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Abstract 
In this article, we show how to build a cosmological model characterized by 
the hierarchy of coupling constants and a set of Quantum Hall Fluids in BF 
theory. The resulting field theory is operated on Abelian Gauge fields within 
Gauge transformations on the ( )1U  group, which introduces the Chern- 
Simmons class with topological mass. The mathematical background on 
which the model is based is a topological graph manifold of Brieskorn Seifert 
fibered-sphere space-time grid (lower dimensions), through a Kaluza-Klein 
reduction. This model offers a feasible alternative to the precise calculation of 
the cosmological constant Λ, much more accurate than the string landscape 
and baby universe models that have been proposed. Numerical results are 
given for coupling constants hierarchy. Model predictions may work as an 
argumental base to justify topological interpretations of space-time. 
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1. Introduction 

Gauge hierarchy and fine-tuning are relevant problems in particle physics and 
cosmology. New empirical discoveries may lead us to reconsider these concepts 
and their interconnections. First, the discovery of accelerated expansion of the 
universe by measuring luminosity of a distant supernovae [1], with a cosmolog-
ical positive constant: ( ) 1231.35 0.15 10Aρ

−= ± × , [2] [3] which is inconsistent 
with 0Aρ = . Second, the observation at LHC of Higgs boson as a particle with 
mass of 126 GeV. This suggests that the SUSY breaking scale is considerably 
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higher than the electroweak scale. This gets complicated since QFT predict Aρ  
to be 30 to 120 orders of magnitude larger than the experimental bound [1]. Al-
so, string landscape and baby universes model predictions are not even close to 
experimental measures [4] [5]. Lately, new conceptions on the subject have been 
proposed in order to build cosmological models as well as field theories based on 
a different paradigm such as algebraic and geometric topology. Because of it, 
new horizons come to sight and bring cosmology based on topological mani-
folds, taking advantage of its already known properties. In this article, we pro-
pose a path to theoretically calculate Aρ  in a precise way compared with late 
measurements. Starting from mathematical-physics development method found 
in [6], a topological BF theory is built over Seifert (Brieskorn) fibered homology 
spheres. The purpose of this effort is to describe physically the topological prop-
erties of the cosmology model, and also show how it is possible to obtain a 
coupling constant hierarchy as a result of it. Mathematics and geometry of the 
model are given by Brieskorn-Seifert fibered spheres (B-Sfh from now on) con-
nected by a graph manifold, which is going to be the mathematical support and 
also, the core of the method. This article is structured as follows: Section 2 is 
about general BF theory and its construction on Manifold M. In Section 3, we 
show how it is possible to attach cosmological properties to a topological BF 
(field) theory. In Section 4, results and analysis are given, specifically about 
model predictions. Section 5 presents conclusions, a final recapitulation and 
suggestions for further work. 

2. Topological BF Theory on a Manifold M 

Background field theory is constructed as follows:  

3
0 0

1 1I I I I
I D I I D IB B F F dH

m k m k
κ σ κ σ

   
= ⊗ − ⊗ + ⊗ + ⊗   
   

 

4
0 0

1 1I I I I
I D I I D IF F d dH d d A d H d

m k m k
κ σ κ σ

   
= ⊗ + ⊗ = ⊗ + ⊗   
   

 

where ( )1, ,I I Rκ =   are ( )1 RU  connection 1-forms and ( )1, ,I I Rσ =   
dual 1-forms. IA  are locally Abelian potentials. Also 2-forms IF , I

DF  y IB  
belong to concatenated de Rham cochain ( )2 4

dRC X . Iκ , Jκ  and lσ  will be 
obtained and defined from mathematical method on further steps in this section. 
Now we introduce 7-dimensional BF action:  

4 37 0 3 4X M
S m k B F

+×
= ∧∫  

3B  and 4F  remain invariant under Gauge transformations I I IA A u→ + ; 

