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Abstract 
In this article, two numerical techniques, namely, the homotopy perturbation 
and the matrix approach methods have been proposed and implemented to 
obtain an approximate solution of the linear fractional differential equation. 
To test the effectiveness of these methods, two numerical examples with 
known exact solution are illustrated. Numerical experiments show that the 
accuracy of these methods is in a good agreement with the exact solution. 
However, a comparison between these methods shows that the matrix ap-
proach method provides more accurate results. 
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1. Introduction 

Fractional differential equations appear frequently in various fields involving 
science and engineering, namely, in signal processing, control theory, diffusion, 
thermodynamics, biophysics, blood flow phenomena, rheology, electrodynamics, 
electrochemistry, electromagnetism, continuum and statistical mechanics and 
dynamical systems. For more details on the applications of fractional differential 
Equations (see [1] [2] [3] [4] [5]). The concept of fractional calculus is now con-
sidered as a partial technique in many branches of science including physics 
(Oldham and Spanier [6]). Srivastava et al. [7] gave the model of under actuated 
mechanical system with fractional order derivative and Sharma [8] studied ad-
vanced generalized fractional kinetic equation in Astrophysics. Caputo [9] re-
formulated the more “classic” definition of the Riemann-Liouville fractional de-
rivatives in order to use integer order initial conditions to solve his fractional 
order differential equation. Kowankar and Gangel [10] reformulated the Rie-
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mann-Liouville fractional derivative in order to differentiate nowhere differen-
tiable fractal functions. 

In general, most of fractional differential equations do not have exact solu-
tions. Instead, analytical and numerical methods become increasingly important 
for finding solution of fractional differential equations. In recent years, many ef-
ficient methods for solving FDEs have been developed. Among these methods 
are the monotone iterative technique [11] [12], topological degree theory [13], 
and fixed point theorems [14] [15] [16]. Moreover, numerical solutions are ob-
tained by the following methods: the Adomian decomposition method and the 
variational iteration method [17], homotopy perturbation method [18] [19], 
Haar wavelet operational method [20], Neural networks [21], and so forth. Very 
recently, Hamdan et al. [22] applied Haar Wavelet and the product integration 
methods to solve the fractional Volterra integral equation of the second kind. In 
addition, Saadeh [23] in her master thesis has employed several numerical me-
thods for solving fractional differential equations. These methods are the Ado-
mian decomposition method, Homotopy perturbation method, Variational ite-
ration method and Matrix approach method. A comparison between these me-
thods has been carried out. In spirit, our numerical methods, namely the homo-
topy perturbation and the matrix approach methods are an improvement to 
those methods presented in the master thesis by one of the authors of this article. 
A comparison between these methods is carried out by solving some test exam-
ples using MAPLE software. 

The paper is organized as follows: In Section (2) we recall some basic defini-
tions and notions concerning fractional calculus. In Section (3), we introduce 
the homotopy perturbation method. The matrix approach method is addressed 
in Section (4). The proposed methods are implemented using numerical exam-
ples with known analytical solution by applying MAPLE software in Section (5). 
Conclusions are given in Section (6).  

2. Mathematical Preliminaries and Notions 

In this section, we review some necessary definitions and mathematical prelimi-
naries concerning fractional calculus that will be used in this work.  

Definition 1. [24] The Riemann-Liouville fractional integral operator of order 
0p > , 1m p m− < ≤ , m∈  of a function ( )u x  is defined as  

( ) ( ) ( ) ( )1

0

1 d , 0
x

ppj u x x t u t t x
p

−= − >
Γ ∫  

Definition 2. [25]: (Riemann-Liouville Derivative): Let 1n p n +− < < ∈ . 
The Riemann-Liouville derivative of fractional order p is defined as:  

( ) ( )
( )

( )0, 1
0

1 d d
d

tn
p

t n p n

u
D u t

n p t t

τ
τ

τ + −=
Γ − −

∫                 (1) 

Definition 3. [26]: The Grumwald-Letnikov fractional derivative with frac-
tional order p if ( ) [ ]0,nu t t∈ , is defined as:  
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( ) ( ) ( )
0 0

lim 1
m ip p

a t h imh t a

p
D u t h u t ih

i
−

→ == −

 
= − − 

 
∑                 (2) 

where ( )
( )( )

1
! 1

pp
i i p

Γ + 
=  Γ + 

. 

