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Abstract 
In this work, for a control consumption-investment process with the dis-
counted reward optimization criteria, a numerical estimate of the stability 
index is made. Using explicit formulas for the optimal stationary policies and 
for the value functions, the stability index is explicitly calculated and through 
statistical techniques its asymptotic behavior is investigated (using numerical 
experiments) when the discount coefficient approaches 1. The results ob-
tained define the conditions under which an approximate optimal stationary 
policy can be used to control the original process. 
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1. Introduction 

In a standard way (see [1] [2] for definitions), let M be a Markov control process 
at discrete time with infinite horizon (also called Markov decision processes) 
and let M  be its approximation. We will use the performance criterion (objec-
tive function) called expected total discounted reward. Suppose that the optimal 
control problem for M  has a solution, that is, we can find an optimal solution 
( f∗
 ) for the approximate process M . Now, if for some reasons (some of these 

causes are discussed later), it is not possible to find an optimal policy for the 
original process M, we could use the policy ( f∗

 ) to control the original process 
M. The use of such approximation will cause a reduction in the total discounted 
reward, this reduction is measured by the stability index (Δ), see [3] [4] [5] for 

How to cite this paper: Martínez-Sánchez, 
J.E. (2021) Asymptotic Evaluations of the 
Stability Index for a Markov Control Process 
with the Expected Total Discounted Reward 
Criterion. American Journal of Operations 
Research, 11, 62-85. 
https://doi.org/10.4236/ajor.2021.111004 
 
Received: December 21, 2020 
Accepted: January 25, 2021 
Published: January 28, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ajor
https://doi.org/10.4236/ajor.2021.111004
https://www.scirp.org/
https://doi.org/10.4236/ajor.2021.111004
http://creativecommons.org/licenses/by/4.0/


J. E. Martínez-Sánchez 
 

 

DOI: 10.4236/ajor.2021.111004 63 American Journal of Operations Research 
 

definition. The importance of this stability index is that it allows us to calibrate 
the use of ( f∗

 ) to control the original process M.  
Clearly, if this stability index is very high (Δ → ∞ ), it would imply that it is 

not optimal to use the optimal policy ( f∗
 ) to control the process M, on the other 

hand if this stability index is low (Δ 0→ ), then the use of this approximation is 
valid.  

In the available literature, both the study and calculation of the stability index 
has been carried out from a theoretical approach through different way: with the 
application of contractive operators, see for example [6] [7] [8]; with the use of 
certain ergodicity conditions, see [9] [10] [11]; and with the application of the 
use of different probabilistic metrics, see [12] for definitions of the different 
kinds of probabilistic metrics, so for example, in [9] the total variation metric is 
used, in [6] the Kantorovich metric is used, in [7] and [8] the Prokhorov metric 
is used.  

The results obtained in all the papers mentioned above are an upper bound 
for the stability index, which is a function of certain parameters and some prob-
abilistic metric, that is 

( )Δ ,µ≤ ⋅ ⋅ ,                          (1) 

where   is an explicit constant and μ is a certain probability metric.  
Clearly, the discount factor (α) involved in optimization criteria is also in-

volved in the explicit constant of   in inequality (1): Our goal is to determine 
the behavior of the stability index as a function of (1 α− ) when the discount 
factor tends to 1 ( 1α ↑ ).  

Unlike the theoretical study of the stability index as presented in inequality (1), 
in this work, the stability index will be studied with a more applied perspective.  

In this work, a Markov control process about consumption-investment is 
presented (with expected total discounted reward), for which the stability index 
is explicitly obtained and later we study its asymptotic behavior when the dis-
count factor tends to 1. These asymptotic evaluations for the stability index will 
be carried out using techniques statistics; as mentioned above, our goal is to 
measure the sensitivity of the stability index as a function of (1 α− ) when 
( 1α ↑ ).  

To achieve the above, instead of using inequality (1), we will use statistical 
techniques to estimate the following model: 

( )
( )

Δ 1
1 κα

α
− =

−

 , ∈ , 1κ ≥ ,                  (2) 

where   and κ are the (unknown) parameters of the model, but estimable 
from simulated data of the discount factor α and using the simple linear regres-
sion analysis technique. From Equation (2), we will say that the stability index is 
of order κ−  with respect to (1 α− ) and we will express this as  

( ) ( )Δ 1 ~ 1 κα α −− − . 
Now, if 1α ↑  clearly for high values of κ the stability index given in Equa-
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tion (2) will tend to increase rapidly, which will be indicative that it will not be 
optimal to use policy f∗

  to control the original process M.  
The numerical experiments carried out in this work have the goal of estimat-

ing the sensitivity κ of the stability index given in Equation (2) when 1α ↑ . 
These asymptotic evaluations will give us information to answer the question 
posed above. In the rest of this document, we will refer to this sensitivity (κ) as 
the order of Δ, indistinctly.  

As far as we go in the literature review, no numerical studies, no simulations, 
etc. were found that use statistical techniques to evaluate the order of the stabili-
ty index with respect to the discount factor. 

The results obtained in this work using the simple linear regression model 
technique depend on the value of a parameter involved in the discounted reward 
function used, however, it is clear that results show that when 1α ↑ , then the 
stability index as a function of (1 α− ) tends to increase rapidly, so it is not rec-
ommended to use an approximate optimal policy ( f∗

 ) to control the original 
model M. The results also suggest that the selection of the value of the parameter 
used in the reward function as well as the value of the discount factor are very 
important to validate the use of the optimal policy f∗

  to control M. From the 
results obtained in the estimates of κ, the largest value was −1.75, i.e., 

( ) ( ) 1.75Δ 1 ~ 1α α −− − , although clearly from the Equation (2), it would seem 
natural that the best possible order should be at most ( ) 11 α −− . 

Finally, we would like to comment on the reasons why we propose the model 
given in (2) for the asymptotic study of the stability index. 