0
I I IJ
D D JH H m kK u→ − ; and I I IB B v→ + ; 0

I I IJ
D D JF F m kK v→ + . Breaking of 

symmetry is given by the Gauge condition results in: 

1 1;   
2 2

I IJ I IJ
D J D JF K F H K H= ∗ = ∗  

then we obtain calibration action [5]:  
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4calibr 0
0

1 1 1
2 2 4

IJ
I J I J I J I JX

S K m kB F F F H H F d H
m k

 
= ∧ − ∧∗ − ∧∗ − ∗ ∧ ∗ 

 
∫  

Transformations as a generalization for Gauge symmetry are written as:  

,    I I I I I IA A B Bξ η→ + → +  

with Iξ  (topological superconductivity) and Iη , both closed 1-forms. This is a 
generalisation for Gauge symmetries of topological action on matter [7]. Varia-
tion on calibrS  gives Klein Gordon equations:  

2 22 ,    2I I I Im F md H m H md F− = ∗ − = − ∗  

where 02m m k=  is topological mass. Topology is involved in Yang-Mills gap 
mass phenomenon since mass is characterized from base state of topological 
fluids and determines empty low energy density. Therefore, we get a topological 
field theory with a Chern-Simmons class [8]:  

( )1 0
1

ˆ d
N

i
M

j i

c n
β

κ κ
α=

= ∧ = +∑∫L  

Chern-Simmons classes over orbifold Σ̂ , in space (manifold) M are asso-
ciated to ( )1U  V-bundle. Due to Chern-Simons gauge theory it is possible to 
connect Seifert fibered manifolds possessing ( )1U -invariant contact structures 
(in general a ( )1U -action) with Seifert invariants too [5] [9].  

2.1. Graph Manifold over Seifert Fibered Space 

We define a Seifert fibered homology sphere ([10]) as:  

( ) { } ( )2 1
1 1, , , 0 0n aik nk

n kka a c z i S −
=

Σ = = ∩∑  [11]. Let jS  be Seifert-Brieskorn  

fibered homology spheres (B-Sfh) with primary sequence [5]:  

( ){ }1 2, , |i i ip p q i N+ +Σ ∈  

where ip  is the i-th prime number (i.e. 1 2 32, 3, 5, , ip p p p= = =  ), and 
choosing numbers [5] as fiber parameters ( ( ),1 ,2 ,3, ,j j j jS a a a= Σ ). Prime num-
ber sequence has been chosen in [5]. Then B-Sfh’s may be generated by:  

( ) ( ) ( ) ( ) ( ) ( )( )1 1 2 3
1 2 3 1 1 1 2 3, , : , , 1 , ,a a a a ak a a aσΣ = Σ + = Σ  

which is named in [5] as “k” derivative, and it generates successive B-Sfh’s and 
set them into a tree graph (Figure 1) as it describes in [6]. k-derivative sequence 
is built with fibered Seifert space generation [10]. Seifert invariants may be writ-
ten of the form ( )l

nia . Applying plumbing as a topological operation among 
B-Sfh’s we write the condition:  

1 1 1
2 3 1 3 1 2
I I I I I Ia a a a a a+ + +>  

which secures further graph-matrix elements to be positive definite. In the other 
hand, proposed graph pΓ  has a tree open structure with plumbed B-Sfh’s con-
tained in it [5] [6]. For plumbed graph pΓ  we may extract other topological 
structures such as lens space [12] which is a 3-D invariant structure emergent 
from plumbed graph. It may be defined as ( );L p q  which is the set of quotient  
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Figure 1. Graph manifold plumbing graph. 
 
spaces of 3S  by actions p . i.e., let p y q co-prime integers and consider 

3S  as unitary sphere en 2 . Then action p  in 3S  is generated by  
( ) ( )2 2

1 2 1 2, : e ,ei p iq pz z z zπ π= ⋅ ⋅ . Relation between orbital Seifert invariants with 
Euler numbers and Lens Spaces parameters p and q comes from ( ),I Ip q , 

1, , 1I R= −  which characterized a solid tori ( ) [ ]2, 0,1I ITT p q T≅ ×  gener-
ated by plumbing among graph pΓ  nodes IN  y 1IN + .  

