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Abstract 
This paper presents a mathematical model consisting of conservation and 
balance laws (CBL) of classical continuum mechanics (CCM) and ordered 
rate constitutive theories in Lagrangian description derived using entropy in-
equality and the representation theorem for thermoviscoelastic solids (TVES) 
with rheology. The CBL and the constitutive theories take into account finite 
deformation and finite strain deformation physics and are based on contrava-
riant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate 
covariant Green’s strain tensor and their material derivatives of up to order m 
and n respectively. All published works on nonlinear dynamics of TVES with 
rheology are mostly based on phenomenological mathematical models. In 
rare instances, some aspects of CBL are used but are incorrectly altered to 
obtain mass, stiffness and damping matrices using space-time decoupled ap-
proaches. In the work presented in this paper, we show that this is not possi-
ble using CBL of CCM for TVES with rheology. Thus, the mathematical models 
used currently in the published works are not the correct description of the 
physics of nonlinear dynamics of TVES with rheology. The mathematical 
model used in the present work is strictly based on the CBL of CCM and is 
thermodynamically and mathematically consistent and the space-time coupled 
finite element methodology used in this work is unconditionally stable and 
provides solutions with desired accuracy and is ideally suited for nonlinear 
dynamics of TVES with memory. The work in this paper is the first presenta-
tion of a mathematical model strictly based on CBL of CCM and the solution of 
the mathematical model is obtained using unconditionally stable space-time 
coupled computational methodology that provides control over the errors in 
the evolution. Both space-time coupled and space-time decoupled finite ele-
ment formulations are considered for obtaining solutions of the IVPs de-
scribed by the mathematical model and are presented in the paper. Factors or 
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the physics influencing dynamic response and dynamic bifurcation for TVES 
with rheology are identified and are also demonstrated through model prob-
lem studies. A simple model problem consisting of a rod (1D) of TVES ma-
terial with memory fixed at one end and subjected to harmonic excitation at 
the other end is considered to study nonlinear dynamics of TVES with rheol-
ogy, frequency response as well as dynamic bifurcation phenomenon.  
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1. Introduction, Literature Review and Scope of Work 

A literature review of published works on finite deformation, and finite strain 
nonlinear dynamics of TVES with or without memory reveals that there is no 
unified approach for deriving mathematical models for TVES with memory. 
Energy methods, purely phenomenological 1D approaches, and principles of 
virtual work are commonly employed. In most cases, the differential forms of 
the mathematical models are never derived from the integral forms (generally 
Euler’s equations corresponding to the functional). Instead, the integral forms 
are directly used in obtaining finite element or series solutions. Mathematical 
models based on CBL of CCM and consistent constitutive theory have not been 
used to our knowledge for nonlinear dynamics studies of TVES with or without 
memory. The purpose of including the following two sections is to present con-
cepts and methodologies for IVPs and BVPs that are supported by the theory of 
differential operators and the calculus of variations. This material is critical in 
evaluating which published formulations, methodologies, etc are supported by 
the calculus of variations and the theory of differential operators. 

1.1. Initial Value Problems (IVPs) 

If we employ the CBL of CCM, we can derive a mathematical model [1] [2] that 
consists of conservation of mass, balance of linear momenta, balance of angular 
momenta, first and second law of thermodynamics and associated constitutive 
theories. These can be expressed as: 

( ) ( ) ( ), , 0 , xt x tt t t− = ∀ ∈Ω =Ω ×ΩA x f x xφ               (1) 

in which A  is a space-time differential operator, ( ),txφ  is a vector of de-
pendent variables exhibiting simultaneous dependence on space x  and time t. 
It can be shown that A  can be linear or nonlinear but cannot be symmetric 
over xtΩ . Thus, A  is a non-self adjoint or nonlinear but not self adjoint (li-
near and symmetric). Thus, space-time energy functional cannot be constructed 
for (1) using the fundamental lemma of the calculus of variations (space-time 
Galerkin method with weak form). Hence, for IVPs in solid mechanics, the use 
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of energy methods in which one constructs an integral statement of energy func-
tional directly without knowing (1) is invalid for constructing finite element 
processes. Also, if one does construct some space-time integral form, the Euler’s 
equation from the integral will not yield operator A . 

Surana et al. [3] have shown that a space-time integral statement of the prin-
ciple of virtual work is indeed the same as the space-time integral statement re-
sulting from the use of fundamental lemma for (1) i.e., 

( ) ( ) ( )( ), , , , 0
xt

t t t
Ω

− =A x f x v xφ                  (2) 

This of course requires knowledge of (1) which we do not have if we are con-
structing the space-time integral statement of virtual work directly (i.e., without 
the knowledge of (1)). Thus, we see that energy methods and the principle of 
virtual work have no role in the derivation of the mathematical models for IVPs 
or in the methods of approximation used for obtaining the solutions of IVPs. 

Surana et al. [4] have shown that when considering space-time coupled me-
thods of obtaining the solution of (1), only the space-time finite element method 
based on space-time residual functional is space-time variationally consistent 
integral form, hence unconditionally stable computational processes for the en-
tire evolution. 

We remark that space-time decoupled methods of approximation [4] can also 
be used for obtaining the solution of IVPs related to beams, plates and shells or 
any other physical system, but the methods require a differential form of the 
mathematical model (1), thus precluding use of energy methods and the prin-
ciple of virtual work, only the mathematical model based on CBL of CCM re-
main a viable alternative. 