Definition 4. [6]: Grunwald-Letnikov fractional derivative of the power func-
tion ( ) ( ) pg t t c= −  is given as:  

( ) ( )
( ) ( )

1
1

p p
c t

p
D t c t c

p
αα

α
−Γ +

− = −
Γ − + +

                 (3) 

Definition 5. [27]: The Caputo derivative of fractional order p of a function 
( )u t  is defined as 

( ) ( )
( )

( )
( )

1
0

1 d , 1

d
,

d

nt

n
p

n

n

u
n n

n tD u t
u

n
t

α

τ
τ α

α τ

τ
α

+ −

∗


− < <

Γ − −= 


= ∈


∫



           (4) 

Theorem 1. [28]: The Caputo fractional derivative of the power function sa-
tisfies:  

( )
( )

1
, 1 , 1,

1
0, 1 , 1,

c c
c

c
t D t n n c n c

D t c
n n c n c

α α
α α

α
α

−

∗

 Γ +
= − < < > − ∈= Γ − +

 − < < ≤ − ∈





       (5) 

Theorem 2. [26]: Leibniz rule for Riemann-Liouville fractional derivative: Let 
0t > , α ∈ , 1m mα> > − , and m∈ . If ( ) ( ),u t g t , and their derivatives 

are continuous on [ ]0, t , then the following holds:  

( ) ( )( ) ( ) ( )
0

k k

k
D u t g t D g t D u t

k
α αα∞

−

=

     =       
∑              (6) 

Proof. See [26] for more details.  
Theorem 3. [29]: Leibniz rule for Caputo fractional derivative: Let 0t > , 

p∈ , 1m p m> > − , and m∈ . If ( ) ( ),u t g t , and their derivatives are 
continuous on [ ]0, t , then the following holds  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )( )
1

0 0 1

i pm ip p p i

i i

p tD u t g t D g t D u t u t g t
i i p

−∞ −
−

∗ ∗ ∗
= =

     = −      Γ + − 
∑ ∑   (7) 

Proof. See [29] for more details.  

3. Homotopy Perturbation Method (HPM) 

The fractional initial value problem in the operator form is: 

( ) ( ) ( )D f t Lf t g tα + =                         (8) 

( ) ( )0 , 0,1,2, , 1i
if c i n= = −                      (9) 

where ic  is the initial conditions, L is the linear operator which might include 
other fractional derivative operators ( )Dβ β α< , while the function g, the 
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source function is assumed to be in 1c−  if α  is an integer, and in 1
1c−  if α  

is not an integer. The solution ( )f t  is to be determined in 1
nc− . 

In virtue of [16], we can write Equation (8) in the homotopy form  

( ) ( ) ( )1 0p D f p D f Lf t g tα α − + + − =                 (10) 

or  

( ) ( ) 0D f p Lf t g tα + − =                       (11) 

where [ ]0,1p∈  is an embedding parameter. If 0p = , Equations (10) and (11) 
become  

0D fα =                             (12) 

when 1p = , both Equations (10) and (11) yields the original FDE Equation (8). 
The solution of Equation (8) is:  

( ) ( ) ( ) ( ) ( )2 3
0 1 2 3f t f t pf t p f t p f t= + + + +             (13) 

Substituting 1p =  in Equation (13) then we get the solution of Equation (8) 
in the form:  

( ) ( ) ( ) ( ) ( )0 1 2 3f t f t f t f t f t= + + + +                (14) 

Substituting Equation (13) into Equation (11) and collecting all the terms with 
the same powers of p, we get:  

0
0: 0p D fα =                          (15) 

( )1
1 0:p D f Lf g tα = − +                      (16) 

( )2
2 1:p D f Lf tα = −                       (17) 

( )3
3 2:p D f Lf tα = −                       (18) 

and so on. 
Following [6], we can write the first three terms of the homotopy perturbation 

method solution as:  

( ) ( )
1 1

0
0 0

0
! !

i in n
i

i
i i

t tf f c
i i

− −

= =

= =∑ ∑  

( ) ( )1 0f Lf t Lg tα α= −Ω +Ω        

( )2 1f Lf tα= −Ω     

( )3 2f Lf tα= −Ω     

The general form of the HPM solution is:  

( )1n nf Lf tα
−= −Ω     

The homotopy perturbation solution takes the general form:  

( ) 0 1 2 3 nf t f f f f f= + + + + + +                 (19) 