( )1 1 1 1 1 1
2 3 1 3 1 2 2 3 1 2 1 3 1 3,I I I I I I I I I I I I I I I Ip a a a a a a q b a a a b a a b+ + + + + += − = + +  

Ie  are Euler integer numbers defined for internal chain, and they are related 
to Seifert invariants, with Euler’s formula:  

( )
1

1 ,
n

k k
k

e b a b a
=

Σ = − = −∑  

plumbing operation on graph pΓ  may connect B-Sfh’s as we look in Figure 2. 
Besides, invariants identify new lens spaces additional ( ),I IL p q  and are a 

bound component of a 4D V-Cobordism with available formulas for Ip  y Iq  
[13]. Now a single graph manifold ( )pM Γ  may be constructed over lens spac-
es glued in disjoint union thru JSJ (Jacko-Shalen-Johansen) decomposition [14] 
as it is proposed in [5]. Therefore ( )pM Γ  would have a JSJ covering con-
formed by R pieces ˆ IM  with Seifert defined fibrations characterized by 
1-forms Iκ . Then JSJ W⊂T T  is a subcollection of the Waldhausen graph 
structure [14] over Seifert fibered bundles ( )I

JSJM N . Edges pΓ  contained in 
a chain ( )C p∈C  belongs to the set of parallel tori in en ( )pM Γ . Choosing a 
tori 2

CT  we define:  
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Figure 2. General plumbing diagram. 
 

( )

2

i
JSJ C

C p
T

∈
= 

C

T  

It is still possible to extend isotopy of natural Seifert structure to the whole 
Seifert fibration in I

JSJM  with exceptional fibers I
WM . Indeterminations are 

removed as is shown in [5]. Thus, ( )pM Γ  with JSJ has to be:  

( )
1

R
I

p JSJ
I

M M
=

Γ =


 

lens spaces ( );L p q  may be rewrite in terms of JSJ covering for  

( ) 1

R I
p JSJI

M M
=

Γ =


 obtained in [5] as follows: 

( ) ( )in fin, ,I I I I
J JL p q ST TT p q ST= ∪ ∪  

( ) ( )in fin, ,I I I I
J JL p q ST TT p q ST∗ ∗= ∪ ∪  

Expressions for p and q are already given in terms of Seifert invariants. Dis-
joint union of lens spaces gives us a new topological layer defined as V-cobordism 
[5]. Furthermore, there is a topological graph manifold as a result. 

2.2. Adjacency Matrix with Continued Fractions 

We can extract an adjacency matrix of plumbing graph manifold using contin-
ued fractions as it is explained in [6]. Beginning with p and q we obtain:  

1 , ,
I

I
I I

nI

p e e
q

 − =    

which are continued fractions related to Euler numbers shown in Figure 2, its 
mechanism may be found in [15]. Now we take plumbing graph representation 
where it is clear that for 2, , 1I R= −  the set ˆ IM  has the form:  

( ) ( ) ( )1 1ˆ , , , ,I I I I I I I I
WM M TT p q TT p q ST a b− ∗ −= ∪ ∪ ∪  

where ( ),I IST a b  is a Seifert fibered tori with Seifert invariants ( ),I Ia b . We 
have also  

( ) ( ) ( )1 1 1 1ˆ , , , ,R R R R R R R R
WM M TT p q ST a b ST a b− ∗ − + += ∪ ∪ ∪  

and  

( ) ( )1ˆ ˆ , , ,  2, , 1I I I I I IM M TT p q TT p q I R+ ∗ ∗∩ = ≅ = −
 

Following expression representing the basis of the 1-form [16]  
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( ) ( )2 3 1
1, , ,I I

I Iσ κ σ κ +
+  

then integrals may be calculated along fibers [5] as:  