1.2. Boundary Value Problems (BVPs) 

The mathematical models for TVE solids with rheology naturally lead to initial 
value problems. Nonetheless, the literature review reveals that in many instances, 
the mathematical description of BVPs is established first generally using energy 
methods or the principle of virtual work and then terms added to these models 
phenomenologically (generally force balance) to arrive at the mathematical de-
scriptions of the corresponding initial value problems. It is for this reason that 
the discussion of the differential operators in BVPs, possible integral form strat-
egies and when energy methods are supported by calculus of variations and the 
mathematical classification of differential operators in BVPs is included in this 
section. 

It is well known [4] [5] that valid BVP must correspond to the stationary state 
of the corresponding IVP, nonetheless study of BVP is helpful in the study of 
stationary processes. We consider BVPs in solid and structural mechanics. It can 
be shown [5] that when the mathematical models of BVPs are derived using CBL 
of CCM (or NCCM), the differential operators appearing in all BVPs regardless 
of their origin or complexity can be mathematically classified into three groups: 
self adjoint (linear and symmetric), non-self adjoint (linear but not symmetric) 
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and nonlinear (neither linear nor symmetric). The mathematical description of 
infinitesimal, linear elastic and reversible deformation of solid media results in 
self adjoint operators. The inclusion of dissipation and memory mechanisms 
with infinitesimal deformation results in a mathematical model that contains 
non-self adjoint differential operators. Purely elastic deformation or deforma-
tion with dissipation and/or memory mechanisms even in the presence of finite 
deformation and finite strain result in mathematical models in which the diffe-
rential operators are nonlinear. This classification is essential in demonstrating 
which methods of approximation are suitable choices for which class of opera-
tors. 

Using calculus of variations [5], we can easily show that if (consider a scalar 
equation for simplicity) 

( ) ( ), 0 xA x t f x x− = ∀ ∈Ωφ                   (3) 

is the BVP, then, when A is self adjoint, the intergal form (using test function v), 

( ), 0
x

A f v
Ω

− =φ                        (4) 

resulting from fundamental lemma can be shown to yield (using GM/WF) the 
weak form of (4), 

( ) ( ) ( ), , 0
e

A f v B v l v
Ω

− = − =φ φ                  (5) 

in which, ( ),B vφ  is bilinear and symmetric. In this case, the quadratic func-
tional ( )I φ  can be constructed as 

( ) ( ) ( )1 ,
2

I B l= −φ φ φ φ                      (6) 

The quadratic functional ( )I φ  represents the total potential energy, 

( )1 ,
2

B φ φ  is the stored strain energy and ( )l φ  is the potential energy of loads.  

In this case, one can show that the ( ) 0I =δ φ  yields (5), thus the Euler’s equa-
tions resulting from ( ) 0I =δ φ  is in fact (3), the BVP. Thus, for self adjoint 
differential operators, energy methods are valid. In this case, if the energy func-
tional ( ( )I φ ) is constructed without the knowledge of the differential form of 
the mathematical model, we must show that the Euler’s equation resulting from 
the integral statement is indeed differential form of the BVP obtained using CBL 
of the CCM. 

It is needless to discuss the principle of virtual work as this in fact is the 
integral form resulting from the use of fundamental lemma when the differential 
form of the mathematical model is known. That is, the virtual work statement 
cannot be constructed correctly without the knowledge of the differential opera-
tor A. When the differential operator is not self adjoint, the quadratic or energy 
functional ( )I φ  does not exist, hence the use of energy methods for the BVPs 
described by non-self adjoint and nonlinear differential operator is not possible 
and will undoubtedly result in spurious integral forms and spurious finite ele-
ment solutions based on these integral forms. As in the case of IVPs, here also, 
when the differential form of the mathematical model is derived using CBL of 
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CCM (or NCCM), the integral form for this mathematical model based on resi-
dual functional yields unconditionally stable computational processes for all 
three types of differential operators. Clearly, energy methods and the principle of 
virtual work play absolutely no role in this. 

1.3. Introduction and Literature Review 

The study of the dynamic response (evolution, frequency response, etc) of TES 
matter experiencing finite deformation and finite strain is nonlinear dynamics. 
In this case, the stiffness is nonlinear (up to the quadratic function of the dofs) 
when space and time are decoupled using GM/WF in space. In the case of TVES 
with finite deformation, finite strain including dissipation physics, a consistent 
derivation of the constitutive theory for deviatoric second Piola-Kirchhoff stress 
tensor results in a dissipation mechanism dependent on Green’s strain rates. 
When decoupling space and time in this case and using GM/WF in space, we 
obtain stiffness as well as damping matrices, both up to quadratic functions of 
the dofs. Thus, in this case, we have nonlinear stiffness (as in TES) but we also 
have nonlinear damping. In TVES with rheology, the composition of the solid 
matter (rubber like materials) contains long chain molecules which introduce 
rheology physics in the solid matter. In such solid continua, upon cessation of 
applied disturbance, the stress-free state is not reached instantaneously, but re-
quires additional time which depends upon relaxation time, a time constant (a 
material property) of the TVES. This mechanism is called relaxation or stress 
relaxation or rheology or short-term memory mechanism. In TVES with rheol-
ogy, the constitutive theory for the deviatoric second Piola-Kirchhoff stress ten-
sor is not a simple algebraic expression involving strains, strain rates and their 
traces. Instead, it is a differential equation in time containing time derivative(s) 
of the deviatoric second Piola-Kirchhoff stress tensor as well as the second Pi-
ola-Kirchhoff stress tensor itself. In this case, it is not possible to substitute de-
viatoric second Piola-Kirchhoff stress in BLM to obtain BLM purely in terms of 
displacements, as is the case for TES and TVES without rheology. Thus, the me-
thod of obtaining solutions of IVPs in TVES with rheology generally differs 
compared to those for TES and TVES without rheology. In this paper, we ad-
dress details of the mathematical model as well as the method of obtaining the 
solution of the associated IVPs describing finite deformation, and finite strain 
nonlinear dynamics of TVES with rheology. 

