
American Journal of Operations Research, 2024, 14, 151-167 
https://www.scirp.org/journal/ajor 

ISSN Online: 2160-8849 
ISSN Print: 2160-8830 

 

DOI: 10.4236/ajor.2024.145008  Sep. 30, 2024 151 American Journal of Operations Research 
 

 
 
 

A Note on a One-Parameter Weibull Distributed 
Deteriorating Item EOQ Inventory Model with 
Varying Quadratic Demand and Delay in 
Payments 

Trailokyanath Singh1*, Itishree Rout1, Ameeya Kumar Nayak2 

1Department of Mathematics, C. V. Raman Global University, Bhubaneswar, India 
2Department of Mathematics, Indian Institute of Technology, Roorkee, India 

 
 
 

Abstract 
In this paper, an EOQ inventory model is developed for deteriorating items 
with variable rates of deterioration and conditions of grace periods when de-
mand is a quadratic function of time. The deterioration rate considered here 
is a special type of Weibull distribution deterioration rate, i.e., a one-parame-
ter Weibull distribution deterioration rate and it increases with respect to 
time. The quadratic demand precisely depicts of the demand of seasonal items, 
fashion apparels, cosmetics, and newly launched essential commodities like 
android mobiles, laptops, automobiles etc., coming to the market. The model 
is divided into three policies according to the occurrence of the grace periods. 
Shortages, backlogging and complete backlogging cases are not allowed to 
occur in the model. The proposed model is well-explained with the help of 
a simple solution procedure. The three numerical examples are taken to il-
lustrate the effectiveness of the EOQ inventory model along with sensitivity 
analysis.  
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1. Introduction 

In recent three decades, most of the researches have been done on deteriorating 
items in inventory problems by a number of researchers. Items like seasonal fruits 
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such as mango, grape and apple, vegetables like potatoes, carrots, etc. animal 
products like milk, meat, egg, fish etc., blood in blood banks, chemical and phar-
maceutical products like medicines, drugs, volatile liquids and radio-active sub-
stances etc., deteriorate continuously due to the some natural phenomena like 
spoilage, decay and evaporation. The hardware, electronic items and essential 
commodities are not suitable for using in original purposes after their expiration 
periods. Such a type of physical phenomenon is known as deterioration. There-
fore, it is always necessary to study the effect of deterioration on such items while 
formulating the models for deteriorating items. Ghare and Schrader [1] first for-
mulated an Economic Order Quantity (EOQ) optimum policy for deteriorating 
items by using a negative exponential distribution. It is well known that the as-
sumption of the demand pattern of the standard EOQ model is deterministic and 
is constant over an infinite planning horizon. However, most of the physical goods 
experience a steady demand pattern only for finite horizon of time during their 
life span. Furthermore, the nature of demand pattern is always time-dependent 
like constant, linear increasing or decreasing, exponential increasing or decreas-
ing, etc. Therefore, some modification of the EOQ model is quite essential for 
future studies. In this regard, many researchers have been already done to accom-
modate the time-dependent demand pattern. An inventory replenishment no-
shortage policy with constant rate of deterioration and linear tend in demand pat-
tern over finite horizon of time was studied by Donaldson [2]. The inventory 
model developed related to the deteriorating items with deterioration as constant 
fraction of the on-hand inventory and demand as linear increasing pattern was 
formulated by Dave and Patel [3]. Later, Bahari-Kashani [4] presented a heuristic 
inventory model for determining the replenishment schedule for deteriorating 
items with linearly increasing demand rate subject to the constant deterioration. 
An inventory replenishment policy over a finite horizon for a deteriorating item 
having linear demand pattern and shortages was established by Goswami and 
Chaudhuri (1991) [5]. They determined the number of reorder points, the gap 
between two successive reorders and the shortage periods over a finite horizon of 
time in order to maintain the optimal average system cost. However, deterioration 
is independent of demand patterns and dependent on the distribution of time pe-
riod. Therefore, constant rate of decay is no more lasting for the formulation of 
decaying inventory model. The EOQ model for deteriorating items where the dis-
tribution of the time to deterioration follows the two-parameter Weibull distribu-
tion was considered by Covert and Philip [6]. An optimal production lot size 
model with both the varying and constant rate of deterioration and no-shortages 
was presented by Mishra [7]. Nahmias [8], Raafat [9], Goyal and Giri [10] and Li 
et al. [11] reviewed the advances of deteriorating inventory literature. Singh et al. 
[12] established an optimal ordering policy for deteriorating items with inventory 
dependent demand and initial order quantity dependent deterioration. A three-
parameter Weibull distributed deteriorated inventory model with quadratic de-
mand and salvage value under partial backlogging was presented by Singh et al. 
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[13]. Singh et al. [14] also developed an ordering policy with varying deterioration 
rate, time-dependent trapezoidal-type demand rate with shortages. Kumar and 
Yadav [15] established an optimal inventory model for the advanced payment 
strategy on perishable item with maximum lifetime, customer return and preser-
vation technology under shortages. 