1
2 3

2 3
1 1;I I

I

I
I Is s f

σ σ κ+ += = =∫ ∫ ∫  

1
1 2 3

2 3 1
1 0I I

I I

I I
I If f s s

σ σ κ κ+
+

+
+= = = =∫ ∫ ∫ ∫  

Thus we get respective transforms among dual 1-forms:  
2 3 1 3 1

1 1;     .I I I I I I I
I I Iq p p qσ σ κ κ σ κ∗ + ∗ +

+ += − + = +           (1) 

Therefore, in expression:  

( ) ( )
1, 1 1 1 1 1

, ,
d d ,   1, , 1,I I I I

I I I I I I
TT p q L p q

I Rκ κ κ κ∗ ∗
+ + + + + +Λ = ∧ = ∧ = −∫ ∫ 

 

integral gathered linking intersection numbers of fibered structures Iκ  and 
1Iκ +  define in solid tori ( ) ( ), ,I I I ITT p q TT p q∗ ∗≅  associated to lens space 

( ) ( ), ,I I I IL p q L p q∗ ∗≅  (homeomorphism between this two lens spaces is a 
consequence of 1I I I Iq q p p∗ ∗+ =  [5]). If we apply duality conditions [16]:  

, 1 , 1 , 1, 11 ,   ;   .
I I

I I I I I I I I
I I I

q q
p p p

∗
+ + + +Λ = Λ = Λ = Λ =  

rational numbers ,I IΛ  and 1, 1I I+ +Λ , are known as Chern classes with V-bundle 
associated with Seifert fibrations where invariant ( )1U  is connected with 
forms Iκ  and 1Iκ +  on lens spaces ( ),I IL p q  y ( ),I IL p q∗  respectively.  

Let ( )3
pM M+ = − Γ  be our graph manifold, we integrate it as:  

( )3 .
p

IJ I J I J
M M

K d dκ κ κ κ
+ Γ

= ∧ = − ∧∫ ∫  

Following condition assure that rational linking matrix is positive definite:  

( )1 1 1 1 1 1
2 3 1 3 1 2 2 3 1 2 1 3 1 3,    I I I I I I I I I I I I I I I Ip a a a a a a q b a a a b a a b+ + + + + += − = + +  

From [5] we have rational matrix elements:  
1 1

1 1 .
R R R

RR
R R R

q b bK
p a a

∗ − +

− +

 
= − + + 

 
                   (2) 

1

1 , 1, , 1
I I I

II
I I I

q q bK I R
p p a

∗ −

−

 
= − + + = − 

 
  

Notice that these expressions are consistent with Chern-Simmons class for-
mula, defined in Section 2. Now it is possible to write a general expression to 
represent rational linking matrix in terms of Euler numbers Ae  belonging each 
one to a graph vertix Av . This would be:  

( )
, if ;

1, if and is connected a by a bundle;
0, other case.

A
AB

p A B

e A B
Q A B v v

=
Γ = − ≠



 

Rational linking may be structured as a block matrix such as it is illustrated in 
Figure 3.  

Matrix ABA  and its formulas help us to obtain a topological fluid filling factor  
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Figure 3. Matrix ( )AB
pQ Γ . 

 
hierarchy. This matrix and its (partial) diagonalized version MND  may be ob-
tained by Gauss-Neumann method [6]  

( )part.diag reduced
AB IJ MN

pQ K DΓ = ⊕  

3. Cosmological Approach 

In BF theory, a simple model of Gauge interactions is a non trivial topological 
ensemble that modeled a 7-D space-time manifold. For 3M +  this is given by the 
disjoint union of lens spaces as a result of plumbing operations on graph:  

( ) ( )3

, ,
, ,K K L L

s s t t
K s L t

M L p q L a b+    

Full space-time manifold is the cross product of a regular 4-dimensional ma-
nifold 4X  with 3M + , 4 3X M +× , where internal 3-manifold belong to the fam-
ily ( )3

pM M+ = − Γ  with Waldhausen topology Wτ  [17]. Now, action 7S  
presented in Section 2 has different variants since rational linking matrix results. 
Different block matrices in adjacency matrix give us a boundary action  

