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Abstract 
In this paper, we mainly study a diffusive Lotka-Volterra competition-advection 
system with lethal boundary conditions in a general heterogeneous environ-
ment. By using the basic theory of partial differential equations and some 
nonlinear analysis techniques, we investigate the existence, uniqueness and 
global asymptotic behavior of steady-state solutions of the system equations. 
The existence, uniqueness and global asymptotic behavior of steady-state so-
lutions are proved by upper and lower solutions, maximum principle and 
other methods. In theory, the methods and skills to deal with this kind of 
nonlinear problem are further developed, which provides a theoretical basis 
for understanding some practical problems. 
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1. Introduction 

In this paper, we consider the following coupled reaction-diffusion-advection 
system 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( )
( )

( ) ( ) ( ) ( )

1 1

2 2

0 0

in 0, ,

in 0, ,

0 on 0, ,
,0 , ,0 in ,

t

t

u d u u p u a x b x u c x v

v d v v p v d x e x u f x v

u v
u x u x v x v x

α

α

 = ∆ − ∇ ⋅ ∇ + − − Ω× ∞


= ∆ − ∇ ⋅ ∇ + − − Ω× ∞


= = ∂Ω× ∞
 = = Ω

 (1.1) 

and its corresponding elliptic system 
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( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1

2 2

0 in ,

0 in ,

0 on ,

d u u p u a x b x u c x v

d v v p v d x e x u f x v

u v

α

α

 ∆ − ∇ ⋅ ∇ + − − = Ω
 ∆ − ∇ ⋅ ∇ + − − = Ω
 = = ∂Ω

      (1.2) 

where the functions ( ) ( ) ( ) ( ) ( ), , , ,a x b x c x d x e x  and ( ) ( )f x Cα∈ Ω  are 
nonnegative for some 0 1α< < . Here ( ),u x t  and ( ),v x t  represent popula-
tion densities of two competing species at location x and time t respectively, 

NΩ ⊆ R  is a bounded domain with 2C α+  boundary. The boundary condition 
describes the situation where the boundary of Ω  is lethal to the species. Here 

1 2, 0d d >  are the diffusion coefficients of species u and v, respectively. The 
non-constant function ( ) ( )2p x C∈ Ω  is used to specify the advective direction. 
When the coefficients ( ) ( ) ( ) ( ) ( ) ( ), , , , ,a x b x c x d x e x f x  are constants (ho-
mogeneous environment), the system (1.1) has been studied in the references 
[1]-[6] and the references therein.  

Since the environments are usually heterogeneous in the real world, it is more 
reasonable to assume that the coefficients in the system (1.1) are nonconstant [7]. 
In recent years, He and Ni considered a two-species Lotka-Volterra competi-
tion-diffusion model with homogeneous Neumann boundary conditions. The 
effect of spatial heterogeneity and spatial homogeneity of environment on two 
competing species and their different competition abilities are studied (see [8] [9] 
[10] [11] [12] and the references therein for details). Moreover, some limiting 
behaviors of coexistence state are also studied in [8]. In [13], Xu and Ni ad-
dressed the question of the dynamics of the system for two competing species in 
a general heterogeneous environment with lethal boundary conditions.  

Motivated by the above work, this paper aims to deal with a more general 
model (1.1) with advection effects, where the diffusion coefficients, advection 
coefficients, resource functions and competition rates are all spatially heteroge-
neous. Throughout this paper, we assume that  

( )1 2

1 2

: a constant .
d d
α α

η= =                     (1.3) 

Letting e , ep pU u V vη η− −= = , one can see that both Equation (1.1) and Equation 
(1.2) are equivalent to the following systems 

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

( ) ( )
( )

1 1

2 2

in 0, ,

in 0, ,

,0 ,0 0 in ,
0 on 0, ,

t

t

U d U U p U a x b x u c x v

V d V V p V d x e x u f x v

U x V x
U V

α

α

 = ∆ + ∇ ⋅∇ + − − Ω× ∞


= ∆ + ∇ ⋅∇ + − − Ω× ∞


= = Ω
 = = ∂Ω× ∞

 (1.4) 

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

2 2

in ,

in ,

0 on .

d U U p U a x b x u c x v

d V V p V d x e x u f x v

U V

α

α

− ∆ − ∇ ⋅∇ = − − Ω
− ∆ − ∇ ⋅∇ = − − Ω
 = = ∂Ω

     (1.5) 