4. Matrix Approach Method 
4.1. Left-Sided Fractional Derivative 

Consider a function ( )g x , defined in [ ],c d , such that ( ) 0g x ≡  for x c<  
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and of real order 1m mα− ≤ ≤ , such as: 

( ) ( )
( )

( )
( )1

d1 d ,
d

m x

c x m
c

g
D g x c x d

m x x
α

αα − +
 = < < Γ −   −

∫
 


      (20) 

Let us take equidistant nodes with the step size  

( ): 0,1, ,il x il i N= =   

in the interval [ ],c d , where 0x c=  and Nx d= . Using the backward fractional 
difference approximation for the derivative at the points , 0,1, ,ix i N=  , we have:  

( ) ( ) ( )
0

1 , 0,1, 2, ,
i

i ji
c x i j

j

g x
D g x l g i N

jl

α
α α

α

α−
−

=

∇  
≈ = − = 

 
∑        (21) 

Equation (21) is equivalent to the following matrix form [11]: 

( )
( )
( )

( )
( )

00 0

11 1 0

22 2 1 0

11 1 2 1 0

2 1 2 1 0

0 0 0 0
0 0 0

0 01

0 NN N

NN N N

gl g x w
gl g x w w
gl g x w w w

l
gl g x w w w w
gl g x w w w w w

α α α

α α α α

α α α α α

α

α α α α α α

α α α α α α α

−

−

−

−
−− −

−
− −

   ∇  
    ∇    
    ∇
  =   
    
    ∇       ∇    










     





    (22) 

( ) ( )1 , 0,1, ,i
iw i N

i
α α 
= − = 

 
                   (23) 

In Equation (22), the column vector of functions ( )0,1, ,ig i N=   is multip-
lied by the matrix 

 

0

1 0

2 1 0

1 2 1 0

2 1 2 1 0

0 0 0 0
0 0 0

0 01

0

N

N

N N

w
w w
w w w

A
l

w w w w
w w w w w

α

α α

α α α
α

α

α α α α

α α α α α
−

− −

 
 
 
 

=  
 
 
  
 







     





             (24) 

the result is the column vector of approximated values of the fractional deriva-
tives  

( ) , 0,1, ,
ic xD g x i Nα =   

The generating function for the matrix is  

( ) ( )1A z l z αα
α

−= −                       (25) 

Since NAα  and NAβ  are lower triangular matrices then we have  
( )

N N NA A A α βα β +=  

Theorem 4. [26]: Since the following  

( )( ) ( )( ) ( )c x c x c x c x c xD D g x D D g x D g xα β β α α β+= =  

holds if  
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( ) ( ) { }0, 0,1,2, , 1, wher max ,ig c i a e a n m= = − =         (26) 

then we can treat such matrices as discrete analogues of the corresponding 
left-sided fractional derivatives  

andc x c xD Dα β  

where 1n nα− ≤ <  and 1m mβ− ≤ < . 

4.2. Right-Sided Fractional Derivative 

Consider a function ( )g x , defined in [ ],c d , such that ( ) 0g x ≡  for x d> . 
Then its right sided fractional derivative of real order α  ( )1m mα− ≤ <  is  

( ) ( )
( )

( )
( )

( )1

1 dd ,
d

m m d

c x m
x

g
D g x c x d

m x x
α

αα − +

−  = < < Γ −   −
∫

 


       (27) 

Thus we get the discrete analogue of the right sided fractional differentiation 
with the step size  

( ): 0,1, ,il x il i N= =   

in the interval [ ],c d , where 0x c=  and Nx d= , which is represented by the 
matrix [6]:  

0 1 1

0 1 1

0 1

0 1

0

0
0 01

0 0 0
0 0 0 0

N N

N

N

w w w w
w w w

w w
G

l
w w

w

α α α α

α α α

α α
α

α

α α

α

−

−

 
 
 
 

=  
 
 
  
 

 

 

 

     





            (28) 

The generating function for the matrix NGα  is the same for NAα   

( ) ( )1A z l z αα
α

−= −  

The transposition of the matrix NAα  gives the matrix NGα  and the opposite 
holds:  

( ) ( )T T
, .N N N NA G G Aα α α α= =                    (29) 

5. Numerical Examples and Results 

In this section, in order to examine the accuracy of the proposed methods, we 
solve two numerical examples of fractional differential equations. Moreover, the 
numerical results will be compared with exact solution.  