4boundary 0
0

12 ,IJ I I J
I J D I IJ D DX

S m kK A dA H dA K H dH
m k∂

 
= ∧ + ∧ + ∧ 

 
∫  

with action QHF (Quantum Hall fluid) related to matrix computing and its re-
sults (Section 4), and represents an action for topological fluids  

( )4QHF 0 ext ext ext2 ,IJ I I J
I J I IJX

S m K A dA t A dA K t t A dA
∂

= ∧ + ∧ + ∧∫    

where Hall states came from generalized states hierarchy [5] [18].  
( )detIJ IJ

IJK K K=  is tridiagonal integer matrix and It , both characterized 
generalised hierarchy of Hall states. Also ( )detIJ IJ IJK K K=  is rational in-
verse matrix of IJK . Filling factor I J

IJK t tν =   describes conductivity σ =
2ν π  on topological fluid. Currents IJ  are defined as ( )1 2I IJ dAπ= ∗  and 

motion equations given by:  

ext 0IJ I
JK dA t dA+ =  

and  

( ) ext1 2 J
I IJJ K t dA= − ∗π   
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where Hodge operator ∗  is defined with respect to boundary 4X∂ . Then we 
have  

( ) ext ext2I
It J dA Fν σπ∗ = =  

which is the equation of QH effect. Fractional topological fluids or insulators 
[18] [19] [20] in this model has an analogue structure to a quasi-particle hie-
rarchy system in 4-D space-time described by bulk action [5]  

4
bulk
4 0

0

1IJ I I I J
I J I D I D IJ D DX

S m kK B F F F B dH K F dH
m k

 
= ∧ − ∧ + ∧ − ∧ 

 
∫  

Bulk action contains the mechanism for mass generation (topological order) 
effect [5] [21]. Now it is possible to rewrite BF action equations as  

4BF 0
0

1IJ I I I J
I J I D I D IJ D DX

S m kK B F F F H H K F dH
m k

 
= ∧ − ∧ − ∧ − ∧ 

 
∫  

where I IH dB=  is the rational linking matrix IJK  and BF model may be in-
terpreted as a consistent matrix set of coupling constants IJK  which describes 
a Gauge kind hierarchy of coupling constants with respect to a dimensional scale 
factors k. 

3.1. Kaluza-Klein Winding 

Field equations formulated in this section and the precedent are the building 
blocks for a mutidimensional cosmological model of Kaluza-Klein kind. There-
fore, a global expression of our model in terms of rolled dimensions, and it may 
be expressed thru graph manifold (Seifert) spaces [5]  

( ) ( )4 3

, ,
, ,K K L L

s s t t
K s L t

X M L p q L a b+
 

× 
 

   

multidimensional space on time-space’s is formed by baby universes [5], where 
they fill the set of disjoint homeomorphic manifolds ( )4, ,K K K

s s sX L p q×  and 

( )4, ,L L L
t t tX L a b× . These 4D space-time manifolds 4,K

sX  and 4,L
tX  are ho-

meomorphic to 4X  but have a different scale. Thus it is necessary to reduce 
dimension due integration over lens spaces where coupling constants set emerge 

, ,
K

K K
s ne e  

 y , ,
L

L L
t mε ε  

. Continued fractions in this particular case pos-
sess an absolute value higher than 1, therefore scales in 3D space belong to 
Planck suborder. 