In [6] [7] and [8], the stability index is studied under expected total dis-
counted cost criterion and the results found are stability inequalities such as the 
one given in (1). Furthermore, the constant   involved in inequality (1) is an 
explicit and inversely proportional function to the term (1 α− ) in all cases; for 
example, in [6] it is found that ( ) 2~ 1 α −∆ −  using the Kantorovich metric, 
while in [7] it is obtained that ( ) 2~ 1 α −∆ −  with the total variation metric, 
and [8] shows a result in which ( ) 3~ 1 α −∆ −  using the Prokhorv metric. So, 
given that in this work a control process is studied with the expected total dis-
counted reward criterion and based on the aforementioned results, it seems nat-
ural to propose the use of the model given in Equation (2) for the study of the 
asymptotic evaluations of the stability index. In [9] [10] and [11] there are also 
stability inequalities like the one given in inequality (1), but using the aver-
age-cost criterion, however in these papers the stability index presented an order 
of ( )1 γδ −− , where δ is the ergodicity parameter and γ ∈ . 

This work is organized as follows. Section 2, a brief description of Markov 
control models (also called Markov decision processes) is presented as well as 
some well-known results for discounted optimal control problem with bounded 
reward; in Section 2.1, we present the problem of estimating the stability index 
as well as the assumptions that guarantee the existence of the optimal solution 
for the original (M) and approximate processes ( M ), respectively. In Section 3, 
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the control process with which it will work (consumption-investment) is pre-
sented, while in Section 3.1 its stability index is explicitly obtained; in Section 3.2, 
the results obtained regarding the asymptotic evaluation of the stability index are 
presented. Finally in Section 4, the conclusions of this work are presented as well 
as some proposed future researches. 

2. The Discounted Reward Criterion 

For a topological space ( ),τX , ( )B X  denotes the Borel σ-algebra generated 
by the topology τ and measurability will always mean Borel measurability. Moreo-
ver, ( )M X  is the class of measurable functions on X  whereas ( )bM X  is the 
subspace of bounded measurable functions endowed with the supremum norm 
given as ( )supxu u x∈∞

= X , ( )bu M∈ X . The subspace of bounded conti-
nuous functions is denoted by ( )b X . For a subset ⊆ X ,   stands for the 
indicator function of  , i.e., ( ) 1x =  for x ∈X  and ( ) 0x =  for x ∉X . 
A Borel space   is a measurable subset of a complete separable metric space 
endowed with inherited metric. 

Let 

( ){ }( ), , : , ,x x= ∈    rM                  (3) 

be the standard Markov control model (see [1] [13], for definitions). That is 
thought as a model of a controlled stochastic process ( ){ },n nx a , where the state 
process { }nx  takes values in the Borel space   and the control process { }na  
takes values in the Borel space  . The controlled process involves as follows: at 
each time { }0 0,1, 2,n ∈ =  , the contolled observes the system in some state 

nx x=  and choose a control na a=  from the admissible control subset ( )x , 
which is assumed to be a Borel subset of  . It is also assumed that the admissi-
ble pairs set ( ) ( ){ }: , : ,x a x a x= ∈ ∈    belongs to ( )×B   . Then, the 
controller receives a reward ( ),x ar  where r  is a real-valued Borel measura-
ble function defined on ( ) ( ){ }: , : ,x a x a x= ∈ ∈   . Moreover, the controlled 
system moves to a new state nx x′=  according to the distribution measure 

( )| ,x a⋅ , where   is a stochastic kernel on   given  , that is, ( )| ,x a⋅  
is a probability measure on   for each pair ( ),x a ∈ , and ( )| ,x a⋅  is a 
Borel measurable function on   for each Borel subset   of  . Then, the 
controlled choose a new control ( )na a x′ ′= ∈  receiving a reward ( ),x a′ ′r  
and so on. 

Let : n
n = ×    for 0n ∈  and 0 =  . Observe that a generic element 

of n  has the form ( )0 0 1 1 1 1, , , , , , ,n n n nh x a x a x a x− −=   where ( ),k kx a ∈  
for 0,1, , 1k n= −  and nx ∈ . A control policy is a sequence { }nπ π=  
where ( ),nπ ⋅ ⋅  is a stochastic kernel on   given n  satisfying the constraint 

( )( )| 1n n nx hπ =  for all n nh ∈ , 0n ∈ . Now, let   be the class of all 
measurable functions :f →   such that ( ) ( )f x x∈  for each x ∈ . A 
control policy { }nπ π=  is said to be (deterministic) stationary if there exists 
f ∈  such that the measure ( )|n xπ ⋅  is concentrated at ( )f x  for each 
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x ∈  and 0n ∈ . Following a standard convention, the stationary policy π is 
identified with the selector f. The class of all policies is denoted by Π and the 
class of all stationary policies is identified with the class  . 

Let ( ): ∞Ω = ×   be the canonical sample space and F  the product σ-algebra. 
For each policy { }nπ π= ∈ Π  and “initial” state 0x ∈  there exists a proba-
bility measure x

π  on the measurable space ( ),Ω F  that governs the evolution 
of the controlled process ( ){ },n nx a . 

The expected total discounted reward criterion is given as 

( ) ( )0, : ,t
x t ttx x aπ

α π α∞

=
= ∑ r ,                  (4) 

where the discount factor ( )0,1α ∈  is fixed and x
π  denotes the expectation 

operator with respect to the probability measure x
π . 

The optimal control problem is to find a control policy *π ∈ Π  (if exists) 
such that 

( ) ( ) ( )* *: , : sup ,x x xα α π απ π∈Π= =   ,              (5) 

for all x ∈ . 
The policy *π  is called discounted optimal policy, while *

α  is called the 
discounted optimal value function. Later we will impose conditions that guaran-
tee the finiteness of the value function *

α  and the existence of an optimal pol-
icy *π .  