In business scenario, it is customary for customers to have a specified grace 
period before paying a supplier or producer. During this fixed period, the cus-
tomer is not allowed to pay the interest, but if payment is not made before the end 
of the grace period, the supplier will set in motion to charge interest. This grace 
period is referred to as the delay period or the permissible delay period or the 
trade credit period, and during this period, the customer may sell the goods and 
earn interest on the revenue generated from the sales. In this context, Goyal [16] 
studied the economic order quantity under conditions of permissible delay in pay-
ments. In business, the unit selling price should be greater than the unit purchas-
ing price. The ordering policies of deteriorating items under permissible delay in 
payments were studied by Aggarwal and Jaggi [17]. In their models, the demand 
rate and deterioration rate were assumed as constant. Jamal et al. [18] studied the 
inventory model to determine an optimal ordering policy for deteriorating items 
under permissible delay of payment and allowable shortage. Ouyang et al. [19] 
developed an inventory model for non-instantaneous deteriorating items with 
permissible delay in payments. Musa and Sani [20] studied the ordering policies 
for the inventory model of delayed deteriorating items under permissible delay in 
payments. Furthermore, Khanra et al. [21], Singh and Pattnayak [22] developed 
the EOQ models for a deteriorating item under permissible delay in payment as-
suming the time varying demand rate and variable deterioration rate. Singh and 
Pattanayak [23] presented an optimal policy for a deteriorating item with varying 
deterioration rate and time-dependent demand rate and the delay in payment 
conditions. Singh et al. [24] presented a note on optimal model with time-depend-
ent demand, three-parameter Weibull distribution deterioration, no-shortages 
and permissible delay in payment. Pant et al. [25] studied an optimal replenish-
ment and preservation investment policy for deteriorating items with hybrid de-
mand rate and trade credit schemes. Mohanty and Singh [26] established an in-
ventory model for a deteriorating item with time-dependent cubic demand and 
variable deterioration under delay in payment conditions. A note on an order level 
optimal policy with varying two-phased demand and variable deterioration rate 
was developed by Mohanty et al. [27]. In the real life situation, the deterioration 
rate in the items increases with respect to time always. Deterioration rate in items 
are determined by different Weibll distribution and Gamma distribution, etc., in 
this respect, Pal and Ghosh [28] studied an optimal inventory policy with stock 
dependent demand and general rate of deterioration under conditions of grace 
periods in payments. They incorporated two different deterioration rates such 
constant deterioration rate and one parameter Weibull distribution deterioration 
rate as two special types of Weibull distribution deterioration rate in their model. 

https://doi.org/10.4236/ajor.2024.145008


T. Singh et al. 
 

 

DOI: 10.4236/ajor.2024.145008 154 American Journal of Operations Research 
 

An EOQ optimal model varying with exponential-constant-exponential demand 
and shortages was introduced by Rout et al. [29]. Swain and Singh [30] studied a 
note on optimal model with time-dependent demand, time-proportional deterio-
ration, shortages and conditions of permissible delay in payments. 

Formulation of optimal policy for deteriorating items having one-parameter 
Weibull distribution deterioration and time-dependent quadratic demand has sel-
dom been mentioned. So, in this model, an optimal EOQ model is developed for 
deteriorating items with one-parameter Weibull distribution deterioration, quad-
ratic demand pattern and different grace periods. Here the assumed grace period 
is either less than or greater than or equal to the cycle time. Shortages, partial and 
complete backlogging are not allowed to occur. Three numerical examples are 
mentioned to illustrate the effectiveness of the proposed EOQ model with sensi-
tivity analysis. 

The rest of the paper is set according to different sections which are stated as 
follows. In section 2 describes the notations and fundamental assumptions taken 
for the construction of the model throughout this paper. In section 3, the mathe-
matical analysis of the model and its computational solution procedure are de-
scribed in order to minimize the system costs. The three numerical examples and 
the sensitivity analysis of several parameters of some selected example are dis-
cussed in section 4. Finally, concluding remarks and the future work on deterio-
rating inventory research are pointed out in section 5. 

2. Notations and Assumptions 

The following mathematical notations and assumptions are needed for the for-
mulation of the model. 

