the direc- 
tions of increasing  respectively, the pressure 
is  and the density of the fluid is 

 , ,u v w

.


 , , ,r z

P    and  are 
the fluid temperature and concentration, respectively, 
and the surface of the rotating disk is maintained at a 
uniform temperature wT  and uniform concentration 

 Far away from the surface, the free stream is 
sustained at a constant temperature  constant con- 
centration  and at constant pressure  The fluid 
is assumed to be Newtonian, viscous and electrically- 
conducting. The external uniform magnetic field is 
applied perpendicular to the surface of the disk i.e. 
axially, and has a constant magnetic flux density 0 . 
Since small magnetic Reynolds number is assumed, 
magnetic induction effects are neglected. In addition, no 
electric field is assumed to exist and the Hall effect is 
negligible. The equations governing the motion of the 
hydromagnetic laminar flow of the homogeneous fluid 
take the following form 
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Figure 1. Physical model with coordinate system. 
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where     is the kinematic viscosity of the ambi- 
ent fluid,   is the thermal conductivity of heat,   is 
the electrical conductivity, pc  is the specific heat at 
constant pressure,  is the molecular diffusion coeffi- 
cient, T  is the thermal-diffusion ratio, 

D
k sc  is the con- 

centration susceptibility and m  is the mean fluid tem- 
perature. The last term on the right-hand side of the en- 
ergy Equation (5) and diffusion Equation (6) signifies the 
Dufour or diffusion-thermo effect and the Soret or 
thermo-diffusion effect, respectively. The boundary con- 
ditions are introduced as follows [19]: 
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The transformed “similarity” nonlinear ordinary dif- fer-
ential Equations (9)-(13) are obtained by initially per- 
forming a non-dimensionalization [19] and subsequently by 
introducing a dimensionless normal distance from the disk, 

1 2Z    along with the von Karman transformations: 
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where , , ,f g h   and   are non-dimensional func-
tions of modified dimensionless vertical (axial) coordi-
nate  .  
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where 2
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and the prime symbol denotes a derivative with respect 
to .  The transformed boundary conditions are given 
as: 
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where   1/22        is the slip factor, The 
boundary conditions (14)-(16) imply that both the radial 
and tangential velocity components as well as tempera- 
ture and concentration vanish sufficiently far away from 
the rotating disk, whereas the axial velocity component is 
anticipated to approach a (yet unknown) asymptotic limit 
for sufficiently large  -values. 
 
3. Differential Transform Method (DTM) 
 
The concept of DTM was first introduced by Zhou [22] 
and employed to solve both linear and nonlinear initial 
value problems in electric circuit theory. In this method, 
we applied certain transformation rules. The governing 
differential equations and the boundary conditions of the 
system are transformed into a set of algebraic equations 
and the solution of these algebraic equations yields the 
desired solution of the problem. Also, DTM does not 
require “perturbation” parameters. The validity of DTM 
is independent of whether or not there exist small pa- 
rameters in the considered equation. Therefore, as with 
other semi-analytical techniques such as the Homotopy 
Analysis Method [23,24] (HAM) and the Homotopy 
Perturbation Method (HPM) [25,26], DTM can over- 
come the foregoing restrictions and limitations of per- 
turbation methods. Rashidi and Erfani [27] used DTM to 
solve Burgers’ and nonlinear heat transfer equations 
demonstrating very good correlation with HAM solutions. 
In recent years, DTM has been successfully employed to 
solve many types of nonlinear problems arising in di- 
verse branches of applied physics and engineering sci- 
ences. These include stability problems in structural dy- 
namics [28], Lane-Emden type differential equations in 
astrophysical fluid dynamics and thermionic current sys- 
tems [29], rotating hydromagnetic flow stability [30], 
water wave hydrodynamics [31], the sine-Gordon equa- 

tion which arise in differential geometry and studies of 
propagation of magnetic flux [32], soil-structure interac- 
tion problems in earthquake engineering [33], the regu- 
larized long wave (RLW) equation in plasma wave hy- 
dromagnetics [34], boundary layer theory in aerodynam- 
ics [35], elasto-dynamics [36] and unsteady, nonlinear 
thermal conduction modelling in mechanical engineering 
components [37]. All these successful applications have 
extensively verified the validity, effectiveness, and flexi- 
bility of DTM.  