In the following, we discuss published works on conservation and balance 
laws and constitutive theories for finite deformation, and finite strain physics of 
thermoviscoelastic solids with memory. The initial value problems described by 
these mathematical models naturally contain nonlinear elasticity, nonlinear dis-
sipation mechanism and nonlinear mechanism of rheology. The phenomeno-
logical constitutive models for polymeric liquids have long been in existence (see 
reference [6]). These mathematical models provide useful mathematical descrip-
tions of physics observed in experiments. To our knowledge, the first formal 
presentation of complete mathematical models and ordered rate constitutive 
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theories for thermoviscoelastic solids with finite deformation physics and mem-
ory seem to have appeared in reference [7]. The authors presented the derivation 
of ordered rate constitutive theory based on entropy inequality and representa-
tion theorem. Due to the deviatoric contravariant second Piola-Kirchhoff stress 
and rate of Green strain tensor as conjugate rate of work pairs, nonlinear elastic-
ity, nonlinear dissipation mechanism and rheology are inherent but are not hig-
hlighted in the paper. In a companion paper, Surana et al. [8] presented mathe-
matical models and ordered rate constitutive theories for finite deformation 
thermoviscoelastic solids with memory using Gibbs potential. Details of the ma-
thematical models and ordered rate constitutive theories for the thermoviscoe-
lastic solid for finite deformation and finite strain can also be found in the text-
book by Surana [1] [2]. The IVPs described by the work in references [9] [10] 
[11] [12] naturally have nonlinear elasticity, nonlinear dissipation mechanism 
and rheology. We discuss recently published works on TVEs with memory un-
dergoing finite deformation and finite strain. First, we make a few remarks that 
are helpful when we discuss published works. 

1) Energy methods can only be used for BVPs in which the differential opera-
tor is self adjoint [5]. This limits the use of energy methods to linear elasticity 
with reversible deformation physics (i.e., without dissipation and memory). 

2) The phenomenological constitutive models are lumped models that have 
no concept of spatial coordinates, hence cannot possibly describe the constitu-
tive behavior of a continuum in which space and time are intrinsically present. 

3) Phenomenological models cannot be extended for continuous matter in 
1 2,   or 3 . 
4) Material coefficients in phenomenological constitutive models are generally 

not physical, hence almost always show a lack of agreement with those in the 
constitutive theories derived using entropy inequality and representation theo-
rem. 

5) Energy methods cannot be used for IVPs [4] as the space-time differential 
operators are not self adjoint. 

Before we present a review of the published works on the mathematical mod-
els for nonlinear dynamics of TVES with memory, we consider the following 
mathematical models and details that are helpful. 

The mathematical models reported and used in the finite deformation, finite 
strain nonlinear dynamic studies of the TVES without rheology in the published 
work are primarily phenomenological. These mathematical models are not based 
on the CBL of CCM and the constitutive theories are not derived using entropy 
inequality and representation theorem. In many cases, the mathematical models 
are 1D lumped models in space, hence are purely in terms of a single variable 
and time. In general, the reported phenomenological models contain nonlinear 
stiffness and nonlinear damping mechanisms. The situation is much more com-
plex in the case of TVES with memory. In the following, we employ the CBL of 
CCM and consistent constitutive theories to derive a phenomenological model, 
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aiming to investigate its feasibility. 
For simplicity, we consider isothermal physics. For finite deformation, finite 

strain physics, the BLM and the constitutive theory for deviatoric second Pi-
ola-Kirchhoff stress tensor [ ]0

dσ  in terms of Green’s strain tensor and its rates 

[ ] [ ]( )0 1,ε ε  constitute the complete mathematical models based on CBL of CCM. 

{ } { } [ ] [ ] { }
2

0
0 02 0bu

F J
t

ρ ρ σ
∂   − − ∇ =  ∂

               (7) 

[ ] [ ] [ ]0 0 0= +e dσ σ σ                        (8) 

[ ]
[ ] [ ]( ) [ ] [ ]( )( )0

1 10 0 1 12 2tr trµ λ µ λ= + + +d I Iσ ε ε ε ε            (9) 

( ), xt x tx t∀ ∈Ω =Ω ×Ω  

[ ]0
eσ  is equilibrium stress, generally referred to as equation of state. By subs-

tituting (8) and (9) in (7) and considering space-time decoupled finite element 
formulation for a spatial discretization T

xΩ  of xΩ  and using GM/WF in space, 
we can obtain the following system of nonlinear ODEs in time [13] [14]: 

[ ]{ } [ ]{ } [ ]{ } { } { }M C K F Pδ δ δ+ + = +                (10) 

in which [ ]M  is a symmetric, constant coefficient mass matrix. [ ]C  and [ ]K  
are damping and stiffness matrices. Following references [13] [14] 

[ ] 1 2 3C C C C     = + +                         (11) 

[ ] 1 2 3K K K K     = + +                        (12) 

Matrices 1C    and 1K    are symmetric and their coefficients are constant, 
2C    and 2K    are nonsymmetric and their coefficients are linear functions  

of { }δ , 3C    and 3K    are also symmetric but their coefficients are qua-
dratic functions of { }δ . Equations (10) are a system of coupled nonlinear ODEs 
in time in { } { },δ δ   and { }δ . The mathematical model (7) - (9) and (10) are 
both based on CCM and are equivalent, except that in (10), space and time are 
decoupled and integration in space for T

xΩ  has eliminated presence of spatial 
coordinates ix . But the spatial details present in (7) - (9) are preserved in (10) 
due to { } { },δ δ   and { }δ  corresponding to spatial locations. 