2.1. Notations 

p  Purchase cost per unit ($) 

oc  Ordering cost per order ($) 

sh  Holding cost of the inventory system excluding interest 
charges; ($) per unit per year 

eI  Interest which can be earned, ($) per year 

pI  Interest charges, ($) per year 

( )
( )

2

0, 0, 0

R t a bt ct

a b c

= + +

> > ≠
 

Demand is continuous and quadratic in nature with respect 
to time. If 0c = , 0c b= = , then the demand function 
changes into linear and constant function, respectively 

( ) ( )1 0 1t tαθ α α−= <   Deterioration rate which is one-parameter Weibull 
distribution type 

( )I t  Positive inventory level during the time period [ ]0,T  

µ  Grace period offered by supplier at the time of settlement of 
account 
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Continued 

T  Cycle time (decision variable) 

0S  Size of inventory 

*
0S  Optimal size of inventory 

( )1ASC T  Average system cost per unit time ($) when Tµ <  

( )2ASC T  Average system cost per unit time ($) when Tµ >  

( )ASC T  Minimum system cost per unit time ($) 

2.2. Assumptions 

1) The inventory system deals with one type of items. 
2) The demand rate is related with quadratic function of the time during the 

cycle. 
3) The deterioration rate follows one-parameter Weibull distribution. 
4) All system costs (purchase, ordering and holding) are taken as constant. 
5) The planning horizon is taken infinite with negligible delivery lead time. 
6) The grace period is taken less than, greater than and equal to the cycle time 

in three policies, respectively. 
7) The model does not consider shortages with partial as well as complete back-

logging. 
8) The replenishment is instantaneous. 

3. Mathematical Formulation of the Model 

In this section, a model is formulated for one-parameter Weibull distribution de-
terioration rate and quadratic demand rate with permissible delay in payment 
conditions when replenishment occurs. Figure 1 depicts the proposed inventory 
system with respect to time. 

 

 
Figure 1. Graph of inventory depletion with time. 
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The proposed model derived under three different policies, viz. Policy I: the 
grace period µ  is less than the cycle time T . Policy II: the grace period µ  is 
greater than the cycle time T  and Policy III: the grace period µ  is equal to the 
cycle time T . The loss of utility of inventory is due to the combined effect of 
demand as well as deterioration function. For the beginning, i.e., at time 0t = , 
the order quantity is 0S  and replenishment occurs after each cycle time T . 

The differential equation governing the inventory status during the time inter-
val [ ]0,T  is given by 

 ( ) ( ) ( ) ( )
d

0, 0
d
I t

t I t R t t T
t

θ+ + = ≤ ≤ , (1) 

where ( )( )1, 0 1t tαθ α α−= <   & ( )( )2 , 0, 0, 0R t a bt ct a b c= + + > ≠ ≠ . 

Here, the integrating factor ( IF ) and the solution with the help of the bound-
ary condition ( ) 0I T =  are 

 etIF
α

= , (2) 

and 

 
( )

2 3 1 2 3

2 3 1 2 3

2 3 1 2 3

e , 0 ,
2 3 1 2 3

t

bT cT aT bT cTI t aT

bt ct at bt ctat t T
α

α α α

α α α

α α α

α α α

+ + +

+ + +
−


= + + + + + + + +


− − − − − − ⋅ ≤ ≤+ + + 

 (3) 

respectively, (by ignoring the terms containing the powers like 2 ,3 ,4 ,α α α   as 
0 1α<  ). 

The initial status of inventory level ( 0S ) is calculated by putting ( ) 00I S=  in 
Equation (3), i.e., 

 
2 3 1 2 3

0 2 3 1 2 3
bT cT aT bT cTS aT

α α α

α α α

+ + +

= + + + + +
+ + +

. (4) 

The average system cost ( ( )ASC T ) of the system for each cycle comprises of 
the following cost components: 
• Ordering cost ( CO ): 

 0CO c= . (5) 

• Holding cost ( CH ) during the interval [ ]0,T : 

 ( ) ( )
0 0

d d
T T

s hCH ph I t t c I t t= =∫ ∫ , 

where s hph c= , i.e., 

 
2 3 4 2 3 4

2 3 4 1 2 3 4h
aT bT cT aT bT cTCH c

α α αα
α α α α

+ + +  
= + + + + +  + + + +   

, (6) 

(by ignoring the terms containing the powers like 2 ,3 ,4 ,α α α   as 0 1α<  ). 
• Deterioration cost ( CD ) during the interval [ ]0,T : 

 ( )
1 2 3

2
0

0

d
1 2 3

T

p
aT bT cTCD p S a bt ct t c

α α α

α α α

+ + +   
= − + + = + +   + + +  

∫ . (7) 
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Policy I: Tµ < . 
1) Interest earned ( 1EI ) during [ ]0,T : 