2.1. The Stability Index and the Problem of Its Estimation 

The problem of (quantitative) estimation stability (“continuity” or “robustness”) 
arises when there is an uncertainty about the stochastic kernel ( )| ,x a⋅  de-
fined in the standard Markov control model M (see model (3)). The “original” 
task of the controller consists in the search for the optimal policy *π  (see Equ-
ation (5)). In many applications this task cannot be fulfilled directly due to any 
of the following causes: 

1) Frequently ( )| ,x a⋅  or some of its parameters are unknown to the con-
troller, and this stochastic kernel is estimated using some statistical procedures. 
With the results of these estimates, another stochastic kernel ( )| ,x a⋅  is gen-
erated that is interpreted as an accessible approximation to the unknown  

( )| ,x a⋅ . 
2) There are situations where ( )| ,x a⋅  is known but too complicated to 

have any hope of solving the control policy optimization problem. In such cases, 
( )| ,x a⋅  is sometimes replaced by a “theoretical approximation” ( )| ,x a⋅ , 

which results in a controllable process with a simpler structure. 
We assume that ( )| ,x a⋅  is not available to the controller and it is substi-

tuted by a given approximating stochastic kernel ( )| ,x a  , x ∈ , ( )x  
and ( )∈B  . The “approximating” Markov process governed by   will be 
denoted by { } { }, 0,1,t tx x t≡ = 

 , i.e., let 

( ){ }( )M , , : , ,x x= ∈ 

      r ,                   (6) 
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be the “approximate” for the Markov control model given in model (3). 
Changing tx  for tx  in Equation (4), we get ( ),xα π  the discounted re-

ward criterion for the approximate process M . Now, suppose that it is possible 
(at least theoretically) to find an optimal policy *π  for process M , i.e., 

( ) ( ) ( )* *: , : sup ,x x xα α π απ π∈Π= =  

      .             (7) 

The control policy *π  defined in Equation (7) is used as the approximation 
to the optimal non-accessible policy *π  (assuming it exists). In other words, 
policy *π  is used to control the original process M instead of policy *π . 

The reduction in reward for such an approximation, is estimated by the fol-
lowing stability index (see [3] [4] [5]): 

( ) ( ) ( )* *Δ : , , 0x x x
α α απ π= − ≥   , x ∈ .          (8) 

The stability estimation problem consists of searching for inequalities of the 
following type: 

( ) ( ) ( )Δ ,x x
α

ψ µ ≤  


    , x ∈ .              (9) 

where ( )x  is a function with explicitly calculated values; :ψ + +→   is a 
real continuous function such that ( ) 0sψ →  as 0s →  and μ is a metric 
probabilistic on the space of probability measures.  

The results obtained in [6]-[11] provide inequalities as given in inequality (9).  
In this paper, we consider a particular example of a Markov control process 

for which optimal stationary policies can be explicitly calculated. The explicit 
form of these stationary policies *π  (for the “original” process M) and *π  (for 
the “approximate” process M ) makes it possible to explicitly calculate the sta-
bility index 

α
∆ . The goal of this work is to study the asymptotic behavior of 

α
∆  when 1α ↑ . Using direct calculations and numerical approximations, we 
will show that the stability index (see Equation (8)) can be expressed as a func-
tion that depends on (1 α− ) and has an order of κ, i.e.,  

( )
( )

1
1α α κα

α
∆ ≡ ∆ − =

−
 

 , ∈ , 1κ ≥ ,          (10) 

where the (unknown) parameters   and κ will be estimated using statistical 
techniques, see the analogy with Equation (2).  

To finish this section, the assumptions that guarantee the existence of the sta-
tionary optimal control policy ( *π  and *π ) for the optimal control problems 
given in equations (5) and (7) respectively, are shown below:  

Assumption 2.1. (Existence)  
1) The function ( ),⋅ ⋅r  is bounded by a constant b > 0; 
2) ( )x  is non-empty compact subset of   for each x ∈  and the map-

ping ( )x x→  is continuous; 
3) ( ),⋅ ⋅r  is a continuous function on  ; 
4) ( )| ,⋅ ⋅ ⋅  is weakly continuous on  , that is, the mapping 

( ) ( ) ( ), d | ,x a u y y x a→ ∫  ,                     (11) 
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is continuous for each function ( )bu ∈  . 
The second set of assumptions guarantees the discounted reward criterion is 

both well defined and finiteness. 
Assumption 2.2. (Finiteness) 
The following holds for each x ∈ : 
1) The function ( ),⋅ ⋅r  is bounded by a constant b > 0; 
2) ( )x  is a non-empty compact subset of  ; 
3) ( ),x ⋅r  is a continuous function on ( )x ; 
4) ( )| ,x⋅ ⋅  is strongly continuous on ( )x , that is, the mapping 

( ) ( )d | ,a u y y x a→ ∫  ,                      (12)  

is continuous for each function ( )bu M∈  .  
For more information see [2] [14] [15]. Now, if ( )   denote either ( )b   

or ( )bM   depending on whether Assumption 2.1 or 2.2 is being used, respec-
tively; then, under either one of Assumption 2.1 or 2.2, the dymanic program-
ming operator: 

( ) ( ) ( ) ( ) ( ): sup , d | ,a xTu x x a u y y x aα∈
 = + ∫ 

r ,      (13) 

x ∈ , is a contraction operator from Banach space ( )( ),
∞

⋅   into itself 
with contraction factor α (see [2]). 

Remark 2.3. Under Assumptions 2.1 and 2.2, there is a solution to the optim-
al control problem given in Equation (5); which is unique and the value function 
does not depend on the initial state of the process. For a proof, see [2] or [13]. 

3. A Markov Control Consumption-Investment Process and  
Its Approximation 

This example is presented in [1]. Consider the following Markov control pro- 
cess: 

Let [ )0,= ∞ ; [ )0,= ∞ ; ( ) [ )0,x = ∞ , x ∈ . The dynamics of the 
“original” process (M) is given by: 

t t tx a ξ= , for 1,t =  ;                      (14) 

and for the “approximate” process ( M ) 

t t tx a ξ= 

  , for 1,t =  ;                      (15) 

where { }, 1t tξ ≥  and { }, 1t tξ ≥  are two sequences of independent and identi-
cally distributed non-negative random variables (i.i.d), which have distributions 

ξ  and ξ  respectively. Clearly, ξ  and ξ  are in the space of all distribu-
tions in ( )( ),B  . 