3.2. Generalized States Hierarchy 

Following expressions describe low energy physics of topological fluids hie-
rarchy with In  and Im  respectively [5]  

( ) ( )

1

1

11
1 1,   y  ,

1 1
1 1

I

I

II
m

ab

I I
n

e

K e I K I

e

αβ

ε

ε

ε

   −−
  

− −  = =   − −     − −   








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Topological fluids characterized charge vectors ( ),at e I  and ( ),bt Iε , along 
with K-matrices define filling factors ( ) ( ) ( ) ( ), , , ,a b

abe I t e I K e I t e Iν = ;  
( ) ( ) ( ) ( ), , , ,I t I K I t Iα β

αβν ε ε ε ε= , where ( ),abK e I  y ( ),K Iαβ ε  are inverse 
matrices of ( ),abK e I  and ( ),K Iαβ ε  respectively. If we pick ( ) 1,a at e I δ= ,  

then ( ) ( ) ( )
( )

11

1 11
1

adj , 1, ,
det , , ,

I

I

ab II I
n

K e I qe I K e I
K e I pe e

ν = = = = −
  

; and choosing  

( ),
I

a a
nt e I δ=  we have that  

( ) ( ) ( )
( )

,

,
1

adj , 1, ,
det , , ,

I I

I I

I

n n I

n n n ab II I
n

K e I qe I K e I
K e I pe e

ν
∗

= = = = −
  

. Finally, to select  

( ) 1,t Iα αε δ=  the filling factor is given by  

( ) ( ) ( )
( )

11

1 11
1

adj , 1, ,
det , , ,

I

I

II I
m

K I bI K I
K I aαβ

ε
ν ε ε

ε ε ε
= = = = −

  

. Diagonal elements  

from rational linking matrix IIK  may be rewritten thru its respective filling 
factors ( ) ( ) ( )1 1, 1 , ,II

nK e I e I Iν ν ν ε= − + + , for 2, , 1I R= −  besides 
( ) ( ) ( )11

1 1 1,0 ,1 ,1K eν ε ν ε ν= + + ; ( ) ( ) ( )1 1, 1 , , 1RR
nK e R R Rν ν ε ν ε= − + + + . KIJ 

is the Gauge coupling constant matrix. Furthermore, for graph manifolds such 
as homology  -spheres next conditions are satisfied:  

( ) ( ) ( ){ }1 1min , 1 , , , , ,  for  2, , 1;II
nK e I e I I I Rν ν ν ε− = −   

( ) ( ) ( ){ }1 1min , 1 , , , , 1RR
nK e R R Rν ν ε ν ε− +  

which is fine-tuning for coupling constants, and its universal for all of them [5]. 

3.3. Cosmological Constant 

( )IIK e  is associated with a specific interaction depending on the discrete ener-
gy scale parameter e. For example, when e runs from 0 to 4 the cosmological 
constant ( )RRK e  changes according to the following sequence:  

134 67 34 17 92.66 10 1.63 10 4.04 10 2.22 10 4.48 10− − − − −× → × → × → × → × . If we 
correspond the last value of the cosmological constant to the unit Planck scale, 
then the running cosmological constant is reduced to the Planck units and reads 

126 59 26 95.94 10 3.64 10 9.02 10 4.96 10 1− − − −× → × → × → × →  [5]. The cosmolog-
ical constant, understood as vacuum energy density, depends on the discrete 
energy parameter e.  

4. Analysis and Results 

The running cosmological constants acquire the sense of the vacuum energy 
scales associated with the topology changes of the extra dimensional space, 
which induce the unification of gauge interactions (Figure 4), given as a result a 
rational linking matrix. The diagonal elements of the matrix ( )0IJK  (Figure 
5) have a hierarchy very closed to the one of the dimensionless low energy 
coupling (DLEC) constants [22]. It is natural to suppose that diagonal elements 
of the other rational linking matrices ( ) , 1, 2,3, 4IJK e e =  (as well as their ei-
genvalues, see [23]) simulate hierarchy of the vacuum-level coupling constants  
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Figure 4. Coupling constant hierarchy table. 
 