It is not hard to see from [5] that for any ( ) ( ) , , 0A x C dα α∈ Ω > , if ( ) 1A x dλ>  
for x∈Ω , 
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( ) ( )( ) 0 in ,

0 on ,

d p A xθ α θ θ θ

θ

 ∆ − ∇ ⋅ ∇ + − = Ω


= ∂Ω
           (1.6) 

has a unique positive solution ( ) ( )2
,d A x C αθ +∈ Ω . Here 1 0λ >  is the principal 

eigenvalue of the eigenvalue problem        

1 in ,
0 on .

pϕ η ϕ λϕ
ϕ
−∆ − ∇ ⋅∇ = Ω
 = ∂Ω

               (1.7) 

Let ( ) ( ), , e p
d A x d A x

ηθ −Θ = , then we have 

 ( ) ( ) ( ) ( ) ( )( )
( )

, , , ,

,

e 0 in ,

0 on .

p
d A x d A x d A x d A x

d A x

d p A x ηα ∆Θ + ∇ ⋅∇Θ +Θ −Θ = Ω

Θ = ∂Ω

 (1.8) 

Throughout this paper, we always assume that 

( ) ( ) ( ) ( )1 1 2 10, 0, ,b x f x a x d d x dλ λ> > > >  for all x∈Ω      (1.9) 

and denote 

( ) ( )

( ) ( ) ( )

( )
1 2, ,, .

min min
d a x d d x

x x

u x v x
b x f x

θ θ

∈Ω ∈Ω

= =           (1.10) 

Now we state our main results for the problems (1.4) and (1.5). 
Theorem 1.1. (Existence) Suppose that (1.9) holds. If  
( ) ( ) ( ) ( ) ( ), , , ,a x c x d x e x u x  and ( )v x  satisfy 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2, ,a x d c x v x d x d e x u xλ λ> + > +         (1.11) 

and ( ) ( ),c x e x  are all nonnegative or all x∈Ω , then the system (1.4) has a 
positive steady-state ( ) ( )( ),U x V x� � . 

In order to give the second theorem, we need to introduce the following prob-
lem 

 
( ) ( ) ( )( ) 0 in ,

0 on .

d w w p w a x b x w

w

α ∆ − ∇ ⋅ ∇ + − = Ω


= ∂Ω
       (1.12) 

The existence of w is guaranteed by (1.11). In addition, we denote the solution of 
Equation (1.12) by , , ,d a bw α . On the other hand, let ( ),H I  be the solution of 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

1 1

1 1 , , ,

2 2 , , ,

0 e in ,

0 e in ,

0 on .

p
d d f

p
d a b

d H p H H a x b x H x c x w

d I p I I d x e x w f x I x

H I

η
α

η
α

α

α

  = ∆ + ∇ ⋅∇ + − − Ω   = ∆ + ∇ ⋅∇ + − − Ω  


= = ∂Ω

(1.13) 

Theorem 1.2. (Uniqueness). Assume that all the hypotheses of Theorem 1.1 
are satisfied. If 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 2 22, , , , , ,2 2 4 , ,
e e

d a b d d f
p p

w w
c x c x e x e x b x f x x

I H
α α
η η+ + < ∈Ω  (1.14) 

then the steady-state ( ) ( )( ),U x V x� �  of Equation (1.4) is unique. 
Theorem 1.3. (Global asymptotic stability). Assume that the hypotheses of 

Theorem 1.2  
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Are satisfied. Let ( ) ( )( ), , ,U x t V x t  be the solution of Equation (1.4) with
( ) ( ) ( ) ( ) ( )1,0 , ,0 , 0, ,0 , ,0U x V x U x V x C≥ ≡ ∈ Ω/ , and vanishing on ∂Ω . Then  

( ) ( )( ) ( ) ( )( ), , , ,U x t V x t U x V x→ � �  as t →∞ ,         (1.15) 

uniformly in Ω . 
The rest of this paper is organized as follows: Theorem 1.1 and Theorem 1.2 

are proved Section 2. Theorem 1.3 is established in Section 3 by proving a more 
general theorem. 