A one dimensional phenomenological model in a single dependent variable 
cannot describe physics in (7) - (9) or in (10), this is rather obvious. However, if 
we insist in doing so, then in (10) we can retain only a single dependent variable 
δ  (making others zero) to obtain: 

( ) ( )2 2
1 2 3 1 2 3m c c c k k k f Pδ δ δ δ δ δ δ+ + + + + + = + 





        (13) 

It is obvious a single ODE in time as in (13) cannot possibly describe the same 
physics as the system of ODEs (9), hence also can describe the nonlinear dy-
namics physics in (7) - (9). This mathematical model (10) has been discussed in 
ref [14] and is in widespread use in the nonlinear dynamics studies in many 
published works. In this illustration we note that in order to realize the concepts 
of mass [ ]M , damping [ ]C  and stiffness [ ]K , we must be able to substitute 
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constitutive theory (9) in the balance of linear moment (7) and then use GM/WF 
for the spatial discretization. 

Next, we consider CBL of CCM and constitutive theory for TVES with rheol-
ogy for isothermal physics. BLM and the constitutive theory (CCM) are given by 

{ } [ ] [ ]( ){ } { }
2

0
0 02 0b

d
u F J

t
ρ ρ σ

 ∂  − − ∇ =   ∂ 
            (14) 

[ ] [ ] [ ]0 0 0
e dσ σ σ     = +                        (15) 

[ ]
[ ]

[ ] [ ]( )[ ] [ ] [ ]( )[ ]
0

0
1 1 10 0 1 02 2

d
d tr I tr I

t

σ
σ λ µ ε λ ε µ ε λ ε

 ∂           = + + +         ∂
 (16) 

In this case [ ]0
dσ 
   cannot be substituted from (16) into (14), hence the 

nonlinear ODEs like (10) cannot be derived for TVES with memory. Thus, 1D 
phenomenological model like (13) is not possible for TVES with memory. A major 
consequence of this discussion is that in TVES with memory, explicit form of the 
equations containing mass, damping and stiffness matrices (in the form (10)) is 
not possible, primarily due to the fact that the constitutive theory for [ ]0

dσ  is a 
differential equation in [ ]0

dσ  and time t, hence [ ]0
dσ  cannot be substituted in 

BLM from the constitutive equations. 
Thus, for TVES with memory, we obviously need to consider different con-

siderations and approaches in establishing 1D phenomenological models if we 
wish to do so. Unfortunately, in the published works on mathematical models 
for TVES with memory, finite deformation and finite strain physics, we only 
find use of phenomenological models that are not based on CBL of CCM (or 
NCCM). We discuss some of these in the following. In reference [9], Amabili 
considers 1D phenomenological constitutive theories that have been borrowed 
from the references cited as [15] [16] [17] (1968, 1982, 2009) in reference [9]. 
From reference [9], Equations (1), use of two strain rate terms has no basis 
(based on CCM). This constitutive theory (1D), if considered, should read (only 
in time): 

( ) ( ) ( ) ( )1

d
d

t
t E t t

t
τ

τ λ ε ηε+ = +                    (17) 

1λ  is relaxation time, E is modulus of elasticity and η  is viscosity. τ  is 
stress, ε  and ε  are strain and strain rate. 

First, τ  is deviatoric second Piola Kirchhoff stress and not simple Cauchy 
stress. Secondly, we cannot premultiply (17) by say “Area” (unit area) and view 
(17) as force balance equation as done in reference [9]: 

( ) ( ) ( ) ( )
d

d s d

F t
F t F t F t

t
λ+ = +                   (18) 

where, ( )sF t  is the force due to strain or nonlinear springs and ( )dF t  is si-
milarly force due to nonlinear dissipation. 

If we assume that the force in the spring is up to a cubic function of δ , then 
based on reference [9] we have: 
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( ) ( ) ( )2 3
1 2 3sE F k t k t k tε δ δ δ= = + +                 (19) 

( )2
1 2 3

1 2 3k k k
E

ε δ δ δ= + + 

                    (20) 

( ) ( )( )2 232
1 1 2 3

32
d

kkF k c c t c t
E E E

ηηηηε δ δ δ δ δ δ = = + + = + + 
 

 

    (21) 

then, (18) can be written as: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )2 2
1 1 2 3 1 2 3

d
d

F t
F t k k t k t t c c t c t

t
λ δ δ δ δ δ δ+ = + + + + +   (22) 

In this derivation: 1) there is no basis for (18) from (17). 2) no basis for (19) as 
strains are spatial derivative of displacements. Nonetheless, if we assume that (18) 
and (19) hold, then (22) is the result of correct derivation using them. This is 
similar to Equation (18) in ref [9] (barring third term on the right hand side of 
(2)). 3) We recall that force balance in continuum mechanics (CM) is due to 
balance of linear momenta, in which gradients of stresses appear (per unit vo-
lume). Thus, the statement of force F(t) in (22) is erroneous. Authors in refer-
ence [9] state that if m is the mass and δ  is the acceleration, then ( )F t  acting 
on this mass is in equilibrium with external excitation and they write (Equation 
(3) in ref [9]) the following as equation of motion of the system. 