DTM constructs for differential equations an analyti- 
cal solution in the form of a power series. Furthermore, 
power series are not useful for large values of , say 

.   It is now well-known that the Padé approxi-
mants [38,39] have the advantage of manipulating the 
polynomial approximation into rational functions of 
polynomials. It is therefore essential to combination of 
the series solution, obtained by the DTM with the Padé 
approximant to provide an effective tool to handle 
boundary value problems at infinite domains. One of the 
first successful applications of DTM to boundary-layer 
flows was presented by Rashidi and Domairry [40] and 
Rashid [41]. Rashidi and Erfani [42] also demonstrated 
the applicability of the DTM approach for convection 
boundary layer flows over a flat plate with convective 
surface boundary conditions. The DTM approach has 
thusfar not received significant attention in rotating hy-
dromagnetic fluid dynamics, and this is one of the objec-
tives of the present paper. Prior to developing a DTM 
solution to the nonlinear rotating disk flow regime under 
consideration, we provide a summary of the fundamental 
concepts of DTM, as an aid to readers.  

Consider a function  u x  which is analytic in a do- 
main  and let 0T x x  represent any point in the T  
The function  u x  is then represented by a power se- 
ries whose centre is located at 0 .x  The differential 
transform of the function  is given by: u x
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where  u x  is the original function and  U k  the 
transformed function. The inverse transformation is de- 
fined as follows 

     0
0

.
k

k

u x x x U k




             (18) 

Combining Equations (17) and (18), we arrive at:  
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Considering Equation (19), it is apparent that the con- 
cept of the DTM is derived from Taylor series expansion. 
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However, DTM does not evaluate the derivatives sym- 
bolically. In practical applications, the function  u x  is 
expressed by a finite series and Equation (18) can be 
rewritten as follows 

     0
0

,
m

k

k

u x x x U k

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which implies that 
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k
x x U k



 

m

 is negligibly 
small. Usually, the value of  is decided by conver- 
gence of the series coefficients. We have documented 
operations for differential transformed functions about 
the point  in Table 1 (see Appendix 1) and we 
assume that  in the following sections. 

0x 
0x  0

 
4. The Padé Approximants  
 
Suppose that we are given a power series  
representing a function 
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a Padé approximant is a rational fraction and the notation 
for such a Padé approximant is [38,39]: 
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Inspection of Equation (22) reveals that there are 
 numerator coefficients and 1L  1M   denominator 

coefficients. Since we can clearly multiply the numerator 
and denominator by a constant and leave  ,L M  un- 
changed, we impose the normalization condition: 
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Therefore, there are  independent numerator 
coefficients and 
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cients, making  unknown coefficients in all. 
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[38,39], we know that the  ,L M  approximant is uni- 
quely determined. In the notation of formal power series: 
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By cross-multiplying Equation (27), we find that: 
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These yield the following set of equations: 
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where 0na   for 0n   and  for  If 
Equations (29) and (30) are non-singular, then a direct 
solution is tangible:  

0jq  .j M

 

1 2

1

1
1 0

1 2 1

1
1

, ,

1

L m L m L

L L L

L L L

1

M

j j j
j M j M j

j M j M j

L m L m L

L L L M
M M

a a a

a a a

a x a x a x

L M
a a a

a a a

x x

    

 

  
   

    

 



  



  







   







M

  

(31) 

If the lower index on a sum exceeds the upper, the sum 
is replaced by zero. Alternate forms are: 

 

   

1

,

1

,

1
, ,

0

1
, ,

0

,

         ,

L M

L M

L M
j L M T

j L M L
j

L n
j L n T

j L M M L n M
j

L M a x x w W w

a x x w W w






 




 

 


 

 




 (32) 

1 2 1

,

1 1

W ,
L M L M L L

L M

L L L M L M

a xa a xa

a xa a xa

    

  

 



 
   
   



  



 (33) 

1

2
,w

L M

L M
L M

L

a

a

a

 

  .

 
 
 
 
 
 


                (34) 
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The construction of  ,L M  approximants involves 
only algebraic operations [38,39]. Each choice of  
degree of the numerator and 

,L
,M  degree of the denomi- 

nator, leads to an approximant. The major difficulty in 
applying this technique is how to direct the choice in order 
to obtain the best approximant. This requires a criterion 
which dictates the choice of approximation, depending on 
the shape of the solution. A criterion which has worked 
well here is the choice of  ,L M  approximants such that 

 Using the symbolic computation software 
MATHEMATICA, we directly employ the command 
“Padé Approximant” about the point  to generate 
the Padé approximant of 

.L M

0x 
 f x  in the following sec- 

tions. 