2. Proof of Theorem 1.1, 1.2 

Proof of Theorem 1.1:  

We denote ( ) ( ) ( )11 ,e ,p
d a xU u x u x cη θ−= = , where 

( )1
1

min x

c
b x∈Ω

= . We choose 

1 20, 0r r> >  small enough, and let ( ) ( )1 2,U r x V r xϕ ϕ= = , where ( )xϕ  is 
defined by (1.7). In fact, it follows from ( ) 11 0b x c− <  that 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )

1 1

1

1 1

1 1 2

1 1 1, ,

1 2,

1 1 2, ,

e

e

1 e 0

p

d a x d a x

p
d a x

p
d a x d a x

d U U p U a x b x u x c x r x

c d p

c a x b x u x c x r x

c b x c c x r x

η

η

η

α ϕ

α

ϕ

θ ϕ

∆ + ∇ ⋅∇ + − −

= ∆Θ + ∇ ⋅∇Θ

+ Θ

 


−

= Θ − − 

−

≤

      (2.1) 

for 2r  sufficiently small. Since ( ) ( ) ( )2 1d x d e x u xλ> + , it then follows that 

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

1

1

1

2 2 2 2 2 2

2 2 2 2 2 1 ,

2 2 1 2 1 2,

2 2 1 1 2,

e

e

e

e 0,

p

p
d a x

p
d a x

p
d a x

d r x p r x r x d x f x r x e x u x

r d x p x r x d x f x r x c e x

r d x r x d x c e x f x r x

r x d d x c e x f x r x

η

η

η

η

ϕ α ϕ ϕ ϕ

ϕ α ϕ ϕ ϕ θ

λϕ ϕ θ ϕ

ϕ λ θ ϕ

∆ + ∇ ⋅∇ + − −

= ∆ + ∇ ⋅∇ + − −

= − + − −

= − + − − ≥

(2.2) 

for small 2r . Therefore ( )( )2,U r xϕ  is an upper solution of Equation (1.5). 

Similarly, by letting 
( ) ( ) ( ) ( )22 2 ,

1 , e ,
min

p
d d x

x

c V v x v x c
f x

η θ−

∈Ω

= = = , we have 

that ( )( )1 ,r x Vϕ  is a lower solution of Equation (1.5) provided that  
( ) ( ) ( ) ( )2 1 11 0,f x c a x d c x v xλ− < > + , for 1r  sufficiently small. 

Hence, Equation (1.4) has a positive steady-state ( ) ( )( ),U x V x� �  by the me-
thod of upper and lower solution [11]. 

Next, we will prove the uniqueness. 
Proof of Theorem 1.2: 
Suppose that ( ) ( )( ) ( ) ( )( )1 1 2 2, , ,U x V x U x V x� � � �  are two strictly positive 

steady-state of the system (1.4). We denote  
( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1e , e , ep p pu x U x u x U x v x V xη η η= = =� � �� � �  and ( ) ( )2 2 e pv x V x η= �� . 
Now let 

  ( ) ( ) ( )
( ) ( ) ( )

1 2

1 2

,
.

M x U x U x
N x V x V x

 = −
 = −

� �
� �                   (2.3) 
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Notice that 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

1 1 1 1 1 1 1

1 2 1 2 2 2 2

0,

0.

d U x p U x U a x b x u x cv x

d U x p U x U a x b x u x cv x

α

α

 ∆ + ∇ ⋅∇ + − − =


∆ + ∇ ⋅∇ + − − =

� � � � �
� � � � �

  (2.4) 

By subtracting the above two equations, we obtain that 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )(
( ) ( )) ( ) ( ) ( ) ( ) ( )( )

1 1 1 1

2 2 1 1 2 2

1 1 2 2

1 1 2 2 1 1

d M x p M x M x a x b x U x u x

b x U x u x c x U x v x c x U x v x

d M x p M x M x a x b x U x u x

U x u x c x U x v x U x v x

α

α

∆ + ∇ ⋅∇ + −

+ − +

= ∆ + ∇ ⋅∇ + +

− + −

� �

� � �� � �

� �

� � �� � �

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2

2 2 1 1 2 1 2 1

1 1 1 2

1 2

e

e

( ) e

e e

0.