 ( )
2 3 4

2
1

0

d
2 3 4

T

e e
aT bT cTEI pI t a bt ct t pI

 
= + + = + + 

 
∫ . (8) 

2) Interest charged ( 1CI ) during [ ]0,T : 

 

( )

( ) ( ) ( )

( )
( )( )

( )
( )( )

( )
( )( )

1
0

2 3 1 2 3

1 1
2 2 3 3 4 4

2 2 3 3 4 4

d

2 3 1 2 3

1 2 6 12

,
1 2 2 2 3 3 3 4

T

p

p

CI pI I t t

bT cT aT bT cTpI aT

T a b cT T T T

a T b T c T

α α α

α α

α α α α α α

α α α

µµ µ µ µ
α

µ µ µ
α

α α α α α α

+ + +

+ +

+ + + + + +

=

 
= + + + + + + + + 

 −
× − − − − − − − − + 

 − − − + + + + + + + + +  

∫

 (9) 

(by ignoring the terms containing the powers like 2 ,3 ,4 ,α α α   as 0 1α<  ). 
Using Equations (5)-(9), the average system cost ( ( )1ASC T ) of the integrated 

inventory model per unit time is calculated by 

 ( ) [ ]1 1 1
1ASC T CO CH CD EI CI
T

= + + + − . (10) 

The objective of the present study is to determine the minimum value of the 
average system cost of the model by optimizing the cycle time T . For the opti-
mality, the necessary and sufficient conditions of the corresponding average sys-
tem cost ( ( )1ASC T ) are given below: 

Necessary conditions: 

( ) ( )

( ) ( )

1
1 2

1 1

1

d 1
d 1

1
1 1

0.

h

p e

ASC T Ta bT cT c T pT
T T

TpI T T pI T ASC T

α
α

α α
α

α
α

µµ
α α

+

+ +

      = + + + +   +  
 

+ + − − + − −  + +     
=

 (11) 

Now solving Equation (11), the optimal value of T  as *
1T  is obtained. The 

corresponding optimal average system cost of the system and EOQ are found by 
substituting the value of *

1T  in Equations (10) and (4), respectively. 
Sufficient conditions: 
It must satisfies 

 

( )
( )

( )

( ) ( )

2 1
1
2

1 1

2 1

d 1 2
1d

1
1 1

1

h

p e

h

ASC T Tb cT c T pT
TT

TpI T T pI T

a bT cT c T pT

α
α

α α
α

α α

α
α

µµ
α α

α α

+

+ +

−

      = + + +   +  
 

+ + − − + −  + +   
+ + + + +
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( )

( )( )

1 1
1

1

1 1

2d
d

0.

p p e
TpI T T p I I

ASC T
T

α α
α µα µ

α α

+ +
−  

+ − − + + −  + +   


− 


>

 (12) 

Policy II: Tµ > . 
1) Interest earned ( 2EI ) during [ ]0,T : 

( ) ( ) ( )

( )

2 2
2

0 0

2 3 4 2 3

d d

.
2 3 4 2 3

T T

e

e

EI pI t a bt ct t T a bt ct t

aT bT cT bT cTpI T aT

µ

µ

 
= + + + − + + 

 
  

= + + + − + +  
   

∫ ∫
 (13) 

2) Interest charged ( 2CI ) during [ ]0,T : 

 2 0CI = . (14) 

Using Equations (5)-(7) and (13)-(14), the average system cost ( ( )2ASC T ) of 
the integrated inventory model per unit time is calculated by 

 ( ) [ ]2 2 2
1ASC T CO CH CD EI CI
T

= + + + − . (15) 

For the optimality, the necessary and sufficient conditions of the corresponding 
average system cost ( ( )2ASC T ) are given below: 

Necessary conditions: 

( ) ( )

( )( ) ( )

1
2 2

2 3
2

2

d 1
d 1

2
2 3

0.

h

e

ASC T Ta bT cT c T pT
T T

bT cTpI T a bT cT ASC T

α
αα

α

µ

+      = + + + +   +    
 

− + + − + + −  
  

=

 (16) 

Now solving Equation (16), the optimal value of T  as *
2T  is obtained. The 

corresponding optimal average system cost and EOQ are found by substituting 
the value of *

2T  in Equations (15) and (4), respectively. 
Sufficient conditions: 
It must satisfies 

 

( )
( )

( ) ( )

( )( ) ( )( )

2 1
2
2

2 1

2

d 1 2
1d

1

2d
2

d

0.

h

h

e

ASC T Tb cT c T pT
TT

a bT cT c T pT

ASC T
pI a bT b cT

T

α
α

α α

α
α

α α

µ

+

−

      = + + +   +    
+ + + + +


− + − + −  

>

 (17) 

Policy III: Tµ = . 
For time Tµ = , both the average system costs ( )1ASC T  and ( )2ASC T  are 
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same and the respective system cost ( )ASC T  is determined by putting Tµ =  
in either Equation (10) or (15). The EOQ in three policies can be calculated from 
Equation (4) by providing the corresponding value of T . 