Example 1. Consider the linear fractional differential equation:  

( ) ( ) ( )
2 32

3
D x t x t t tα α

α
−+ = +

Γ −
                (30) 

with initial conditions: ( ) ( )0 0, 0 0x x′= = .  
The exact solution of Equation (30) with 1.9α =  is: 
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( ) 2x t t=  

In virtue of Equation (11), we can write Equation (30) in the homotopy form:  

( ) ( ) ( )
2 32 0

3
D x t px t t tα α

α
−+ − − =

Γ −
              (31) 

the solution of Equation (30) is:  

( ) ( ) ( ) ( ) ( )2 3
0 1 2 3x t x t px t p x t p x t= + + + +            (32) 

Substituting Equation (32) into equation Equation (31) and collecting terms 
with the same power of p, we get:  

( )
( ) ( ) ( )
( ) ( )
( ) ( )

0
0

1
1 0

2
2 1

3
3 2

: 0

:

:

:

p D x t

p D x t x t f t

p D x t x t

p D x t x t

α

α

α

α

 =


= − +


= −


= −

 

                  (33) 

Applying αΩ  and the inverse operator of Dα , on both sides of Equation (33) 
and using the definition of Riemann-Liouville fractional integral operator ( αΩ ) 
of order 0α ≥  we obtain:  

( ) ( ) ( )

( ) ( )

1

0
0

0 1

0
!

0 0
0! 1!

0

i
i

i

tx t x
i

t tx x

=

=

′= +

=

∑

 

( ) ( )

( )

( )
( )

( ) ( )
( )

( )
( )

( )

1 0

2 3

2 3

2 3

2 3

( )

2
3

2
3

2 3 4
3 3 4

4
4

x t x t f t

t t

t t

t t

t t

α α

α α

α α α

α α α

α

α

α

α
α α α α

α

−

−

+ − +

+

 = −Ω +Ω    
 

= −Ω + 
Γ −  

 
 = Ω +Ω   Γ −  

Γ − Γ
= +
Γ − Γ − + Γ +

Γ
= +

Γ +

 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )

( ) ( )

2 1

2 3

2 3

2 3 2

4
4

3 4 4
3 4 4
2 6

3 4 2

x t x t

t t

t t

t t

α

α α α

α α α

α α

α

α
α α α α

α α

+

+ + +

+ +

= −Ω   
 Γ

 = −Ω −Ω    Γ +  
Γ Γ Γ +

= − −
Γ + Γ + Γ + +

= − −
Γ + Γ +
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( ) ( )

( ) ( )

( ) ( )

( )
( )
( ) ( )

( )
( )

( ) ( )

3 2

2 3 2

2 3 2

2 2 3 3

2 2 3 3

2 6
3 4 2

2 6
3 4 2

3 4 22 6
3 3 2 4 2 3 3

2 6
3 2 3 3

x t x t

t t

t t

t t

t t

α

α α α

α α α α

α α

α α

α α

α α

α α
α α α α

α α

+ +

+ +

+ +

+ +

= −Ω   
 

= −Ω − − 
Γ + Γ +  

   
= −Ω − −Ω −   

Γ + Γ +      
Γ + Γ +

= +
Γ + Γ + Γ + Γ +

= +
Γ + Γ +

 

Hence the solution of Equation (30) is:  

( ) ( ) ( ) ( ) ( )0 1 2 3x t x t x t x t x t= + + + +                (34) 

( ) ( )
( ) ( ) ( )

2 3 2 3 24 2 6
4 3 4 2

x t t t t tα α α

α α α
+ + +Γ

= + − − +
Γ + Γ + Γ +

     (35) 

when 1.9α =   

( ) ( ) ( ) ( )
2 4.9 3.9 6.8

2 4.9 3.9 6.8

2

2

6 2 6
5.9 4.9 7.8

0.059247439 0.096770806 0.001776766299

small terms

x t t t t t

t t t t
t
t

= + − − +
Γ Γ Γ

= + − − +

= −

≈




 (36) 

Now, we implement Algorithm 1 to solve Equation (30) using the matrix ap-
proach method. 

Table 1 displays the exact and numerical results using the matrix ap-
proach method with 1.9α =  and 51N = . The maximum error with 51N =  
is 0.039016195358901. Figure 1(a) compares both the exact and numerical solu-
tions for the fractional differential Equation (30). Moreover, Figure 1(b) shows 
the absolute error between exact and numerical solutions. 
 