p

p

p

p p

d M x p M x M x a x b x M x U x U x

c x U x V x U x V x U x V x U x V x

d M x p M x M x a x b x M x U x U x

c x M x V x c x N x U x

η

η

η

η η

α

α

= ∆ + ∇ ⋅∇ + − +

+ − + −

= ∆ + ∇ ⋅∇ + − +

− −

=

� �

� � � � � � � �

� �

� �

(2.5) 

By means of the similar arguments above, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

2 2 1 1

2 2 1 1 2 2

2 2 1 2

2 1

e

e e

0.

p

p p

d N x p N x N x d x e x V x u x

e x V x u x f x V x v x f x V x v x

d N x p N x N x d x f x N x V x V x

e x N x U x e x M x V x

η

η η

α

α

∆ + ∇ ⋅∇ + −

+ − +

= ∆ + ∇ ⋅∇ + − +

− −

=

� �

� � �� � �

� �

� �

 (2.6) 

Therefore, we obtain that 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1 1 1

2 2 2 2 2

0 in ,

0 in ,

0, 0 on ,

d M p M a x b x u x c x v x M x I

d N p N d x e x u x f x v x N x I

M x N x

α

α

 ∆ + ∇ ⋅∇ + − − − = Ω   ∆ + ∇ ⋅∇ + − − − = Ω   
 = = ∂Ω

� �

� � (2.7) 

where  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 2 2

2 1 1

e e ,
e e .

p p

p p

I M x b x U x N x c x U x
I N x f x V x M x e x V x

η η

η η

 = +


= +

� �
� �             (2.8) 

That is 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2

1 1

1

2

,

.

M x b x u x N x c x u x

M x e x v x N x f x v x

I

I




=

= +

 +

� �

� �
                (2.9) 

Now, we introduce an eigenvalue problem 

( ) ( ) ( ) ( )( )1 1 1 1 0 in ,

0 on ,

d p a x b x u x c x vϕ α ϕ ϕ σϕ

ϕ

 ∆ + ∇ ⋅∇ + − − + = Ω


= ∂Ω

� �
  (2.10) 

where the principal eigenvalue is given by  
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( )

( ) ( ) ( ) ( ) ( )( )
1
0

2 2
1 1 1 1

2

d d d
inf .

dH

d x p x a x b x u x c x v x x

xϕ

ϕ α ϕϕ ϕ
σ

ϕ
Ω Ω

∈ Ω

Ω

∇ − ∇ ⋅∇ − − −
=

∫ ∫ ∫

∫

� �
(2.11) 

Since ( )1U x�  is a positive solution  

 
( ) ( ) ( ) ( )( )1 1 1 1 0 in ,

0 on ,

d p a x b x u x c x vϕ α ϕ ϕ

ϕ

 ∆ + ∇ ⋅∇ + − − = Ω


= ∂Ω

� �
   (2.12) 

0 must be the principal eigenvalue. By the variational properties, we have 

( ) ( ) ( ) ( ) ( )( )2 2
1 1 1 1

2

e d d e d
0 ,

e d

p p

p

d z x p zz x a x b x u x c x v x z x

z x

η η

η

α
Ω Ω Ω

Ω

∇ − ∇ ⋅∇ − − −
≤

∫ ∫ ∫

∫

� �
(2.13) 

and 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 10 e d ,p pz d e z p z a x b x u x c x v x z xη ηα
Ω

 ≤ − ∇ ⋅ ∇ − ∇ ⋅∇ − − − ∫ � � (2.14) 

for any ( )2z C∈ Ω  which vanishes on ∂Ω . Similarly, ( )2V x�  is also a strictly 
positive solution of 

 
( ) ( ) ( ) ( ) ( )( )2 2 2 2 0 in ,

0 on .

d p d x e x u x f x v xϕ α ϕ ϕ

ϕ

 ∆ + ∇ ⋅∇ + − − = Ω


= ∂Ω

� �
 (2.15) 

Hence, we obtain that 

 ( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 20 e e d ,p pz d z p z d x e x u x f x v x z xη ηα
Ω

 ≤ − ∇ ⋅ ∇ − ∇ ⋅∇ − − − ∫ � � (2.16) 

for any ( )2z C∈ Ω  which vanishes on ∂Ω . Multiplying the first equation in 
(2.7) by ( )e p M xη− , the second one by ( )e p N xη− , integrating over Ω , it then 
follows from (2.14) and (2.16) that 

( ) ( ) ( )( ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ))

2
2 2

2
1 1

e

d 0.