    

    

    
0

1
1 2 2

1

1 2 2 0

k

r

k k k
Sc

k r H r k r

Sr k k k








  

1

.

    

    

         (39) 

where   ,F k    ,G k    ,H k   k  and  k  are 
the transformed functions of   ,f     ,g     ,h   
    and   ,   respectively and are given by: 

   
0

,k

k

f F k
m

 


              (40) 

   
0

,
m

k

k

g G k 


                 (41) 

 
   

0

,
m

k

k

h H k 


                (42) 5. Analysis with DTM-Padé Simulation  
 

   
0

,
m

k

k

k   


                (43) Taking the one-dimensional differential transform, from 
Table 1 to Equations (9)-(13), the following transforma- 
tions are obtained: 

   
0

.
m

k

k

k   


                (44)      1 1 2k H k F k    0,



0,

          (35) 

        

         

 

0

0 0

1 2 2

1 1

0,

k

r

k k

r r

k k F k F r F k r

G r G k r k r H r F k r

MF k



 

    

     

 



  (36) 

The differential transform of the boundary conditions 
Equations (14)-(16) are as follows: 

     0 1 ,  1 ,F F F a               (45) 

     0 1 1 ,  1 ,G G G b              (46) 

 0 0H ,                   (47) 

        

       

0

0

1 2 2 2

1 1

k

r

k

r

k k G k F r G k r

k r H r G k r MG k





    

      




  (37) 

   0 1,  1 c                 (48) 

   0 1,  1 d  .               (49) 

Substituting Equations (45)-(49) into Equations (35)- 
(39) and employing the recursive method we can calcu- 
late other values of   ,F k     ,G k   ,H k   k  and 
 k . Hence, substituting all   ,F k G k    ,   ,H k  
 k  and  k  into Equations (40)-(44), we have 

series solutions as given below: 

    

     

       
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k
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







 





  

    

  

      

      

    



 





    22 2 2 ,
1

1
2

a a aM af b              

(50) 


  (38) 
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 (51) 

  22h a a   ,            (52) 
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The best procedure for enlarging the convergence do-
main of the truncated series solution is to employ the 

adé approximant where the polynomial approximation P
is converted into a ratio of two polynomials. Without 
using the Padé approximant, the analytical solution as 
obtained by DTM, cannot satisfy the boundary condi- 
tions at infinity. It is therefore essential to combine the 
series solution obtained by the DTM, with the Padé ap- 
proximant, to provide an effective tool for handling 
boundary value problems in infinite domains. Hence, 
applying the Padé approximation to Equations (50)-(54) 
and using the asymptotic boundary conditions in Equa- 
tion (16) at    we can obtain ,a  ,b  c  and .d  
The number of terms required is determined by the con- 
vergence of the numerical values to the desired accuracy, 
since a higher or  approximation pr s reater a  
curacy.  
 
6. Results and Discussion  
 

he flow regi

der oduce g c-

me is controlled by a number of thermo- 
odynamic body force 

, Dufour number (Du), 

thermal and species boundary layer thicknesses will also 

be different. To verify the accuracy of the present DTM- 
Padé computations, we have co
results with the results generated with a numerical shoot- 