 
Figure 5. Coupling constant values. 
 
of the fundamental interactions acting in the states characterized by higher den-
sities of vacuum energy (according to this hypothesis we refer to e as a discrete 
energy scale parameter). The cosmological constant problem strongly suggest 
the existence of fine-tuning mechanism, since the empirical energy density of 
cosmological vacuum is at least 60 orders of magnitude smaller than several 
theoretical contributions to it. Recall that in quantum field theory some con-
tributions to the vacuum density are evaluated as follows (see [24] [25]): from 
the standard theory ( )4 67200 GeV 10≈ ; from the low energy super-symmetry 
breaking scale ( )43 6410 GeV 10≈ ; from grand unification schemes  

( ) ( )4 413 16 24 1210 GeV - 10 GeV 10 -10≈  (depending on a model); from quantum 
gravity ( )41910 GeV 1≈ . Within our framework an enormous fine-tuning for the 
cosmological constant is modeled owing to the topological properties of graph 
manifolds under consideration in [5]. Therefore, coupling constants hierarchy 
from the model, satisfies energy scale predicted by lately experimental recovered 
evidence such as mentioned at the intro. Note that in our model the “running 
cosmological constant” (or the sequence of vacuum energy scales) is associated 
with the last diagonal elements ( )RRK e  rational linking matrices of the graph 
manifolds ( )3 | 0, , 4M e e+ =   and thus undergoes a change when the topology 
of extra-dimensional space is transformed. Therefore the cosmological constant, 
understood as vacuum energy density, depends on the discrete energy parameter 
e. This problem strongly suggests the existence of a fine-tuning mechanism, 
since the empirical energy density of cosmological vacuum is at least 60 orders 
of magnitude smaller than several theoretic contributions to it. 

5. Conclusions 

The hierarchy and fine-tuning of the gauge coupling constants are described on 
the basis of topological invariants (Chern classes interpreted as filling factors) 
characterizing a collection of fractional topological fluids emerging from three- 
dimensional graph manifolds, which play the role of internal spaces in the Kalu-
za-Klein approach to the topological BF theory [6]. Due to the method results, it 
is strongly argued that topological invariants in general (also in graph mani-
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folds) may be closely related to BF theory and field physics of space-time. There 
are other interesting topological invariants, such as Casson invariant, Floer and 
De Rham cohomology as well as homotopy groups, which in case to be calcu-
lated or interpreted, may be helpful in the analysis of BF models, in order to ex-
tract cosmological constants to enrich model and predictions. It is also remarka-
ble that a basic prime numbers sequence has been used to fill the Seifert fibered 
parameters. Other configurations on prime numbers sequence may be given to 
building a similar model with closely tied results. One of the most remarkable 
ideas given by this model is that mass gap problem may be solved by topological 
fluids hierarchy and its interpretations, starting with topological mass. This 
would be possible thanks to Seifert-Riemann surface research on Yang-Mills 
problem [22]. Theoretical description of the hierarchical systems such as frac-
tional quantum Hall states and fractional topological insulators are based on the 
existence of a new state of matter characterized by a new type of order: topological 
order. These methods are applied not only to the description of three-dimensional 
phenomena such as quantum Hall effect, but also to four-dimensional systems 
connected with topological superconductivity or a topological confinement, 
without any spontaneous symmetry breaking pattern. As future work, this mod-
el can be quantized. It could be convenient to establish a defined metric for 
model to, cosmologically speaking, research the physical implications of black 
holes and space-time expansion starting from this space-time setup. Besides, the 
study of topological insulators and fine-tuning of Chern-Simmon classes on 
Gauge fields is interesting. Therefore, Yang-Mills mass gap problem can be ad-
dressed from fine tuning topological fluids (Quantum Hall states) system. As 
further work, the authors suggest trying different combinations of fibers for 
homology spheres in order to get wider and more precise results and predictions 
for our model. Also, it is possible to search for more physical quantities obtained 
from computing other topological invariants from those calculated in this paper, 
such as fundamental homology and homotopy groups from topological mani-
fold M to interpret values in terms of physical constants. 
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