p M x b x u x N x M x c x u x

M x N x e x v x N x f x v x x

η

Ω

+

+ + ≤

∫ � �

� �
        (2.17) 

By comparison principle, we obtain that 

 ( )
1 11 , , , ,d a bu x w α<�                       (2.18) 

where 
1 1, , ,d a bw α  is defined in Equation (1.12). Similarly, it follows that 

  ( )
2 21 , , , .d d fv x w α<�                       (2.19) 

Therefore, we can obtain that 

( ) ( )1 1e , e ,p pu x H v x Iη η> >� �                   (2.20) 

where ,H I  satisfy Equation (1.13). Similarly, there hold 

 
( ) ( )
( ) ( )

1 1 2 22 , , , 2 , , ,

2 2

, ,

e , e .
d a b d d f

p p

u x w v x w

u x H v x I
α α

η η

 < <


> >

� �

� �
             (2.21) 

Since it follows from (1.14) (2.18) (2.19) (2.20) and (2.21) that  
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( ) ( )
( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( )

1 1 2 2

2 22 1

1 2

2, , , , , ,2

2

2
e e

4 in ,

d a b d d f
p p

u x v x
c x c x e x e x

v x u x
w w

c x c x e x e x
I H

b x f x

α α
η η

+ +

< + +

< Ω

� �
� �

         (2.22) 

it is easy to see that the quadratic expression in the integrand of (2.17) is positive 
definite for each x∈Ω . Therefore ( ) ( )0, 0M x N x= = , and  

( ) ( )( ) ( ) ( )( )1 1 2 2, ,U x V x U x V x=� � � � . The proof is finished. 

3. Proof of Theorem 1.3  

Now we are in a position to prove Theorem 1.3. By Theorem 1.2 and the as-
sumptions of Theorem 1.3, problem (1.4) has a unique positive solution 

( ) ( )( ),U x V x� � . Now we prove the following theorem without the assumption of 
(1.14) which can establish Theorem 1.3. 

Theorem 3.1. Assume that the hypotheses of Theorem 1.1 are satisfied, and 
problem (1.5) has a unique positive solution ( ) ( )( ),U x V x� �  in Ω . Then 

( ) ( )( ),U x V x� �  is globally asymptotically stable in the following sense. Let 
( ) ( )( ), , ,U x t U x t  be the solution of problem (1.4) with  
( ) ( ) ( ) ( ) ( )1,0 , ,0 0, 0, ,0 , ,0U x V x U x V x C≥ ≡ ∈ Ω/ , and vanishing on ∂Ω . Then  

 ( ) ( )( ) ( ) ( )( ), , , ,U x t V x t U x V x→ � �  as  t →∞ ,          (3.1) 

uniformly in Ω . 
Proof. For convenience, we introduce the following notation: if  

( ) ( )1 , 0w C w x∈ Ω >  for all x∈Ω , and 0w ν∂ ∂ <  everywhere on ∂Ω , we 
write 0w� . If ( )1,w z C∈ Ω , we write w z� , when 0z w− � . We first 
prove the theorem under the condition 

( ) ( ) ( ) ( ) ( )1,0 , ,0 , ,0 , ,0 0,U x V x C U x V x∈ Ω �           (3.2) 

and 

  ( ) ( ) ( ) ( ),0 , ,0 ,U x U x V x V x≤ ≤                (3.3) 

for all x∈Ω , where 

 ( ) ( )

( ) ( ) ( )

( )
1 2, ,, .

min min
d a x d d x

x x

U x V x
b x f x∈Ω ∈Ω

Θ Θ
= =             (3.4) 

Let ( )1 xϕ  be the principal eigenfunction of (1.7). Choose 0ε >  small such 
that  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

1 1 1

2 1 1

,0 , ,0 ,
e ,
e .

p

p

x U x x V x
a x d c x v x b x x
d x d e x u x f x x

η

η

εϕ εϕ
λ εϕ
λ εϕ

≤ ≤
 > + +
 > + +

          (3.5) 

If we let 

( ) ( )1 1, ,U x V xεϕ εϕ= =                    (3.6) 
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then 

( ) ( ) ( ) ( ) ( )( )
( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( )

1 1 1

1 1 1 1

1

2 2 1

2 1 2 1

1 1

1

e in ,

e in ,

e in ,

e in ,

0 on .