In this model, 1tx −  is interpreted as current capital. Amount [ ]10,t ta x −∈  
represents what is invested in assets (such as stocks, bonds, etc.), which generate 
a profit/loss given by t ta ξ . The rest of the capital 1t tx a− −  is dedicated to con-
sumption and the satisfaction (or benefit) of this consumption is estimated by 
the utility function given by ( )1

p
t tx a− − , where 0 1p< <  is a given parameter. 
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The reward function per unit of time is given by   

( ) ( )1 1, p
t t t tx a x a− −= −r  for 1,t =  ; 0 1p< < .            (16) 

Assumption 3.1. (Only for this example)  
The i.i.d random variables { } 1t t

ξ
≥

, { }
1t t

ξ
≥

  given in Equations (14) and (15) 

respectively, satisfy the following (for details, see [1]): 

1: pλ ξ
α

= < ; 1: pλ ξ
α

= <  .                   (17) 

Now, for an “initial” state [ )0,x ∈ ∞  the optimal control problem (see Equa-
tion (5)) for this Markov control consumption-investment process is 

( ) ( )* 1
11, : sup pt

x t ttx x aπ
α ππ α∞ −

∈Π −=
= −∑ r ,              (18) 

analogously for the “approximate” process, we have  

( ) ( )* 1
11, : sup pt

x t ttx x aπ
α ππ α∞ −

∈Π −=
= −∑





    r ,             (19) 

where [ )0,x ∈ ∞  is an “initial” state for the “approximate” process. 
Under these conditions, in [1] it is shown that the processes are given in equa-

tions (14) and (15) satisfies both Assumptions 2.1 and 2.2 and that fulfill the fol-
lowing: 

1) The optimal stationary policy for Equation (18) is the following selector 

( )
1

1 pf xαλ −
∗ = , [ )0,x ∈ ∞ .                     (20) 

2) The value function given in Equation (18) is 

( )
( )

11
1

1,
1

p
p

p

x f xα

αλ
∗ −

−

=
 −  

 , [ )0,x ∈ ∞ .              (21) 

3) The optimal stationary policy for Equation (19) is the following selector 

( )
1

1 pf xαλ −
∗ = 

 , [ )0,x ∈ ∞ .                      (22) 

The next thing is that we explicitly calculate the stability index for this control 
process, which we will use to perform the asymptotic evaluations. In the next 
section, we show the development we did to obtain this calculation. 

3.1. Explicit Calculation of the Stability Index for the Markov  
Control Consumption-Investment Process 

In this section, the stability index (
α

∆ ) is explicitly calculated for the control 
consumption-investment process which was presented in the previous section. 
As was mentioned in the introduction section, the expression that we find for 
the stability index is a function of the parameters p and  , where   is the 
measure of the approximation between the probability distributions ξ  and 

ξ  (see Equations (14) and (15)), while p is the parameter involved in the re-
ward function (see Equation (16)).  
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In economics, this parameter p is associated with elasticity, that is, elasticity 
measures the percentage change in the consumer’s utility in response to percen-
tage changes in the consumer’s money supply (for more details, see [16] or [17]). 
For this reason, it is important to measure its effect on the asymptotic behavior 
of the stability index.  

From Equation (16), the possible values for the parameter p lie in interval 
0 1p< < . 

Our goal is to calculate asymptotic evaluations of the stability index when 
0→  (which would imply that ξ  is closer to ξ ) and for extreme values of  

the range of p, that is, we are interested in values of 0p ≈ , 1
2

p ≈  and 1p ≈ . 

Now, we will proceed to calculate the stability index and for this, we will take 
an “initial” state 1x x= =  as well as the following distribution functions to 
measure the effect of the shock on the processes: 

Assumption 3.2. (Only for this example) 
We consider the random vectors given in processes (14) and (15) respectively, 

have an exponential distribution with parameters θ  and θ  respectively, i.e., 
( )~ expξξ θ≡  and ( )~ expξξ θ≡



   with ( )1θ θ= −  , where the values of 
  measure the approximation between both distributions, 0 1< < . 

Under Assumption 3.1 and 3.2, we have 

1 0

e: dp p

ξ
θ

λ ξ ξ ξ
θ

−
∞

 
 = =  
  

∫ , 

and after some direct calculations, 

( )Γp pλ θ= .                        (23) 

Similarly, for the perturbed random vector, we have  

( )Γp pλ θ=  , 

and since ( )1θ θ= −  , then from the above equality it follows that  

( )1 pλ λ= −  .                        (24) 

Next, the stability index is calculated. 
From Equation (8) we have 

( ) ( ) ( )Δ 1 : 1, 1, 0f f
α α α∗ ∗= − ≥

   .                (25) 

The first term on the right side of Equation (25) is given in Equation (21) with 
1x = . The next thing is that we will calculate the second term on the right side 

of Equation (25): To do this, we substitute the approximate policy of optimal 
control with 1x = , given in Equation (22), in the reward function of the “origi-
nal” model given in Equation (18), and we have 

( ) ( )1
1 1 111, pf t

t tt af xα α∗ ∞ −
∗ − −=

= −∑

  . 

The above equation represents the discounted reward obtained when the tra-
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jectory of the “original” process given in Equation (14) is controlled by the op-
timal policy obtained from the “approximate” process given in Equation (15) 
and the “initial” state is 1x = . 

Now, since ( )1t ta f x −∈  (see [1] for details), we have  

( ) ( )1
1 1 111, pf t

t tt af xα α∗ ∞ −
∗ − −=

= −∑

  , 

( ) ( )
1

1 1
1 1 111,

p
ft p

t ttf x xα α αλ∗∞ − −
∗ − −=

 
= −  

 
∑ 

 

  , 

finally, we have 

( ) ( )
1

1
101, 1 pt

t

p
fp

tf xα αλ α ∗∞−
∗ =

 
= − 

 
∑ 

 

 .             (26) 

Now, the evolution of the approximate process (see Equation (15)) is represented 
as follows 

t t tx a ξ= 

  , 

So, 

( ) ( )
1 1

1 1
1 1 1 1 1

p px a xξ αλ ξ αλ ξ− −= = =    

   . 