T
physical parameters: magnetohydr

arameter (M), Soret number (Sr)p
Eckert number (Ec), Prandtl number (Pr) and Schmidt 
number (Sc) and slip parameter (). The first six of these 
parameters arise in the boundary layer Equations (9) to 
(13); the last parameter () arises in the boundary condi- 
tions (14). This parameter is linked to the slip of particles 
on the disk surface. This arises when the mean free path 
() of fluid particles is of the same order as the charac- 
teristic dimension of the flow domain; the classical “no- 
slip” wall boundary condition is then inadequate and a 
Knudsen number is invoked to simulate slip effects [44]; a 
slip factor is effectively employed to simulate the wall 
slip. Further details of slip effects are provided in [45]. In 
the present simulations, we adopt a Prandtl number (Pr) 
corresponding to air at 20 Celsius i.e. Pr = 0.71. At this 
Prandtl number, the diluting chemical species generally 
encountered in mechanical engineering operations posses 
a Schmidt number (Sc) in the range from 0.1 to 10. Sc = 
0.22 corresponds to Hydrogen; Sc = 0.6 corresponds to 
water vapor (which represents a diffusing chemical spe- 
cies of most common interest in air) and Sc = 0.75 is an 
accurate representation of oxygen diffusing in air. We 
further note that larger values of Sc correspond to higher 
molecular weight gases appropriate values for Sc are, for 
methanol diffusing in air, Sc = 1.0, and for ethylbenzene 
in air (Sc = 2.0), as indicated by Gebhart and Pera [43]. 
Sc measures the relative effectiveness of momentum and 
mass transport by diffusion. In all our computations, Sc  
Pr, which physically implies that the thermal and species 
diffusion regions are of different extents, and therefore 

ing method, coupled with a Runge-Kutta integration 
scheme. Figures 2 and 3 show the radial velocity 

mpared the DTM-Padé 

 f   
distributions obtained by the DTM-Padé approach util- 
izing the diagonal Padé approximation [10,10] in com- 
parison with the numerical solutions. Figure 2 show the 
radial velocity for the case of slip factor  

0.2,0.4,0.6,0.8   and Figure 3 depicts the radial ve- 
locity for the case of magnetic interaction parameter, 

0.1,0.2,0.3,0.4M  . Excellent agreement is de  
strated in both Figures 2 and 3 between DTM-Padé and 
the numerical results. For analytical solution, the con- 
vergence analysis was performed and in Equations (40)- 
(44), the value of m  is selected equal to 20. The order 

mon-

of Padé approxima

ation is incr
 

tion [L, M] [10,10] has sufficient ac- 
curacy; we further highlight that if the order of Padé ap- 
proxim eased, the accuracy of the solution 
increases. Figure 2 also shows that an enhancement in 
 



f


0.06

0.08

0.1

0.12

0.14
  

Numerical

  
  

  

0.04

0.02

0
0 2 4 6

 

Figure 2. Analytical solutions for radial velocity, f(η) varia- 
tion obtained by the DTM-Padé scheme in comparison with 
the numerical solutions (M = 0.2, Ec = 0.2, Du = 0.06, Sc = 
0.2, Sr = 1, Pr = 0.71).  
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Figure 3. Analytical solutions for radial velocity, f(η) varia- 
tion obtained by the DTM-Padé scheme in comparison with 
the numerical solutions (γ = 0.2, Ec = 0.2, Du = 0.06, Sc = 
0.2, Sr = 1, Pr = 0.71).  

Numerical

  
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wall slip factor serves to elevate the radial flow i.e. in- 
crease f() values close to the disk surface, but con- 
versely decrease them further from the wall. The rotating 
disk regime acts much like a fan system drawing fluid 
axially inward from the surrounding medium towards the 
disk surface. Since no transpiration occurs at the disk 
surface i.e. it is solid (suction = injection = 0), therefore 
the incoming fluid is turned and discharges in the radial 
direction along the disk. The centrifugal force associated 
with the spinning disk motion causes the outward radial 
flow. Radial flow therefore grows from the disk surface as 
we proceed in an axial direction, peaking and then de- 
scending to zero far from the disk surface in the free 
stream. Increasing slip coefficient will serve to enhance 
the radial flow at the disk surface ( = 0) since  i.e. the 
slip parameter effect will be maximized here; further from 
the disk surface as we progress into the boundary layer 
regime, transverse to the disk the wall slip effect will be 
gradually diminished. An increase in magnetic parameter 
(M) also acts to strongly retard the radial flow develop- 
ment. In the transformed radial momentum Equation (10), 
the magnetic field term arises in the Lorentizian hydro- 
magnetic drag force, -Mf’; this linear body force term is 
clearly accentuated with an increase in M and therefore 
greater magnetic field will serve to inhibit the radial flow. 
This is of great benefit in magnetic materials processing 
operations, utilizing static transverse uniform magnetic 
field, since it allows a strong regulation of the flow field 
in the vicinity of the disk. Very similar results have also 
been computed by Osalusi et al. [19] who used shooting 
quadrature and more recently by Bég et al. [45], who 
employed Network Simulation Methodology (NSM) and 
neglected Soret and Dufour effects. 