( ) ( )ˆ sinm F t F tδ ω φ+ = +                     (23) 

Equation (23) is erroneous. We present details in the following using 1D case. 
We have seen in case of TVES without memory that substitution of [ ]0

11dσ  in 
BLM yield BLM purely in displacement 1u . Upon decoupling of space and time 
and using GM/WF in space, we obtain a system of nonlinear ODEs (10) in 
which mass, stiffness and damping matrices are identified. Thus, in order to ob-
tain equation with mδ  as in (17), we must consider BLM (1D for simplicity), 
using τ  for deviatoric second Piola-Kirchhoff stress, we can write: 

2
1 1

0 0 12
1 1

1 0 ,b
xt x t

u uF x t
x xt

ρ ρ τ
  ∂ ∂∂

− − + = ∀ ∈Ω =Ω ×Ω   ∂ ∂∂   
     (24) 

If we consider space-time decoupled finite element formulation for discretiza-
tion T

xΩ  of xΩ  and use GM/WF in space, then we can obtain the following 
system of ODEs: 

[ ]{ } { } { } { }*M F P Fδ + = +                   (25) 

For the sake of completeness and clarity, we present derivation of (25) using 
(24). Consider a discretization T e

x x
e

Ω = Ω


 of spatial domain xΩ  in which  

e
xΩ  could be a three node p-version hierarchical element with higher order global 

differentiability ( [ ]1,e
x e ex x +Ω = ). Let e

hu  and e
hτ  be local approximations of 1u  

and τ  given by (unequal degree): 

( ) ( ) { }

( ) ( ) { }

1
1

1
1

un
e u u u u
h i i e

i
n

e
h i i e

i

u N x t N

N x t N
τ

τ τ τ τ

δ δ

τ δ δ

=

=

 = =  

 = =  

∑

∑                 (26) 
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in which ( )u
iN x  and ( )1iN xτ  are approximation functions for e

hu  and e
hτ . 

u
iδ  and i

τδ  are corresponding degrees of freedom. 
Let ( )uv x  be test functions such that ( )1

u e
hv x uδ=  (GM/WF), thus  

( ) ( )1 1 ; 1,2, ,u u
j uv x N x j n= =  . Using fundamental lemma [4] [5], we can write 

the following integral form of (24) over T
xΩ . 

( )
2

0 0 1 12
1 1

1 , 0
e
x

e e
b e uh h

h
e

u uF v x
x xt

ρ ρ τ
Ω

   ∂ ∂∂
− − + =     ∂ ∂∂    

∑         (27) 

or 

( ) ( )( )

( )

2

0 1 0 1 12

1
1 1

, ,

1 , 0

e
u b uh

e
xee e

x

e
e uh
h

e e
x

u v x F v x
t

u v x
x x

ρ ρ

τ

Ω
Ω

Ω

 ∂
− 

∂ 

   ∂∂
− + =     ∂ ∂   

∑ ∑

∑            (28) 

In the third term, we perform integration by parts once to transfer one order 
of differentiation with respect to 1x  to ( )1

uv x . 

( ) ( )( )

( ) ( )
1

2

0 1 0 1 12

1
1

1 1 1

, ,

1 , 1 0

e
xe

x

e

e
ex

e
u b uh

e e

xue e
e e uh h
h h

e e x

u v x F v x
t

v xu u v x
x x x

ρ ρ

τ τ
+

Ω
Ω

Ω

 ∂
− 

∂ 

   ∂   ∂ ∂
+ + − + =       ∂ ∂ ∂      

∑ ∑

∑ ∑      (29) 

substituting from (26) into (29) and using ( ) ( )1 1 ; 1,2, ,u u
j uv x N x j n= =  , we ob-

tain: 

( ) ( ) ( )( )

( ) ( ) ( )
1

0 1 1 0 1 1
1

1
1 1

11 1 1

, ,

1 , 1 0

u

e
xe

x

e

ee
x

n
u u u b u
i i j j

e i e

xue en
j e uh h

i i h j
e i e x

N x N x F N x

N xu uN x N x
x x x

τ
τ τ

ρ δ ρ

δ τ

+

Ω
= Ω

=
Ω

 
− 

 

   ∂   ∂ ∂
+ + − + =       ∂ ∂ ∂      

∑ ∑ ∑

∑ ∑ ∑



 (30) 

or 

{ } { } { } { }( ) 0e u e e e
e e

e
M F B Pτδ δ   − + + =   ∑             (31) 

{ } { } [ ]{ } { } 0u F B Pτδ δ− + − =                 (32) 

[ ] { } { } [ ] { } { }
{ } { } { } { }

, , ,

and

e e e e

e e e e

u u
e e

e e

M m F F B B P P

τ τδ δ δ δ

 = = = = 

= =

∑ ∑ ∑ ∑
 

 

      (33) 

We can also write (32) as: 

[ ]{ } { } { } { }*uM F F Pδ + = +                  (34) 

{ }P  is a vector of secondary variables and { } [ ]{ }*F B τδ= . 
This completes the derivation of (25). 
Equation (34) is a system of un  coupled nonlinear ODEs in degrees of free-
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dom { }uδ  and { }τδ . [ ]M  is not a diagonal matrix. However, if we approx-
imate M by a diagonal matrix [ ]m , then we can write (34) as (using, im  as 
diagonal element of [ ]M ): 

* ; 1,2, ,u
i i i i i um F F P i nδ + = + =

                (35) 

From (34) a typical ODE can be viewed as (with harmonic excitation): 

( )*
0 sinm F f tδ ω+ =                     (36) 

We note that *F  in (36) has no connection with ( )F t  in (22), thus we 
cannot write (23) by simply replacing *F  in (36) by ( )F t  in (22). It is con-
clusive that (23) has no real physics and its derivation has questionable and se-
rious issues. Rest of the details that follow Equation (23) in reference [9] are of 
little consequence. 