4. Computaional Algorithms and Numerical Examples 
4.1. Computaional Algotithm 

The aim of the classical optimization model is to minimize the average system 
cost. The working procedure is dependent on the following steps. 

Step 1: Perform (i)-(iv) 
(i) Assign the values of the system parameters with their proper units in Policy I. 
(ii) Evaluate the first-order partial derivative of the average system cost with 

respect to the decision variable T  and equate it to zero. Then, solve for 1T  from 

equation 
( )1d

0
d

ASC T
T

   = . 

(iii) Check the convexity of the objective function, i.e. 
( )2

1
2

d
0

d
ASC T

T
   > . 

(iv) Calculate ( )*
1 1ASC T  by putting *

1T T= . 
Step 2: Perform (i)-(iv) 
(i) Assign the values of the system parameters with their proper units in Policy 

II. 
(ii) Evaluate the first-order partial derivative of the system cost with respect to 

the decision variable T  and equate it to zero. Then, solve for 2T  from equation 

( )2d
0

d
ASC T

T
   = . 

(iii) Check the convexity of the objective function, i.e. 
( )2

2
2

d
0

d
ASC T

T
   > . 

(iv) Calculate ( )*
2 2ASC T  by putting *

2T T= . 

Step 3: Perform (i)-(iii) 

(i) If both *
1Tµ <  and *

2Tµ >  are satisfied, then ( )*ASC T , the optimal 

average system cost, is obtained by comparing the values of ( )*
1 1ASC T  and 

( )*
2 2ASC T . Or 

(ii) If *
1Tµ <  is true and *

2Tµ >  is false, then ( )ASC T , the optimal average 
system cost, is obtained from ( )*

1 1ASC T . Or 
(iii) If *

1Tµ <  is false and *
2Tµ >  is true, then ( )ASC T , the optimal aver-

age system cost, is obtained from ( )*
2 2ASC T . 

Step 4. Finally, calculate the respective EOQ. 

4.2. Numerical Examples 

The proposed study has been illustrated with three numerical examples with the 
appropriate units of the system parameters: 

Example 1: Policy I and Policy II: 
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Let $0.1 / ea2 y rhc = , $200 / orderoc = , / i$20 un tp = , 0.13 / yeareI = ,  
0.15 / yearpI = , 240a = units/year, 120b =  units/year, 16c =  units/year,  
0.002α =  and 0.4µ =  year. 

Solving Equation (11), we get *
1 0.759103T =  year and the corresponding av-

erage system cost ( )*
1 $5507.36ASC T =  provided the sufficient condition  

( )( )
*

1

2

2

d
1411.47 0

d
T T

ASC T
T

=

= > . 

Similarly, solving Equation (16), we get *
2 0.353253T =  year and the corre-

sponding average system cost ( )*
2 $5632.74ASC T =  provided the sufficient 

condition 
( )( )

*
2

2

2

d
5930.24 0

d
T T

ASC T
T

=

= > . 

Here both *
1Tµ <  and *

2Tµ >  are satisfied, then ( )*ASC T , the optimal av-

erage system cost is obtained by comparing the values of ( )*
1ASC T  and  

( )*
2ASC T . Hence the optimal average system cost, cycle time and EOQ are  

( )*
1 $5507.36ASC T = , *

1 0.759103T = year and *
0 437.664S = units, respectively. 

Example 2: Policy I: 
Let $0.1 / ea2 y rhc = , $200 / orderoc = , / i$20 un tp = , 0.13 / yeareI = ,  

0.15 / yearpI = , 240a =  units/year, 120b =  units/year, 16c =  units/year,  
0.8α =  and 0.2µ =  year. 

Solving Equation (11), we get *
1 0.254092T =  year and the corresponding av-

erage system cost ( )*
1 $1673.48ASC T =  provided the sufficient condition  

( )( )
*

1

2

2

d
22229.8 0

d
T T

ASC T
T

=

= > . 

Similarly, solving Equation (16), we get *
2 0.233225T =  year and the corre-

sponding average system cost ( )*
2 $1700.88ASC T =  provided the sufficient con-

dition 
( )( )

*
2

2

2

d
5930.24 0

d
T T

ASC T
T

=

= > . 