Figure 4 illustrates the effect of the Soret number (Sr) 
on the evolution of species (concentration) in the bound- 
ary layer regime. Sr signifies the effect of temperature 
gradients inducing substantial mass (species) diffusion 
effects. With a rise in Sr, there is a significant elevation 
in  values. A smooth decay in profiles is evident, from 
the disk surface to the free stream. Similar trends have 
been reported by Postelnicu [12], Bhargava et al. [13], 
Bég et al. [14] and Maleque and Sattar [15]. Osalusi et al. 
[19] also achieved similar results and we emphasize here 
that significant modifications in the concentration pro- 
files are generally obtained when Du (i.e. Dufour number, 
which simulates the effects of concentration gradients on 
thermal energy flux in the regime), is non-zero. In the 
present case we have used Du = 0.06.  

The effects of Schmidt number (Sc) on the tempera- 
ture and concentration distributions in the regime are 
shown in Figures 5 and 6, respectively. With increasing 
Sc there is a slight elevation in temperature () magni- 
tudes; concentration () magnitudes are however very  
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Figure 4. Influence of Sr (Soret number) on the concentra- 
tion (species) profiles (γ = 0.2, M = 0.2, Du = 0.06, Ec = 0.2, 
Sr = 1, Pr = 0.71). 
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Figure 5. Influence of Sc (Schmidt number) on the tempe- 
rature profiles (γ = 0.2, M = 0.2, Du = 0.06, Ec = 0.2, Sr = 1, 
Pr = 0.71). 
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Figure 6. Influence of Sc (Schmidt number) on the concen

trongly decreased with increasing Sc. Schmidt number 
embodies the relative rate of momentum diffusion to 
species (mass) diffusion. For Sc = 1, both momentum 
and species diffuse at the same rate and the momentum 
and species (concentration) boundary layers on the ro- 
tating disk are of the same order of thickness. For Sc < 1, 
as considered in our DTM-Padé computations, species 

- 
tration (species) profiles (γ = 0.2, M = 0.2, Du = 0.06, Ec = 
0.2, Sr = 1, Pr = 0.71). 
 
s
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diffusivity will exceed the momentum diffusivity in the 
regime. As such concentrations will be progressively 
diminished through the boundary layer. In all cases, as 
shown in Figure 6, the profiles follow a smooth decay 
from the disk surface to the edge of the boundary layer, 
indicating that the DTM-Padé computations have con- 
verged smoothly.  

Figures 7 and 8 depict the response of the temperature 
() and concentration () functions, to various Eckert 
numbers (Ec). Ec represents the ratio of the kinetic en- 
ergy of the flow to the boundary layer enthalpy differenc

viscous heating term Ec (f’2 + g2). 

 

e 
as described by Schlichting [46]. Ec features in two terms 
in the transformed energy Equation (12), viz the Joule 
heating (Ohmic magnetic dissipation) term, MEc (f2 + g 2), 
nd the conventional a

Although Ec is used in high altitude rocket aero-ther- 
modynamics (where the prescribed temperature differ- 
ence is of the same order of magnitude as the absolute 
temperature in the free stream), in the context of low 
speed incompressible flows, as studied here, Ec signifies 
the difference between the total mechanical power input 
and the smaller amount of total power input which pro- 
duces thermodynamically reversible effects, i.e. eleva- 
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Figure 7. Influence of Ec (Eckert number) on the tempera- 
ture profiles (γ = 0.2, M = 0.2, Du = 0.06, Sc = 0.2, Sr = 1, Pr 
= 0.71). 
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Figure 8. Influence of Ec (Eckert number) on the concen- 
tration profiles (γ = 0.2, M = 0.2, Du = 0.06, Sc = 0.2, Sr = 1, 
Pr = 0.71). 

tions in kinetic and potential energy. This difference 
constitutes the energy dissipated as thermal energy by 
viscous effects, i.e. work done by the viscous fluid in 
overcoming internal friction, hence the term viscous 
heating. Positive values of Ec correspond to disk cooling, 
i.e. loss of heat from the disk surface to the fluid; negative 
values imply the reverse, i.e. disk heating wherein heat is 
received by the disk from the fluid. In this study we re- 
strict attention to Ec > 0. A significant increase in tem- 
perature in the boundary layer is observed (Figure 7) with 
an increase in Ec from 0.1 through 0.2, 0.4 to 0.8. As 

city (f), tangential velocity (g), axial velocity (h), tem-
perature () and concentration () profiles with various 
slip parameters, 

expected there is negligible alteration in the concentration 
profiles (Figure 8) with a change in Ec.  