Remarks 
1) Constitutive Equation (17) is valid form for 1D case (based on (16)), except 

that τ  must be function of space 1x  and time t instead of just time (otherwise 
strain has no meaning) i.e., 

( ) ( ) ( ) ( )1
1 1 1 1

,
, , ,

x t
x t E x t x t

t
τ

τ λ ε ηε
∂

+ = +
∂

            (37) 

Now, there is no need to go through (19) - (22) (phenomenological). We can 
actually define Green’s strain and its time derivative. 

( )
2

1 1
11

1 1

1,
2

u ux t
x x

ε
 ∂ ∂

= +  ∂ ∂ 
                  (38) 

( ) ( )( ) 1 1 1 1
11 11 1

1 1 1

, , ;v u v ux t x t v
t x x x t

ε ε
∂ ∂ ∂ ∂∂

= = + =
∂ ∂ ∂ ∂ ∂

         (39) 

2) Force balance is not defined by (23), but instead by balance of linear mo-
menta (as we have shown): 

( )
2

1 1
0 0 1 12

1 1

1 , 0bu uF x t
x xt

ρ ρ τ
  ∂ ∂∂

− − + =   ∂ ∂∂   
          (40) 

In (37) and (40), ( ),x tτ  is deviatoric contravariant second Piola-Kirchhoff 
stress. Now, instead of (22) and (23) as in reference [9], we have (37) and (40). 

We clearly see that ( ),x tτ  from (37) cannot be substituted in (27). Hence, it 
is not possible to obtain balance of linear momenta purely in terms of displace-
ment and its spatial and time derivatives. As a consequence, we cannot derive 
mass, stiffness and damping matrices from the BLM by using GM/WF for a spa-
tial discretization (space-time decoupled) as in case of TVES with rheology. 

3) Definition of force F using (18) and its use in (23) both are erroneous. We 
remark that in BLM (force balance) gradients of stresses appear, not forces de-
fined using stresses based on some area (or unit area). 

4) We had to present these details to illustrate that the mathematical model 
used in ref [9] has many inconsistencies and errors, hence it is not a valid phe-
nomenological mathematical for 1D physics of TVES with memory. This model 
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has been used subsequently in published works. 
5) We keep in mind that 1D models of any kind that are purely in time cannot 

be used to study nonlinear dynamics of continuous TVES with memory in 1  
or 2  and 3 . As we have emphasized, 1D phenomenological models in time 
are not even valid for 1D continua media [14]. 

In references [10] [11], the authors utilize exactly the same approach as in ref-
erence [9] for the mathematical model but the model uses fractional derivatives. 
The issues discussed regarding reference [9] apply to references [10] [11] as well. 
In reference [12], authors utilize Hamilton’s principle and Rayleigh dissipation 
functional to establish mathematical model for TVES without memory. The re-
sulting mathematical model cannot be supported by CBL of CCM, hence is 
thermodynamically inconsistent. In reference [13] authors consider the same 1D 
constitutive theory purely in time as used in reference [9]. The authors express 
( )tε  and ( )tτ  in terms of trigonometric series in tω  using different coeffi-

cients for ( )tε  and ( )tσ . Why are nonlinear strains and stresses a result of 
superposition of various terms in Equations (2) and (3) in reference [10]? In any 
case, if we proceed further we find that damping matrix is diagonalized (Equa-
tion (48) in ref [10]). None of these steps are supported by CCM and the modal 
basis transformations are only applicable in linear dynamics. In our view, works 
reported in reference [10] are of little consequence due to the fact that for con-
tinuous TVES with memory, a constitutive model will have space as well as time, 
hence the treatment in reference [10] (Equations (1) - (16) on page 276) is of lit-
tle consequence for TVES matter with memory. We remark that derivation of 
mathematical model in reference [10] (in Section 3, beginning with page 278) 
based on potential energy is not supported by calculus of variations and mathe-
matical classification of differential operators [4] [5]. Authors in reference [10] 
eventually derive matrix and vector forms of equations of motion (Equation (44)) 
in which mass, stiffness and damping matrices appear explicitly. We have shown 
that this is not possible for TVES with rheology due to the fact that the constitu-
tive theory for deviatoric stress is a differential equation in time, hence deviator-
ic stresses from the constitutive theory cannot be substituted in BLM, an abso-
lutely essential step to obtain discretized BLM in which mass, stiffness and damp-
ing matrices appear explicitly when using space-time decoupled method with 
GM/WF for the spatial discretization. 