Here *
1Tµ <  is true and *

2Tµ >  is false, then ( )*ASC T , the optimal aver-

age system cost is obtained from ( )*
1ASC T . Hence the optimal average system 

cost, cycle time and EOQ are ( )*
1 $1673.48ASC T = , *

1 0.254092T =  year and 
*
0 118.961S =  units, respectively. 

Example 3: Policy II: 
Let $0.1 / ea2 y rhc = , $200 / orderoc = , $20 / unitp = , 0.13 / yeareI = ,  

0.15 / yearpI = , 240a =  units/year, 120b =  units/year, 16c =  units/year,  
0.08α =  and 0.5µ =  year. 

Solving Equation (11), we get *
1 0.479376T =  year and the corresponding av-

erage system cost ( )*
1 $5000.03ASC T =  provided the sufficient condition  
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( )( )
*

1

2

2

d
4464.0 0

d
T T

ASC T
T

=

= > . 

Similarly, solving Equation (16), we get *
2 0.276463T =  year and the corre-

sponding average system cost ( )*
2 $4789.29ASC T =  provided the sufficient 

condition 
( )( )

*
2

2

2

d
11773.8 0

d
T T

ASC T
T

=

= > . 

Here *
1Tµ <  is false and *

2Tµ >  is true, then ( )*ASC T , the optimal aver-

age system cost is obtained from ( )*
2ASC T . Hence the optimal average system 

cost, cycle time and EOQ are ( )*
2 $4789.29ASC T = , *

1 0.276463T =  year and 
*
0 130.559S =  units, respectively. 

5. Sensitivity Analysis 

In order to examine the implications of the change in the values of the parameters, 
the sensitivity analysis will be a great help in decision-making. With the help of 
Example 1 given in the preceding section, the sensitivity analysis of several pa-
rameters has been done and the results are summarized in Table 1 and Table 2, 
respectively. 

The following observations can be made from Table 1. 
(i) Changes in carrying cost ( hc ) does not have any significant effect in the 

present value of the average system cost ( )*ASC T  and result increasing in both 
*

1T  and *
2T . 

(ii) Changes in ordering cost ( oc ) have moderately effect in the present value 

of the average system cost ( )*ASC T  and result decreasing in both *
1T  and *

2T . 

(iii) Changes in purchase cost ( p ) have highly effect in the present value of the 

average system cost ( )*ASC T  and result increasing in both *
1T  and *

2T . 

(iv) Changes in earned interest ( eI ) have moderately effect in the present value 

of the average system cost ( )*ASC T  and result increasing in *
1T  and decreas-

ing in *
2T . 

(v) Changes in chargeable interest ( pI ) have highly effect in the present value 
of the average system cost ( )*ASC T  and result decreasing in *

1T  and remain-
ing constant in *

2T . 
(vi) Changes in constant ( a ) have moderately effect in the present value of the 

average system cost ( )*ASC T  and result decreasing in *
1T  and increasing in *

2T . 

(vii) Changes in constants ( ,b c &α ) have moderately effect in the present 

value of the average system cost ( )*ASC T  and result increasing in both *
1T  

and *
2T . 

(viii) Changes in grace period ( µ ) have moderately effect in the present value 

of the average system cost ( )*ASC T  and result decreasing in both *
1T  and *

2T . 

https://doi.org/10.4236/ajor.2024.145008


T. Singh et al. 
 

 

DOI: 10.4236/ajor.2024.145008 162 American Journal of Operations Research 
 

Table 1. Sensitivity analysis of time cycle and optimal cost. 