Figures 9-13 illustrate the distributions of radial ve-
lo

 . In all these plots, there is a weak 
magnetic field acting transverse to the disk (M = 0.2). 
Increasing  serves to elevate the radial velocity (at or 
near the disk surface), but strongly decelerates the tan- 
gential flow, both at the disk surface and through the 
boundary layer regime. The shear-driven flow (Figure 
10) in the tangential (azimuthal) direction, g, is progres-  
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Figure 9. Influence of γ (slip parameter) on the radial veloc- 
ity profiles (M = 0.2, Ec = 0.2, Du = 0.06, Sc = 0.2, Sr = 1, Pr 
= 0.71). 
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Figure 10. Influence of γ (slip parameter) on the tangential 
(azimuthal) velocity profiles (M = 0.2, Ec = 0.2, Du = 0.06, 
Sc = 0.2, Sr = 1, Pr = 0.71). 
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Figure 11. Influence of γ (slip parameter) on the axial veloc- 
ity profiles (M = 0.2, Ec = 0.2, Du = 0.06, Sc = 0.2, Sr = 1, Pr 
= 0.71). 
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Figure 12. Influence of γ (slip parameter) on the tempera- 
ture profiles (M = 0.2, Ec = 0.2, Du = 0.06, Sc = 0.2, Sr = 1, 
Pr = 0.71). 
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3. Influence of γ (slip parameter) on the concentra- 
on profiles, (M = 0.2, Ec = 0.2, Du = 0.06, Sc = 0.2, Sr = 1, 

Pr = 0.71). 
 
sively retarded with increasing wall slip parameter. Flow 
reversal however is never generated anywhere in the 
boundary layer for the radial and tangential velocity pro- 
files i.e. values are sustained as positive. Axial velocity, 
h, is observed in Figure 11, to be consistently negative, 
irrespective of the value of the slip parameter. However 
with increasing  the axial flow is infact accelerated i.e. 

values of h become more positive. The radial outflow is 
balanced by an axial inflow towards the rotating disk i.e. 
the system acts as a fan drawing fluid in. As the radial 
flow is suppressed, the axial flow will compensate for 
this and will be accelerated. Both temperature (Figure 12) 
and concentration (Figure 13) are elevated by an in- 
crease in the wall slip parameter. These results computed 
with DTM-Padé approach again concur with the shoot- 
ing computations of Osalusi et al. [19], and the network 
simulation solutions by Bég et al. [45], again testifying 
to the accuracy of the DTM-Padé analytical procedure.  

Finally in Figures 14-18, the effects of the magnetic 

ofiles, are depicted. 

 

Figure 1
ti

parameter (M) on the radial velocity (f), tangential veloc- 
ity (g), axial velocity (h), temperature () and concentra- 
tion () pr 2

0M B   charac- 
rizes the relative influence of the hydromagnetic drag 

force to the rotational (Coriolis) body force in the regime. 
M > 1 implies that hydromagnetic drag is dominant and M 
< 1 implies that rotational hydrodynamic force is dominant. 
For the special case of M = 1, both magnetohydrodynamic 
body force and rotational body force will have the same 
order of magnitude. M features in the momentum con-
servation Equations (10) and (11) and the heat conserva- 
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Figure 14. Influence of M (magnetic parameter) on the ra- 
dial velocity profiles, (γ = 0.2, Ec = 0.2, Du = 0.06, Sc = 0.2, 
Sr = 1, Pr = 0.71). 
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Figure 15. Influence of M (magnetic parameter) on the tan- 
gential velocity profiles, (γ = 0.2, Ec = 0.2, Du = 0.06, Sc = 
0.2, Sr = 1, Pr = 0.71). 
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Figure 16. Influence of M (magnetic parameter) on the axial 
velocity profiles, (γ = 0.2, Ec = 0.2, Du = 0.06, Sc = 0.2, Sr = 
1, Pr = 0.71). 
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Figure 17. Influence of M (magnetic parameter) on the tem- 
perature profiles, (γ = 0.2, Ec = 0.2, Du = 0.06, Sc = 0.2, Sr = 
1, Pr = 0.71). 
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Figure 18. Influence of M (magnetic parameter) on the 
concentration profiles, (γ = 0.2, Ec = 0.2, Du = 0.06, Sc = 0.2, 
Sr = 1, Pr = 0.71). 
 