In another reference [11], authors present “a review of nonlinear dynamics of 
hyperelastic structures”. Our view is that if the physics has nonlinearity and ir-
reversibility due to dissipation, use of energy methods cannot be supported by 
calculus of variations and differential operator classification for IVPs as well as 
BVPs. In reference [12] dynamics of clamped rubber plates are investigated us-
ing energy methods. Few other publications also follow similar approaches dis-
cussed above. To our knowledge, complete mathematical models consisting of 
conservation and balance laws of CCM and constitutive theories derived using 
entropy inequality and representation theorem for TVE solids undergoing finite 
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deformation and finite strain (hence nonlinear mechanisms of elasticity, dissipa-
tion and rheology) and the methods of obtaining their solutions have not been 
investigated in the published works. 

In a recent paper Surana et al. [13] presented thermodynamically and mathe-
matically consistent mathematical model in Lagrangian description using CCM 
for thermoviscoelastic solids without memory using contravariant second Pi-
ola-Kirchhoff stress tensor, Green’s strain tensor (a covariant measure) and rates 
of Green’s strain tensor up to order n. This mathematical model was used to de-
rive a space-time decoupled finite element formulation for plates and shells, thus 
incorporating finite deformation, finite strain and rates of finite strain up to or-
der n with formulations. In this formulation, stiffness as well as damping ma-
trices are up to quadratic functions of the dofs, hence are nonlinear. Rayleigh 
damping is also discussed and incorporated in the mathematical model. An iter-
ative solution procedure is also presented for obtaining solutions of the BVP as-
sociated with the corresponding IVP. 

In another recent paper by Surana et al. [14] various aspects of finite deforma-
tion, finite strain nonlinear dynamics and dynamic bifurcation in TVES without 
memory are considered in detail using currently used 1D phenomenological 
models as well as using the thermodynamically and mathematically consistent 
mathematical models based on CCM presented in reference [13]. The work pre-
sented in this paper is an extension, modification and application of many con-
cepts and methodologies presented by Surana et al. in reference [13], hence we 
summarize significant aspects of the findings and the conclusion of reference [13] 
in the following. 

1) Considering the mathematical model for TVEs without memory based on 
CCM, if we use space-time decoupled finite element method in conjunction with 
GM/WF in space, and then we obtain a system of nonlinear ODEs in time. 

[ ]{ } [ ] [ ]{ } [ ]{ } { } { }
1

n

i i
i

M C K F Pδ δ δ
=

+ + = +∑            (41) 

In (41) material derivative of Green’s strain rate up to order n have been used 
in describing dissipation physics. Matrices [ ]K  and [ ]iC  consists of the addi-
tion of following three matrices. 

[ ] [ ] [ ] [ ]
1 2 3

i i i iC C C C     = + +                        (42) 

[ ] 1 2 3K K K K     = + +                        (43) 

{ }δ  in (41) are the degrees of freedom for the spatial discretization and 

[ ]{ }iδ  is the time derivative of { }δ  of order i. 
Matrices [ ]

1 1, iK C       have constant coefficients, coefficients of [ ]
2 2,iC K       

and [ ]
3 3,iC K       are linear and quadratic functions of { }δ .  

[ ]
1 3 1 3, , , iiK K C C              are symmetric, but [ ]

2 2, iK C       are non symmetric. 

2) When integrating (41) in time using methods such as Newmark linear ac-
celeration with Newton’s linear method for each time step, we find that compu-
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tation of incremental solution of { }δ∆  requires inverse of a symmetric “tan-
gent matrix [ ]TH ” that consists of the sum of [ ]M , the tangent stiffness ma-
trix [ ]TK , the tangent damping matrix [ ]TC  and another term containing 
variation of damping matrix with appropriate multipliers (Equation (94) in ref 
[14]). [ ]M  is a constant coefficient consistent mass matrix. Tangent stiffness 
matrix [ ]TK  consists of addition of four symmetric matrices. 

[ ] [ ]1 2 3
TK K K K Kσ     = + + +     

  

                (44) 

Coefficients of 1K    are constant and those of 2K  


 and 3K  


 are linear 
and quadratic functions of { }δ . Matrix [ ]Kσ  is the stiffness matrix due to 
presence of stress field. Symmetric tangent damping matrix [ ]TC  has the same 
structure as [ ]TK  (44). [ ] [ ], TM C  and [ ]TK  clearly identify the physics due 
to stiffness, damping and mass that influence nonlinear dynamics and dynamic 
bifurcation phenomenon in TVES without memory. We remark that this physics 
is implicitly present in the mathematical model based on CBL of CCM and the 
constitutive theories. However, the details presented above show that explicit 
dependence of nonlinear dynamic response on various aspects of the physics is 
only possible due to the use of Newmark time integration in conjunction with 
Newton’s linear method for each time step. 

3) Stiffness matrix due to stress field [ ]Kσ  is shown to play a key role in 
static as well as dynamic bifurcation. The static bifurcation is purely controlled 
by [ ]TK  and can only exist if [ ]Kσ  is negative (due to compressive stress field). 
When [ ]Kσ  is positive (due to tensile stress field), static bifurcation is not 
possible. 

4) In the case of nonlinear dynamics, [ ] [ ], TM C  and [ ]TK , all three control 
the evolution (solutions of IVP), hence dynamic bifurcation depends on: 

a) Tangent stiffness matrix [ ]TK  which consists of [ ]Kσ . 1 2,K K      


 and 
3K  


.  
b) [ ]TC  i.e., tangent damping matrix similar to [ ]TK  defining dissipation 

mechanism. Dissipation provides resistance to motion, hence higher dissipation 
contributes to inhibiting dynamic bifurcation and vice versa.  

c) Translational inertial physics due to [ ]M  causes reduction in stiffness, 
hence enhances dynamic response and therefore enhances likelihood of the ex-
istence of dynamic bifurcation phenomenon.  

d) It was shown that by an appropriate combination of the magnitude of the 
applied force and damping, dynamic bifurcation presence or absence can be in-
fluenced.  