Parameters 
Decreasing value 

of parameters ( )*
1ASC T  *

1T  ( )*
2ASC T

 
*

2T  Remarks 
Optimal 
solution 

% Change in 
optimal solution 

hc  

0.180 5514.27 0.748277 5636.60 0.352292 * *
2 1T Tµ< <  5514.27 +0.12 

0.150 5510.83 0.753606 5634.17 0.352772 * *
2 1T Tµ< <  5510.83 +0.06 

0.126 5508.06 0.757989 5633.03 0.353157 * *
2 1T Tµ< <  5508.06 +0.01 

0.114 5506.66 0.760224 5632.45 0.353350 * *
2 1T Tµ< <  5506.66 −0.01 

0.090 5503.86 0.764780 5631.31 0.353737 * *
2 1T Tµ< <  5503.86 −0.06 

0.060 5500.33 0.770650 5629.88 0.354223 * *
2 1T Tµ< <  5500.33 −0.12 

oc  

300 5626.38 0.925228 5888.03 0.429894 *
1Tµ <  5626.38 +2.16 

250 5569.80 0.843313 5766.61 0.393649 * *
2 1T Tµ< <  5569.80 +1.13 

210 5520.39 0.776209 5660.71 0.361732 * *
2 1T Tµ< <  5520.39 +0.23 

190 5494.04 0.741834 5604.08 0.344545 * *
2 1T Tµ< <  5494.04 −0.24 

150 5437.38 0.670757 5481.31 0.307005 * *
2 1T Tµ< <  5437.38 −1.27 

100 5357.08 0.575580 5302.33 0.251579 * *
2 1T Tµ< <  5357.08 −2.72 

pc
 

30 8112.22 0.645473 8135.88 0.290316 * *
2 1T Tµ< <  8112.22 +47.72 

25 6812.01 0.692622 6890.44 0.317188 * *
2 1T Tµ< <  6812.01 +25.11 

21 5768.73 0.743683 5885.45 0.345055 * *
2 1T Tµ< <  5768.73 +6.89 

19 5245.73 0.775877 5379.35 0.362067 * *
2 1T Tµ< <  5245.73 −2.32 

15 4196.04 0.861127 4357.89 0.405382 *
1Tµ <  4196.04 −23.81 

10 2873.67 1.04175 3056.44 0.490839 *
1Tµ <  2873.67 −47.82 

eI  

0.1950 … … 5553.97 0.339004 … … … 

0.1625 … … 5593.61 0.345898 … … … 

0.1365 5491.98 0.785116 5624.96 0.351743 * *
2 1T Tµ< <  5491.98 −0.27 

0.1235 5522.15 0.736488 5640.50 0.354784 * *
2 1T Tµ< <  5522.15 +0.26 

0.0975 5576.71 0.667522 5671.33 0.361125 * *
2 1T Tµ< <  5576.71 +1.25 

0.0650 5637.54 0.608371 5709.35 0.369579 * *
2 1T Tµ< <  5637.54 +2.36 

p  

0.2250 … … 5632.74 0.353253 … … … 

0.1875 … … 5632.74 0.353253 … … … 

0.1575 5495.58 0.788754 5632.74 0.353253 * *
2 1T Tµ< <  5495.58 −0.21 

0.1425 5518.35 0.732758 5632.74 0.353253 * *
2 1T Tµ< <  5518.35 +0.19 

0.1125 5555.80 0.694109 5632.74 0.353253 * *
2 1T Tµ< <  5555.80 +0.87 
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Continued 