Table 1. The exact and numerical solutions using the matrix approach method where 

51N = . 

kt  Exact solution ( ) 2x t t=  Approximation solution ( )nx t  ( ) ( )Error nx t x t= −  

0.0 0 0 0 

0.1 0.1000 0.008621129726629 0.001378870273371 

0.2 0.0400 0.037689907370590 0.00231009269410 

0.3 0.0900 0.086539405801948 0.003460594198052 

0.4 0.1600 0.154740697067752 0.005259302932248 

0.5 0.2500 0.241931774005283 0.008068225994717 

0.6 0.3600 0.347860012395293 0.012139987604707 

0.7 0.4900 0.472440448226374 0.01755955177362 

0.8 0.6400 0.615814946797499 0.024185053202501 
0.9 0.8100 0.77840884576597 0.031591154203403 

1 1.0000 0.960983804641099 0.039016195358901 
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(a)                                                          (b) 

Figure 1. A comparison between exact and approximate solutions by applying Algorithm 1 for Equation (30) with 51N = . (a) A 
comparison between the exact and approximate solution in example (1); (b) Absolute error between exact and numerical solution 
in example (1). 
 

 
Algorithm 1. Numerical realization using matrix approach method. 
 

For 60N =  and 70N = , Figure 2(a) and Figure 3(a) compare both the 
exact and numerical solutions for the fractional differential Equation (30). 
Moreover, Figure 2(b) and Figure 3(b) show the absolute error between exact 
and numerical solutions. 

Example 2. Consider the linear fractional differential equation:  

( ) ( ) ( )1, 1,2D x t x tα α+ = ∈                   (37) 

with initial conditions: ( ) ( )0 0, 0 0x x′= = .  
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(a)                                                          (b) 

Figure 2. A comparison between exact and approximate solutions by applying Algorithm 1 for Equation (30) with 60N = . (a) A 
comparison between the exact and approximate solution in example (1); (b) Absolute error between exact and numerical solution 
in example (1). 
 

  
(a)                                                          (b) 

Figure 3. A comparison between exact and approximate solutions by applying Algorithm 1 for Equation (30) with 70N = . (a) A 
comparison between the exact and approximate solution in example (1); (b) Absolute error between exact and numerical solution 
in example (1). 

 
The exact solution of Equation (37) is:  

( ) ( )1.1 1.1
1.1,2.1x t t E t= −  

Now, we implement the homotopy perturbation method to solve Equation 
(37). 

In virtue of Equation (11), we can write Equation (37) in the homotopy form:  

( ) ( ) 1 0D x t px tα + − =                     (38) 

The solution of Equation (38) has the form:  

( ) ( ) ( ) ( ) ( )2 3
0 1 2 3x t x t px t p x t p x t= + + + +            (39) 
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Substituting Equation (39) into Equation (38) and collecting terms with the 
same power of p, then we get:  

( )
( ) ( )

( ) ( )
( ) ( )

0
0

1
1 0

2
2 1

3
3 2

: 0
:
:
:

p D x t
p D x x t f t
p D x t x t
p D x t x t

α

α

α

α

 =
 = − + = −
 = −

 

                  (40) 

Applying αΩ  and the inverse operator of Dα , on both sides of Equation 
(40), then we get: and using the definition of Riemann-Liouville fractional 
integral operator ( αΩ ) of order 0α ≥  we obtain:  

( ) ( ) ( )

( ) ( )

1

0
0

0 1

0
!

0 0
0! 1!

0

i
i

i

tx t x
i

t tx x

=

=

′= +

=

∑

 

( ) ( ) ( )
[ ]

( )

1 0

1

1

x t x t f t

t

α α

α

α

α

 = −Ω +Ω    
= Ω

=
Γ +

 

( ) ( )

( )

( )

2 1

2

1

2 1

x t x t

t

t

α

α
α

α

α

α

= −Ω   
 

= −Ω  
Γ +  

= −
Γ +

 

( ) ( )

( )

( )

3 2

2

3

2 1

3 1

x t x t

t

t

α

α
α

α

α

α

= −Ω   
 

= −Ω − 
Γ +  

=
Γ +

 

  
Then the solution of Equation (37) has the general form: 

( ) ( ) ( ) ( ) ( )0 1 2 3x t x t x t x t x t= + + + +              (41) 

( ) ( ) ( ) ( )
2 3

1 2 1 3 1
t t tx t
α α α

α α α
= − + +
Γ + Γ + Γ +

           (42) 