( ) ( )
1 2

1 1
2 2 2 1 2 1 2

p px a xξ αλ ξ αλ ξ ξ− −= = =     

   . 

  

( ) ( )
1

1 1
1 1 2

t
p p

t t t t t tx a xξ αλ ξ αλ ξ ξ ξ− −
−= = =      

  


. 

If we raise the last equality to the power p, we have 

( )1
1 2

pt
p p p pp

t tx αλ ξ ξ ξ−=    




. 

Now if we take the expected value on both sides of the above equality and 
since the random elements are i.i.d.,  

( )1
1 1 1 2

pt
f fp p p pp

t tx αλ ξ ξ ξ∗ ∗−  =  
 

   


  , 

( ) ( ) ( ) ( )1
1 1 1 1 2 1

pt
f f f fp p p pp

t tx αλ ξ ξ ξ∗ ∗ ∗ ∗−=
   

   


    . 

Now, by inequality (17),  

( ) ( )1
1

pt tf p p
tx αλ λ∗ −=



 

 , 

( ) ( )
1

111

p ttf p pptx α λ∗ −−=




 .                   (27) 

Substituting Equation (27) in Equation (26) and after performing some direct 
calculations, we have 

( ) ( ) ( ) ( )
1 1

1 11
01, 1

p
p tttp pp

tfα αλ α α λ∞− −−
∗ =

 
= − 

 
∑   , 
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( ) ( ) ( )
1 1

1 1
01, 1

p t

p p
tfα αλ αλ∞− −

∗ =

   
= −   

   
∑   .            (28) 

Inequalities (17) guarantees 1αλ < ; furthermore, since 0 1p< < , it is guaran-

teed that 1
1

1
p

<
−

. Finally, the two reasons above guarantee that ( )1
1

1pαλ − < .  

Therefore, calculating the sum of geometric serie involved in Equation (28), this 
one can be expressed as 

( ) ( )
( )

1
1

1
1

11, 1
1

p

p

p

fα αλ
αλ

−
∗

−

 
= − 

  −

 



 , 

( )
( )

11
1

11,

1
p

p

fα

αλ
∗ −

−

=
 

− 
 





 .                   (29) 

Then, to obtain the stability index, Equation (21) with 1x =  and Equation 
(29) are substituted in Equation (25) and we obtain 

( )
( ) ( )

1 11 1
1 1

1 11
1 1

p p

p p

α

αλ αλ
− −

− −

∆ = −
   − −      



 .          (30) 

Now, substituting Equation (24) in Equation (30), we have 

( )
( ) ( )( )

1 11 1
1 1

1 1Δ 1
1 1 1

p p
pp p

α

αλ αλ
− −

− −

= −
   − − −       





.      (31) 

For each fixed p, a θ value in Equation (23) can be selected such that 1λ = , so 
Equation (31) can be written as 

( )
( )

1 11 1
1 1 1

1 1Δ 1

1 1 1
p p

p
p p p

α

α α
− −

− − −

= −
   

− − −   
      





.       (32) 

The stability index given in Equation (32) remains a function that depends on 
the discount factor (α), the parameter p of the reward function, see Equation 
(16), and the level of approximation   of the distributions ξ  and ξ , see 
Assumption 3.2. 

3.2. Study of the Asymptotic Evaluations of the Stability Index  

The goal of this work is to perform asymptotic numerical estimations of the sta-
bility index as a function of (1 α− ), that is, find its order (κ) when 1α ↑ , see 
Equation (10). For this, we will use the result obtained in the previous section of 
the explicit calculation of the stability index, see Equation (32). 

Equation (32) shows that the stability index is a function of p and as men-
tioned in the previous section, this parameter of the utility function is important 
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in economics since it is related to elasticity. So, to estimate the effect that this 
parameter has on the stability index, we will select arbitrary values of this para-
meter in such way that 1) values close to zero (it would imply consumers insensitive  

to monetary change); 2) values close to 1
2

 (average consumers); and 3) values  

close to 1 (sensitive consumers). However for our goal, these values of p would 
give us information about the conditions in which the approximate policy f  
can be used to control the original process M, that is, we want to study if values  

given of p close to zero (to 1
2

 and to 1) in the reward function allows us to use 

this approach. 
Methodology and results obtained. For a fixed value of p in Equation (32) 

and given a value of  , we will generate 100 values of α, starting at 0.5α =  
with increments of 0.005. Then, for each of the 100 generated values of  

0.5,0.505, ,0.995α =  , the value of (1 α− ) is substituted in Equation (32) and 
we would have 100 values of the stability index (as function of (1 α− )). With 
these 100 values of (1 α− ) and the stability index ( )Δ 1

α
α− , a simple linear 

regression model is performed to estimate the κ parameter involved in Equation 
(10) and this value would be the estimation of the order of the stability index 
with respect to (1 α− ), i.e., ( ) ˆΔ ~ 1

α

κα −− . We are interested in the behavior 
of the k estimate when 1α ↑  and 0→ . 

For example, if 1
100

p =  then of Equation (32) we have that the stability in-

dex is expressed as 

( )

( )
99 99

100 100100 1001
99 99 99

1 1Δ 1

1 1 1

α

α α

= −
   

− − −   
   





,           (33) 

Now, remembering that   values represent the measure of the approxima-
tion between the distributions ξ  and ξ  (see Assumption 3.2), so let’s as-
sume 0.2=  and we substitute it in Equation (33), we have 

( )

( )
99 99

100 100100 1001
99 99 99

1 1Δ 1

1 1 0.8

α

α α

= −
   

− −   
   

 ,           (34) 

Now, we generate 100 values of 0.5,0.505, ,0.995α =   and later we substi-
tute (1 α− ) in Equation (34) and 100 values of the stability index are generated, 
that is shown in Figure 1.  