tion (energy) Equation (12). In Equations (10) and (11), 
the Lorentzian magnetohydrodynamic drag terms, –Mf 
and –Mg, are linear. An increase in M will therefore ele- 
vate these hydromagnetic drag forces and will act to im

sely since the applied magnetic field acts  

ong the negative direction of the axis  normal to the 
disk surface i.e. in the reverse -direction (or z-direction), 
it will not exert a component in the axial direction (the 
Lorentian force acts only at right angles (i.e. transversely) 
to the direction of the applied magnetic field, B0). The 
destruction in radial and azimuthal (tangential) momen- 
tum is compensated for by a significant boost in axial 
momentum. In consistency with this, we observe in Fig- 
ure 16 that although h values are always negative (indi- 
cating flow reversal in the axial direction), they become 
increasingly positive with greater M values. Hence mag- 
netic field serves to stifle axial backflow and accelerat

etic fields, since the flow can be retarded effectively in 
dial and tangential directions, and simultaneously 

enhanced in the axial direction, with the imposition of a 
static transverse magnetic field. In Figures 17 and 18 it is 
evident also that temperature and concentration are 
strongly elevated with an increase in magnetic parameter, 
M. With the action of radial and azimuthal Lorentzian 
hydromagnetic drag forces, extra work is required to drag 
the fluid against the action of the magnetic field. This 
supplementary work is dissipated as thermal energy 
which causes a heating of the boundary layer regime i.e. 
elevation in temperatures. This effect also induces greater 
species diffusion in the regime and elevates the concen

 a stronger magnetic field will enhance 

- 
pede the radial (Figure 14) and tangential (Figure 15) 
velocities i.e. decelerate both the radial and azimuthal 
flow. Conver

al

e 
the flow. This trend has significant potential in magne-
tohydrodynamic disk energy generators and also in che- 
mical engineering operations involving transverse mag- 
n
the ra

- 
tration in the boundary layer regime adjacent to the ro- 
tating disk. In chemical materials mixing/processing op- 
rations, thereforee

concentration distributions which may be required to alter 
the constitution of the final product.  
 
7. Conclusions 
 
In this paper, the DTM-Padé semi-analytical procedure 
has been employed to investigate combined heat and 
mass transfer of a steady MHD convective and slip flow 
due to a rotating disk with viscous dissipation, Ohmic 
heating, Soret and Dufour effects. The DTM technique 
combined with Padé approximants has been shown to be 
very accurate at solving the complex nonlinear different- 
tial equations describing the flow. DTM-Padé method- 
ology therefore holds significant promise for nonlinear 
flow dynamics problems in process mechanical engi- 
neering. The method has been applied directly without 
requiring linearization, discretization, or perturbation. 
The obtained results demonstrate the reliability of the 
algorithm and encourage its application to other flow 
domains, such as non-Newtonian systems which are 
generally nonlinear. The results have also shown that 
with an increase in magnetic parameter (M), radial ve- 
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locity is suppressed and tangential velocity is decreased, 
whereas axial velocity is elevated. Increasing Eckert 
number (Ec i.e. dissipation parameter) is found to elevate 
temperatures in the boundary layer but exerts a negligi- 
ble effect on concentrations. Increasing Soret number (Sr) 
acts to enhance concentration distributions. With in- 
screasing wall slip parameter (), radial velocity is shown 
to be accelerated near the disk surface and axial velocity 
is also elevated, whereas the tangential velocity is con- 
sistently decelerated. Furthermore there is a strong in- 
crease in temperature and concentration values in the 
boundary layer regime with increasing wall slip parame- 
ter. The current problem has been confined to steady 
flow. Future studies will examine transient rotating disk 
flows and also consider a variety of rheological flow and 
nanofluid models [47]; the results of these investigations 
utilizing the DTM-Padé will be communicated immi- 
nently. Extensive validation of the DTM-Padé semi- 
numerical code developed by the authors is described 
lso in [47]. a
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Table 1. The fundamental operations for the one-dimensional Differential Transform Metho
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