( ) ( ) ( ) ( )
1

1
1 0

1

i
i

i

tx t
i

α

α

∞
+

=

= −
Γ +∑                  (43) 

when 1.1α = , we get  

( ) ( ) ( ) ( ) ( )
1.1 2.2 3.3 4.4

1.1 2.2 3.3 4.4

1.1 2.2 3.3 4.4

2.1 3.2 4.3 5.4

0.95135 0.95135 0.95135 0.95135
0.95557 0.41255 0.11293 0.02242

t t t tx t

t t t t

t t t t

= − − − +
Γ Γ Γ Γ

= − − − +

= − + − +







   (44) 
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Now, we implement Algorithm 1 to solve Equation (37) using the matrix ap-
proach method. Table 2 contains the exact and numerical results using the ma-
trix approach method with 1.1α =  and 51N = . The maximum error with 

51N =  is 0.015888820145463. Figure 4(a) compares both the exact and nu-
merical solutions for the (37). Moreover, Figure 4(b) shows the absolute error 
between exact and numerical solutions. For 60N =  and 70N = , Figure 5(a) 
and Figure 6(a) compare both the exact and numerical solutions for the frac-
tional differential Equation (30). Moreover, Figure 5(b) and Figure 6(b) show 
the absolute error between exact and numerical solutions. 
 
Table 2. The exact and numerical solutions using the matrix approach method where 

51N = . 

kt  Exact solution ( )
( )

1 1.1

2

1
1.1 1

i in

i

t
i

+

=

−
=

Γ +∑  Approximation solution ( )nx t  ( ) ( )Error nx t x t= −  

0.0 0 0 0 

0.1 0.073357053781371 0.058092499960337 0.015264553821034 

0.2 0.151282884629052 0.135430820233760 0.015852064395293 

0.3 0.226984580680193 0.211095760530730 0.015888820149463 

0.4 0.29890238480688 0.283237827667134 0.015664557141554 

0.5 0.366411147911488 0. 351151361983237 0.015259785928251 

0.6 0.429259300754372 0.414572350125656 0.014686950628716 

0.7 0.487372840288318 0.473456997040934 0.013915843247384 

0.8 0.540762298480572 0.52788452424550 0.012877774238022 

0.9 0.589469952960841 0.578006370352886 0.011463582607954 

1 0.633536032460000 0.624016649518593 0.009519382941407 

 

 
(a)                                                        (b) 

Figure 4. A comparison between exact and approximate solutions by applying Algorithm 1 for Equation (37) with 51N = . (a) A 
comparison between the exact and approximate solution in example (2); (b) Absolute error between exact and numerical solution 
in example (2). 
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(a)                                                         (b) 

Figure 5. A comparison between exact and approximate solutions by applying Algorithm 1 for Equation (37) with 60N = . (a) A 
comparison between the exact and approximate solution in example (2); (b) Absolute error between exact and numerical solution 
in example (2). 
 

  
(a)                                                          (b) 

Figure 6. A comparison between exact and approximate solutions by applying Algorithm 1 for Equation (37) with 70N = . (a) A 
comparison between the exact and approximate solution in example (2); (b) Absolute error between exact and numerical solution 
in example (2). 

6. Conclusion 

In this article, two numerical techniques namely, the homotopy perturbation 
method and the matrix approach method have been proposed and implemented 
to solve fractional differential equations. The accuracy and the validity of these 
techniques are tested with some numerical examples. The results show clearly 
that both techniques are in a good agreement with the analytical solution. Ac-
cording to numerical results mentioned in tables and figures, we conclude that 
the matrix approach method provides more accurate results than its counterpart 
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and therefore is more advantageous. In addition, we strongly believe that the 
matrix approach method is regarded to be one of the most effective methods 
among the other methods mentioned in the literature. It is known for its fast 
converges and accuracy. 
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List of Nomenclatures 

1) Dα : Fractional Derivative.  
2) ( )pΓ : Gamma Function.  
3) Ω : Libera Integral Operator.  
4) αΩ : Riemann-Liouville Fractional Integral Operator.  
5) { }sin ,cos ,sinh ,cosht t t tα α α α

α α α α : Mittage Leffer Functions.  
6) 0j : Identity Operator.  
7) p

d tD : Grumwald-Letnikov Fractional Derivative.  
8) 0,

p
tD : Riemann-Liouville Derivative of Order p.  

9) Dα
∗ : Caputo Fractional Derivative.  
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