Remark 3.3. In Figure 1, the stability index ( )Δ 1
α

 given in Equation (34) 
is represented as delta, this is, ( )Δ 1 delta

α
≡  and the measure  , we call ep-

silon. 
From Figure 1, we can see that when 1α ↑  ⇒  ( )delta Δ 1

α
≡ → ∞  that is, 

it is very costly to use the optimal policy of the approximate process given in 
Equation (22) to control the original process given in Equation (14).  
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Figure 1. Scatterplot generated by 100 data points of stability index ( )Δ
α

 obtained 

from Equation (34). 
 

On the other hand, to obtain the asymptotic evaluations of the stability index 
when 1α ↑ , that is, the estimation of the κ parameter that appears in Equation 
(10): 

( )
( )

Δ Δ 1
1α α κα

α
≡ − =

−
 

 , ∈ , 1κ ≥ , 

we will proceed to estimate the following simple linear regression model: 

( ) ( ) ( )ln 1 ln ln 1 iiiα
α κ α ν ∆ − = + − +   , 1, ,100i =  .      (35) 

where iν  is a white noise (see [18] for definition),   and κ are the parame-
ters to be estimated with the results of 100 data generated and represented in 
Figure 1. The results of the regression estimate given in Equation (35) is shown 
below: 

Regression Analysis: ln(delta) versus ln(1-alpha) 
 
Regression Equation   

ln(delta) = −6.7003 − 2.1369 ln(1-alpha) 

Coefficients   

Term Coef SE Coef 95% CI T-Value P-Value VIF 

Constant −6.7003 0.0252 (−6.7503; −6.6503) −265.92 0.000  

ln(1-alpha) −2.1369 0.0133 (−2.1632; −2.1106) −161.17 0.000 1.00 

Model Summary      

S R-sq R-sq(adj) PRESS R-sq(pred) AICc BIC 

0.122431 99.62% 99.62% 1.68143 99.57% −132.02 −124.46 

Analysis of Variance      

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Regression 1 389.360 99.62% 389.360 389.360 25975.63 0.000 

ln(1-alpha) 1 389.360 99.62% 389.360 389.360 25975.63 0.000 

Error 98 1.469 0.38% 1.469 0.015   

Total 99 390.829 100.00%     
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Therefore, from the above results we have that ˆ 2.1369κ = −  and from Equa-
tion (10) it can be concluded that the asymptotic estimate of the stability index 
when 1α ↑ , it is ˆ 2.1369κ = − , that is, the sensitivity of the stability index with 
respect to (1 α− ) is 

( ) ( ) 2.1369Δ 1 ~ 1
α

α α −− −  .                  (36) 

On the other hand, the estimation of this asymptotic evaluation of κ will be 
better when the approximation of the ξ  distribution is closer to the ξ  dis-
tribution (see Assumption 3.2), that is 

 if 0→ , then ξξ →


   (and so κ̂ κ→ ).            (37) 

To see the above, given the fixed value of 1
100

p = , we proceeded to replicate 

the estimates of κ given in Equation (35) for 0.1,0.05,0.01,0.001= . 

For 1
100

p =  and 0.1= , from Equation (33) we have the following stabili-

ty index 

( )

( )
99 99

100 100100 1001
99 99 99

1 1Δ 1

1 1 0.9

α

α α

= −
   

− −   
   

 .          (38) 

For the same 100 values of (1 α− ) and using the above equation, another 100 
values of the stability index were generated, which are presented in Figure 2. 

From this Figure 2, we observe that for 1
100

p =  and 0.1= , (when  

1α ↑ ) it remains it is very costly to use the optimal policy of the approximate 
process given in Equation (22) to control the original process given in Equation 
(14); however, the stability index ( )Δ 1 delta

α
≡  is reduced, that is due to the 

greater precision 0.1=  of in the approximation of the distribution ξ  to the 
distribution ξ . 
 

 

Figure 2. Scatterplot generated by 100 data points of stability index ( )Δ
α

 obtained 

from Equation (38). 
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Now, with this new 100 data from Figure 2, the κ parameter is re-estimated in 
the simple linear regression model given in Equation (35). The results obtained 
are the following: 

Regression Analysis: ln(delta) versus ln(1-alpha) 
 

Regression Equation   

ln(delta) = −7.4722 − 2.1562 ln(1-alpha) 

Coefficients   

Term Coef SE Coef 95% CI T-Value P-Value VIF 

Constant −7.4722 0.0231 (−7.5179; −7.4264) −324.07 0.000  

ln(1-alpha) −2.1562 0.0121 (−2.1803; −2.1321) −177.71 0.000 1.00 

Model Summary      

S R-sq R-sq(adj) PRESS R-sq(pred) AICc BIC 

0.112037 99.69% 99.69% 1.38898 99.65% −149.77 −142.20 

Analysis of Variance      

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Regression 1 396.422 99.69% 396.422 396.422 31581.39 0.000 

ln(1-alpha) 1 396.422 99.69% 396.422 396.422 31581.39 0.000 

Error 98 1.230 0.31% 1.230 0.013   

Total 99 397.652 100.00%     

 
The results show that 2. 562ˆ 1κ = − , and we obtain that the stability index has 

an order −2.156 with respect to (1 α− ), that is ( ) ( ) 2.15621 ~ 1
α

α α −∆ − −  . 
Now, to investigate the asymptotic behavior of this sensitivity κ, we will make 

the approximation between the probability functions better and better, i.e., 0→ .  

So, analogously to what has already been explained, the results for 1
100

p =  

and 0.05,0.01,0.001=  are presented in Figures 3-5. 

The five figures above show that for fixed 1
100

p =  and when   tends to  

zero (which implies that ξ  approaches to ξ ), then the stability index has 
zero (see y-values labels).  

The previous interpretation is clearer if we look at Figure 6 and Figure 7, in 
which we have joined the five previous figures in contour lines of the stability 
index. 