 0.0750 5590.95 0.572989 5632.74 0.353253 * *
2 1T Tµ< <  5590.95 +1.51 

a  

360 … … 7954.23 0.335601 … … … 

300 … … 6793.87 0.344116 … … … 

252 5724.92 0.798964 5865.03 0.351372 * *
2 1T Tµ< <  5724.92 +3.95 

228 5288.43 0.724812 5400.41 0.355162 * *
2 1T Tµ< <  5288.43 −3.97 

180 4401.80 0.621861 4470.77 0.363090 * *
2 1T Tµ< <  4401.80 −20.07 

120 3274.97 0.534887 3307.89 0.373716 * *
2 1T Tµ< <  3274.97 −40.53 

b  

180 5845.23 0.508466 5820.75 0.303183 * *
2 1T Tµ< <  5845.23 +6.13 

150 5691.09 0.597118 5730.39 0.325380 * *
2 1T Tµ< <  5691.09 +3.33 

126 5547.45 0.716034 5652.94 0.347110 * *
2 1T Tµ< <  5547.45 +0.72 

114 5465.02 0.811407 5612.17 0.359731 * *
2 1T Tµ< <  5465.02 −0.76 

90 … … 5525.72 0.389684 … … … 

60 … … 5406.07 0.440066 … … … 

c  

24 5533.08 0.703288 5639.05 0.349455 * *
2 1T Tµ< <  5533.08 +0.46 

20 5520.68 0.728499 5635.91 0.351329 * *
2 1T Tµ< <  5520.68 +0.24 

16−8 5510.11 0.752441 5633.3856 0.352864 * *
2 1T Tµ< <  5510.11 +0.04 

15.2 5504.56 0.766087 32.10 0.353644 * *
2 1T Tµ< <  5504.56 −0.05 

12 5492.85 0.797965 5629.53 0.355231 * *
2 1T Tµ< <  5492.85 −0.26 

8 … … 5626.29 0.357265 … … … 

α  

0.0030 5501.07 0.751624 5622.34 0.351889 * *
2 1T Tµ< <  5501.07 −0.11 

0.0025 5504.22 0.755344 5627.54 0.352570 * *
2 1T Tµ< <  5504.22 −0.05 

0.0021 5506.73 0.758348 5631.70 0.353116 * *
2 1T Tµ< <  5506.73 −0.01 

0.0019 5507.99 0.759859 5633.78 0.353390 * *
2 1T Tµ< <  5507.99 +0.01 

0.0015 5510.49 0.762901 5637.95 0.353940 * *
2 1T Tµ< <  5510.49 +0.05 

0.0010 5512.60 0.766739 5643.15 0.354629 * *
2 1T Tµ< <  5512.60 +0.11 

µ  

0.60 5605.42 0.895051 5496.51 0.356863 * *
2 1T Tµ< <  5605.42 +1.78 

0.50 5552.86 0.820342 5564.64 0.355044 * *
2 1T Tµ< <  5552.86 +0.82 

0.42 5515.82 0.770286 5619.12 0.353609 * *
2 1T Tµ< <  5515.82 +0.15 

0.38 5499.24 0.748452 5646.36 0.352898 * *
2 1T Tµ< <  5499.24 −0.14 

0.30 5470.39 0.711202 5700.81 0.351489 * *
2 1T Tµ< <  5470.39 −0.67 

0.20 5443.30 0.676839 5768.85 0.349752 * *
2 1T Tµ< <  5443.30 −1.16 
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Here “…” indicates infeasible solution in Table 1. 
The following observations can be made from Table 2. 
(i) When the grace period ( µ ) increases from 0.0100 to 0.5000, Policy I holds 

whereas from 0.6000 to 1.0020 Policy II holds. 
(ii) When the grace period ( µ ) increases from 1.0030 to above, the cycle time 

*
1T  and average system cost ( )*

1 1ASC T  result infeasible solution in Policy I. 

 
Table 2. Sensitivity analysis of grace period and optimal costs. 

Increase in value of 
parameter ( )µ  

( )*
1ASC T

 
*

1T  ( )*
2ASC T

 
*

2T  Remarks 

0.0100µ =  5422.52 0.643557 5898.05 0.346521 Policy I 

0.1000µ =  5427.14 0.656220 5836.86 0.348040 Policy I 

0.2000µ =  5443.30 0.676839 5768.85 0.349752 Policy I 

0.3000µ =  5470.39 0.711202 5700.81 0.351489 Policy I 

0.4000µ =  5507.36 0.7591.03 5632.74 0.353253 Policy I 

0.5000µ =  5552.86 0.820342 5564.64 0.355044 Policy I 

0.6000µ =  5605.42 0.895051 5456.51 0.356863 Policy II 

0.7000µ =  5663.59 0.984103 5428.35 0.358710 Policy II 

0.8000µ =  5725.94 1.08980 5360.16 0.360586 Policy II 

1.0000µ =  5857.32 1.38222 5223.69 0.364429 Policy II 

1.0001µ =  5857.39 1.38241 5223.62 0.364431 Policy II 

1.0010µ =  5857.98 1.38417 5223.01 0.364449 Policy II 

1.0020µ =  5858.64 1.38613 5222.32 0.364468 Policy II 

1.0030µ =  … … 5221.64 0.364488 … 

1.0040µ =  … … 5220.96 0.364507 … 

 
Here “…” indicates infeasible solution in Table 2. 

6. Conclusions 

In the real-market situation, it is commonly observed that the demand of the items 
like seasonal fruits like mango, apple, grapes, etc., vegetables, and sea fish like hilsa 
etc. varies with respect to time. From the beginning to the end of the season, the 
behavior of the demand pattern is a quadratic function of time. This trend in de-
mand pattern is also valid for essential commodities like newly manufactured 
fashionable items and newly launched automobiles, android mobiles, laptops, etc. 
In the present paper, an EOQ model for deteriorating items with varying one-
parameter Weibull distribution deterioration, quadratic demand and the condi-
tion of grace periods is proposed. We think that such type of time-dependent de-
mand pattern, time-varying deterioration and conditions of grace period inventory 
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model is quite realistic in our day-to-day life which builds the solid foundation for 
future research on inventory models. The results are provided to illustrate with 
the help of three numerical examples for additional insights and the performance 
of optimal average total cost with change in values of the different parameters are 
shown by the execution of sensitivity analysis. 

The present problem model can be extended for research and study to many 
practical situations. The proposed model can be extended by introducing more 
generalized demand patterns. We could extend the present model with several 
features like two-warehouse systems, quantity discounts; several delays in pay-
ment conditions etc. We could also extend the model to different Weibull distrib-
uted models and Gamma distributed models by changing its deterioration rate. 
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