p

p

p

p

d U p U U a x b x u x c x x

d x p x

x a x b x x c x v x

d V p V V d x e x x f x v x

d x p x

x d x e x u x f x x

x U V

η

η

η

η

α εϕ

εϕ α εϕ

εϕ εϕ

α εϕ

εϕ α εϕ

εϕ εϕ

εϕ

− ∆ − ∇ ⋅∇ ≥ − − Ω

− ∆ − ∇ ⋅∇

≤ − − Ω

− ∆ − ∇ ⋅∇ ≥ − − Ω

− ∆ − ∇ ⋅∇

≤ − − Ω


= = = ∂Ω

 (3.7) 

By means of ([2], Theorem 1.3), the conclusion of this theorem follow from the 
uniqueness assumption and the inequalities 

( ) ( ) ( ) ( ) ( ), ( ,0) , , , ,0 , , .U x t U x U x t V x t V x V x t x≤ ≤ ≤ ≤ ∈Ω  

Next, we remove condition (3.3) from the initial data ( ) ( ),0 , ,0U x V x . No-
tice that there exists large 1K > , such that 

  ( ) ( ) ( ) ( ),0 , ,0 ,U x KU x V x KV x< <                (3.8) 

in Ω . Define that ( ),x tU  is the solution of problem 

 
( ) ( )( ) ( )

( ) ( )
( )

1 1 e in 0, ,

,0 in ,
0 on 0, .

p
t d p a x b x

x KU x

ηα = ∆ + ∇ ⋅∇ + − Ω× ∞

 = Ω
 = ∂Ω× ∞

U U U U U

U
U

   (3.9) 

It is clear that U  is non-negative in ( )0,Ω× ∞  and  

( ) ( )*lim ,
t

x t x
→∞

=U U  for x∈Ω ,                 (3.10) 

where ( )* xU  is the unique positive solution of the problem 

   ( ) ( )( )1 1 e 0 in ,

0 on .

pd p a x b x ηα ∆ + ∇ ⋅∇ + − = Ω


= ∂Ω

E E E E

E
        (3.11) 

Moreover, ( ),0 0t x <U , since ( ),0xU  satisfies 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )
( )

( )
( )

( )

( )

( ) ( ) ( ) ( )

( )

( ) ( )

1 1

1 1

1

1 1

1 1

1 1

, ,
1 1

, ,

,

, 0 ,0 ,0 e

e

e

min min

e
min min

min

p

p

p

d a x d a x

x x

d a x d a x p

x x

d a x
x

d x x p x a x b x

d K U K U p KU a x b x KU

K d U U p U a x b x KU

K d p
b x b x

a x b x K
b x b x

K
b x

η

η

η

η

α

α

α

α
∈Ω ∈Ω

∈Ω ∈Ω

∈Ω

∆ + ∇ ⋅∇ + −

= ∆ + ∇ ⋅∇ + −

 = ∆ + ∇ ⋅∇ + − 
Θ Θ

= ∆ + ∇ ⋅∇

Θ Θ  

+ −    

= Θ

U U U U

( ) ( ) ( )

( )
1

1

,
, 0.

min
d a x

d a x
x

Kb x
b x

θ
θ

∈Ω

 
 


 
− < 

 
 

     (3.12) 

By using 2, pW  estimates and Sobolev embedding, the convergence in Equation 
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(3.10) is also in ( )1C Ω  norm. Similarly, V  is non-negative in ( )0,Ω× ∞ , 

( ) ( )*lim ,
t

x t x
→∞

=V V  for x∈Ω ,              (3.13) 

where ( )x∗V  is the unique positive solution of the problem 

 ( ) ( )( )2 2 e 0 in ,

0 on .

pd p d x f x ηα ∆ + ∇ ⋅∇ + − = Ω


= ∂Ω

F F F F

F
    (3.14) 

On the other hand, ( ),0 0t x <V , since ( ),0xV  satisfies 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

( )

( )
( )

( )

( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( )

2 2

2 2

2

2 2

2 2

2 2

, ,
2 2

, ,

,
, ,

, 0 ,0 ,0 e

e

min min

e
min min

min min

p

p

d d x d d x

x x

d d x d d x p

x x

d d x
d d x d d x

x x

d x x p x d x f x

d K V K V p KV d x f x KV

K d p
f x f x

d x f x K
f x f x

K Kf x
f x f x

η

η

η

α

α

α

θ
θ

∈Ω ∈Ω

∈Ω ∈Ω

∈Ω ∈Ω

∆ + ∇ ⋅∇ + −

= ∆ + ∇ ⋅∇ + −

Θ Θ
= ∆ + ∇ ⋅∇


Θ Θ  

+ −    

 
= Θ −

 

V V V V

0.
 