In the last two figures observe y-values labels, it is clear that when epsilon 
tends to zero, then the stability index also tends to zero. The above implies that, 
the better the approximation between the distribution functions then the ap-
proximate optimal policy can be used to control the original process. 

Now, for each group of 100 data generated in each of the five graphs, the κ para-
meter involved in the simple linear regression model given in Equation (35) was 
estimated. The results obtained from these estimates are presented in Table 1,  
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Figure 3. Scatterplot generated by 100 data points of stability index ( )Δ
α

 obtained 

from Equation (33) with 0.05= . 
 

 

Figure 4. Scatterplot generated by 100 data points of stability index ( )Δ
α

 obtained 

from Equation (33) with 0.01= . 
 

 

Figure 5. Scatterplot generated by 100 data points of stability index ( )Δ
α

 obtained 

from Equation (33) with 0.001= . 
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Figure 6. Results of the association of the stability index and the approximation measure 
in the probability distributions (epsilon). 
 

 
Figure 7. Magnification of Figure 6, when alpha approaches to 1. 
 
Table 1. Asymptotic evaluation of the stability index ( κ̂ ). 

   κ̂  

p = 1/100 

0.2 −2.136 

0.1 −2.156 

0.05 −2.160 

0.01 −2.173 

0.001 −2.175 

 
note that the first two cases ( )0.2; 0.1= =   correspond to the results that have 
been explained in previous pages. 

In Table 1, the green cell shows the best approximation used between the dis-
tribution functions (see Assumption 3.2) with which the numerical estimate for 
the asymptotic evaluation of the stability index was found, which is shown in the 
skyblue cell. 

Based on results of Table 1, we can conclude that for 1
100

p = , when 0→   
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and 1α ↑ , then the asymptotic evaluation of the stability index is ˆ 2.175κ ≈ − , 
i.e., the stability index has an order 

( ) ( ) 2.175Δ 1 ~ 1
α

α α −− −  . 

To study the sensitivity of the stability index ( κ̂ ), numerical experiments 
were carried out for other values of p. Each of these p values was substituted in 
Equation (32) and the stability indices ( Δ

α
) were obtained as a function of α 

and   as shown in Table 2.  
Then, for each fixed value of p given in Table 2, we will use  

0.2,0.1,0.05,0.01,0.001= ; subsequently for each pair of fixed p and  , 100 
data of (1 α− ) were generated and they were substituted in the formulas of Ta-
ble 2 obtaining 100 data of the index stability as a function of (1 α− ); finally, 
these 100 pairs of (1 α− ) and ( )Δ 1

α
α−  were used for the asymptotic evalua-

tion of the approximate stability index with the estimation of the κ parameter 
involved in the simple linear regression model given in Equation (35). The re-
sults obtained in these numerical estimates are presented in Table 3. 
 
Table 2. Explicit expression of the stability index for different values of the reward func-
tion parameter (p). 

p Stability index 

1
100

 
( )

( )
99 99

100 100 1100 100
99 99 99

1 1Δ 1

1 1 1
α

α α

= −
   − − −      





 

1
50

 
( )

( )
49 49

50 50 150 50
49 49 49

1 1Δ 1

1 1 1
α

α α

= −
   − − −      





 

1
20

 
( )

( )
19 19

20 20 120 20
19 19 19

1 1Δ 1

1 1 1
α

α α

= −
   − − −      





 

1
10

 
( )

( )
9 9

10 10 110 10
9 9 9

1 1Δ 1

1 1 1
α

α α

= −
   − − −      





 

1
9

 
( )

( )
8 8

9 9 19 9
8 8 8

1 1Δ 1

1 1 1
α

α α

= −
   − − −      





 

1
5

 
( )

( )
4 4

5 5 15 5
4 4 4

1 1Δ 1

1 1 1
α

α α

= −
   − − −      





 

1
4

 
( )

( )
3 3

4 4 14 4
3 3 3

1 1Δ 1

1 1 1
α

α α

= −
   − − −      





 

3
10

 
( )

( )
7 7

10 10 310 10
7 7 7

1 1Δ 1

1 1 1
α

α α

= −
   − − −      




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2
5

 
( )

( )
3 3

5 5 25 5
3 3 3

1 1Δ 1

1 1 1
α

α α

= −
   − − −      





 

1
2

 ( )
( ) ( )

1 1
2 22 2

1 1Δ 1
1 1 1

α

α α
= −

− − −  



 

3
5

 
( )

( )
2 2

5 5 35 5
2 2 2

1 1Δ 1

1 1 1
α

α α

= −
   − − −      





 

7
10

 
( )

( )
3 3

10 10 710 10
3 3 3

1 1Δ 1

1 1 1
α

α α

= −
   − − −      





 

3
4

 ( )
( ) ( )

1 1
4 34 44

1 1Δ 1
1 1 1

α

α α
= −

−  − − 




 

4
5

 ( )
( ) ( )

1 1
5 45 55

1 1Δ 1
1 1 1

α

α α
= −

−  − − 




 

8
9

 ( )
( ) ( )

1 1
9 89 99

1 1Δ 1
1 1 1

α

α α
= −

−  − − 




 

9
10

 ( )
( ) ( )

1 1
10 910 1010

1 1Δ 1
1 1 1

α

α α
= −

−  − − 




 

95
100

 ( )
( ) ( )

5 5
20 19100 10020

1 1Δ 1
1 1 1

α

α α
= −

−  − − 




 

99
100

 ( )
( ) ( )

1 1
100 99100 100100

1 1Δ 1
1 1 1

α

α α
= −

−  − − 




 

 
Table 3. Explicit expression of the stability index for different values of the reward func-
tion parameter (p). 