<   

     (3.15) 

Let 0, e , ep pη η= = = ≡ = =U V u v u U v V . Then we have 

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

2 2

,

,

d p a x b x c x

d p d x e x f x

α

α

− ∆ − ∇ ⋅∇ ≥ − −

− ∆ − ∇ ⋅∇ ≥ − −

U U U u v

V V V u v
           (3.16) 

and 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 ,0 ,0 ,0 ,
0 ,0 ,0 ,0 ,

x U x x KU x
x V x x KV x

 = ≤ < =
 = ≤ < =

U U
V V

              (3.17) 

for ( ),x t ∈Ω . From (3.12), we obtain that 

( )

( ) ( ) ( ) ( )1 1

,0 0 in ,

0,

2 in 0, .

t

t

t t t t t tt

x

d p b x a xα
∂Ω

 < Ω =


= ∆ + ∇ ⋅∇ − + Ω× ∞

U

U

U U U U u U

    (3.18) 

Thus 0t <U . Similarly, one can use a similar argument as above to get 0t <V . 
We can also see that, 

( ) ( ) ( ) ( ),0 ,0 ,0 0,x U x KU x U x− = − >U                (3.19) 

and 

( ) ( ) ( )
( ) ( )
( ) ( )

( )( ) ( ).

t
U d U p U

a b U a bu cv

a b U a bu

U a b bU u

α− − ∆ − − ∇ ⋅∇ −

= − − − −

> − − −

= − − − −

U U U

U u

U u

U u u

               (3.20) 

Therefore U>U  by the comparison principle. Similarly, we obtain that 
V>V . 
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We claim that ( ) ( )

( )
1 ,

in
 

m
d a x

x

U x
b x∈Ω

Θ
=  is a strict upper solution of the problem. 

Equation (3.11). 
In fact, 

( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

( )

1 1 1

1 1 1

1

1 1

1

1 , , ,

, , ,

,
, ,

e

1
min

1
min

1 0.
min min

p

d a x d a x d a x
x

d a x d a x d a x
x

d a x
d a x d a x

x x

d U U p U a x b x U

d p a x b x u x
b x

a x a x b x u x
b x

b x
b x b x

ηα

α

θ

θ
θ

∈Ω

∈Ω

∈Ω ∈Ω

∆ + ∇ ⋅∇ + −

 ∆Θ + ∇Θ ⋅∇ +Θ − 

 −Θ − +Θ − 

  
Θ − <      

=

=

=

 (3.21) 

By means of the similar arguments, we obtain that ( ) ( )

( )
1 ,

in
 

m
d d x

x

V x
f x∈Ω

Θ
=  is a 

strict upper solution of the problem (3.14), that is 

( ) ( ) ( )( )1 2 e 0.pd V V p V d x f x V x ηα∆ + ∇ ⋅∇ + − <           (3.22) 

Therefore 

, , , .U U V V∗∗< < < <U U V V                   (3.23) 

For 0,s x> ∈Ω , ( ) ( ), , ,s sU U x s V V x s= = . From (3.10) (3.13) (3.23), we can 
get 

 ( ) ( ), .s sU x U V x V< <                     (3.24) 

On the other hand for 0s > , we deduce from the theory of parabolic equations 
and the strong maximum principle that 

 0, 0.s sU V� �                        (3.25) 

Combined with (3.2), (3.24), (3.25), the conclusion of this theorem can be 
proved by using the first part of the proof.  

4. Conclusion 

In this paper, the first part constructs the system equations and expounds the 
theorems to be studied. The second part mainly proves the existence and uni-
queness of the stable solutions of the system equations by the methods of upper 
and lower solutions and the maximum principle. In the third part, based on the 
establishment of Theorem 1.1 and 1.2, it further proves that Theorem 3.1 obtains 
the global asymptotic property of the steady-state solution.  
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