   κ̂  

p = 1/100 

0.2 −2.136 

0.1 −2.156 

0.05 −2.160 

0.01 −2.173 

0.001 −2.175 

p = 1/50 

0.2 −2.090 

0.1 −2.129 

0.05 −2.140 

0.01 −2.160 

0.001 −2.165 

p = 1/20 0.2 −1.99 
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0.1 −2.06 

0.05 −2.1 

0.01 −2.12 

0.001 −2.135 

p = 1/10 

0.2 −1.865 

0.1 −1.950 

0.05 −2.012 

0.01 −2.070 

0.001 −2.08 

p = 1/9 

0.2 −1.840 

0.1 −1.934 

0.05 −1.995 

0.01 −2.050 

0.001 −2.075 

p = 1/5 

0.2 −1.670 

0.1 −1.789 

0.05 −1.870 

0.01 −1.960 

0.001 −1.99 

p = 1/4 

0.2 −1.594 

0.1 −1.710 

0.05 −1.805 

0.01 −1.911 

0.001 −1.944 

p = 3/10 

0.2 −1.525 

0.1 −1.653 

0.05 −1.747 

0.01 −1.861 

0.001 −1.900 

p = 2/5 

0.2 −1.408 

0.1 −1.539 

0.05 −1.640 

0.01 −1.770 

0.001 −1.816 

p = 1/2 

0.2 −1.390 

0.1 −1.500 

0.05 −1.600 

0.01 −1.690 

0.001 −1.75 
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p = 3/5 

0.2 −1.263 

0.1 −1.389 

0.05 −1.492 

0.01 −1.636 

0.001 −1.693 

p = 7/10 

0.2 −1.265 

0.1 −1.380 

0.05 −1.481 

0.01 −1.626 

0.001 −1.685 

p = 3/4 

0.2 −1.307 

0.1 −1.416 

0.05 −1.512 

0.01 −1.655 

0.001 −1.716 

p = 4/5 

0.2 −1.406 

0.1 −1.503 

0.05 −1.594 

0.01 −1.734 

0.001 −1.794 

p = 8/9 

0.2 −1.969 

0.1 −2.030 

0.05 −2.102 

0.01 −2.226 

0.001 −2.284 

p = 9/10 

0.2 −2.130 

0.1 −2.184 

0.05 −2.251 

0.01 −2.370 

0.001 −2.420 

p = 95/100 

0.2 −3.376 

0.1 −3.879 

0.05 −3.913 

0.01 −4.002 

0.001 −4.052 

p = 99/100 

0.2 −8.513 

0.1 −8.513 

0.05 −8.513 

0.01 −8.532 

0.001 −8.050 
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Remark 3.4. In Table 3, for values of 95
100

p ≥  the speed with which the  

stability index has to infinity is greater; so it does not allow to obtain 100n =  
values of 0.5,0.505, ,0.995α =  . Thus, for example the results shown in  

Table 3 for 95
100

p =  were obtained with 89n =  data, while for 99
100

p = ,  

they were performed with 50n =  data. The results presented for the rest of the 
p values in Table 3 were obtained with 100 data.  

Clearly, the results presented for each p value in Table 3, must be interpreted 
in the same way that the results in Table 1 were previously explained. 

Discussion of results. The motivation for studying discounted reward (cost) 
problems is primarily economic. Capital accumulation processes of an economy, 
inventory problems, inventory management, portfolio management, are applica-
tions of this type of optimization criteria. The reward function used in this work, 
see Equation (16), is a very used function in economics, it belongs to the family 
of consumer utility functions, specifically the so-called Cobb-Douglas utility 
function (see [19] for definitions), so the selection of the parameter p in Equa-
tion (16) it must be very careful. The results obtained in this work about the 
asymptotic evaluations of the stability index (which are presented in Table 3) 
are interpreted as follows: 

1) If ( )1: ~ 1p
α

α −∞→ ∆ −  . That is, if the parameter p of the reward 
function approaches 1, then the sensitivity of the stability index grows indefi-
nitely.  

Therefore, for values of 1p ≈  the use of an approximate policy to control the 
original process is not recommended, that is because the results show (see  

Table 3) that for 8
9

p ≥  we have ˆ 2.284κ ≤ − , which is why the stability index 

can be up to ( ) 8.051 α −− . 

2) If ( ) 1.751 : ~ 1
2

p
α

α −→ ∆ −  . In this case, the results obtained (see Ta-

ble 3) suggest that if values of 2 7
5 10

p≤ ≤  are selected in the reward function  

given in Equation (16), then it would seem reasonable to use the approximate 
policy f∗

  to control the original process M. 
3) If ( ) 20 : ~ 1p

α
α −→ ∆ −  . In this case, the results obtained in this work 

using statistical techniques are the same as those found in articles [6] and [7], 
but using uppers bounds such as given in Equation (1). 

Remember that by definition we have 0 1p< <  (see Equation (16)). Now, 
from the three previous points, the results obtained show that for extreme values 
of p (close to zero or one) it is not recommended to use an approximate policy 
to control the original process. The results obtained suggest a selection of the p  

value close to the average ( 1
2

p ≈ ) in the reward function, to use of such an ap-

proximation. 
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4. Conclusion  

Despite the extensive literature that exists on the subject of Markov control 
process, there are few works developed on the subject of estimating the stability 
index. The study of stability for control processes represents a challenge, both 
from a theoretical and an applied point of view. In this application work, it is in-
tended to contribute to the study of stability using statistical techniques instead 
of probabilistic metrics. The limitations of this work are the use of a simple 
Markov control process as well as the use of an exponential distribution function 
to measure the shock effect of the process. However, the numerical estimates 
found are consistent and show their impact on the sensitivity of the stability in-
dex to changes in both the discount factor and the parameter in the reward func-
tion; obviously, the results obtained respond favorably to the original question, 
which was posed in the introduction, so we can conclude that the objective of 
this work was achieved. Finally, it is recommended to strengthen the results 
found in this work by carrying out some of the following future investigations: 1) 
Using more complex Markov control processes; 2) Validate the robustness of the 
results using another type of distribution function to measure the shock effect of 
the process; 3) Use another type of reward function; and 4) Use of other statis-
tical techniques for the asymptotic estimation of the stability index. 
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