5) The existence of static bifurcation is not a necessary condition for dynamic 
bifurcation. 

6) 1D nonlinear phenomenological models in time can never describe nonli-
near dynamics and dynamic bifurcation of continuous systems in which space 
and time are always intrinsically coupled and present. In space-time decoupled 
methods, nonlinear ODEs in time preserve spatial details through { } { },δ δ  and 

{ }δ , whereas a single ODE in time, a lumped description in space, cannot de-
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scribe the nonlinear dynamic response of continuous media as all the physics 
related to space is lost in this description. 

7) In TVES with finite deformation, finite strain, dissipation mechanism con-
verts some mechanical work into entropy which is non recoverable, hence the 
deformation process in nonlinear dynamics of TVES is irreversible, making the 
solutions of the corresponding IVPs path dependent. The severity of path de-
pendency upon the amount of entropy production is controlled by the dissipa-
tion coefficient and magnitude of applied disturbance. In the linear dynamics of 
TVES, there is entropy production, but since the IVPs are linear, their solution 
cannot exhibit path dependency. Frequency response for damped linear systems 
is well known example of path independent frequency response. 

8) The presence of nonlinearity in the PDEs and some irreversible physics is 
essential for the solutions of PDEs to be path dependent. In static bifurcation 
(TES), the strain and deformation are finite but there is the absence of irreversi-
bility (conversion of some mechanical energy into entropy), hence static bifurca-
tion processes defined by nonlinear PDEs are path independent, that is the solu-
tions are independent of the increment of the load. 

9) Using nonlinear dynamics of a TVE axial rod fixed at one end and sub-
jected to harmonic excitation at the other end, authors in reference [14] illu-
strated significance of [ ]TK  and in particular [ ]Kσ , damping mechanism due 
to [ ]TC  and the translational inertial physics due to [ ]M  and linear accelera-
tion. 

a) When the excitation force magnitude is sufficient to cause nonlinearities in 
the deformation physics in TVES, the frequency response is always path depen-
dent due to nonlinearities in the IVP and the presence of irreversibility due to 
damping. 

b) In the case of TVE axial rod, [ ]Kσ  is always negative, hence dynamic bi-
furcation always occurs to the left of the peaks. 

c) When [ ]Kσ  is positive (bending of plates, shells, beams etc.) the dynamic 
bifurcation will occur to the right of the peak. 

d) Path dependency results in bifurcation at different frequencies in L R→  
( 1 nω ω→ ) and L R←  ( 1 nω ω← ) paths. 

e) Due to the nature of external load (harmonic excitation) the rod is always 
in steady compression due to which the positive and the negative peak ampli-
tudes differ when the response has become cyclic and repetitive. Negative peaks 
are always larger in magnitude than the positive peak, thus negative peaks show 
bifurcation more distinctly. Both peaks naturally show bifurcation at the same 
frequency. 

f) The magnitude of the applied force and damping coefficient are critical in 
dynamic bifurcation. Lower damping and higher force are the most preferred 
choice for the likelihood of the existence of dynamic bifurcation. For a fixed 
force, the likelihood of the existence of bifurcation is enhanced by progressively 
reduced damping. Likewise for a fixed damping, bifurcation can be facilitated by 
increasing force. 
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10) There are many concerns regarding the validity and rigor of some of the 
mathematical models and solution techniques used to study nonlinear dynamics 
and dynamic bifurcation physics of continuous solid media in the published 
works. Some of these are summarized in the following. 

a) We have established that 1D phenomenological mathematical model like 
(53) of ref [14] cannot possibly describe the nonlinear dynamics and dynamic 
bifurcation physics of a continuous solid media.  

b) We have clearly demonstrated that 3 1k = −  and 3 1k =  (in (53) of ref [14]) 
do not correspond to negative [ ]Kσ  and positive [ ]Kσ . The derivation of 
[ ]Kσ  in time integration of ODEs (1) with Newton’s linear method clearly de-
monstrates this.  

c) The nonlinear ODEs (1) resulting from the CBL of CCM after using 
space-time decoupled finite element method with GM/WF for the spatial discre-
tization contains degrees of freedom { }δ  and their time derivatives { } { },δ δ   
that correspond to the nonlinear problem. These cannot be transformed using a 
modal basis determined from the linear form of ODEs (1) in which [ ]K  is 
constant. Authors in ref [14] presented details in the paper to show that forcing 
this transformation on (1) followed by the use of Rayleigh damping (see refer-
ence [18] [19] for issues with Rayleigh damping) leads to a system of decoupled 
ODEs that neither describes linear dynamics nor nonlinear dynamics. Hence, 
our view is that all nonlinear dynamic studies based on this approach are not 
supported by the mathematical models based on CBL of CCM followed by rather 
straightforward space-time coupled or space-time decoupled methods of ob-
taining their solutions, like we have presented in this paper and ref [13] [14]. 

d) Transformation of (1) to modal basis using linear modes of vibrations de-
rived using linear form of (1) is obviously flawed mathematically, but there is 
another significant issue in this approach. In this approach, the solution of a 
nonlinear problem reduces to the superposition of linear modes of vibrations 
using modal participation factors that are determined using nonlinear ODEs in 
the participation factors, Equation (18) of ref [14]. Superposition of any sort 
cannot be entertained for a nonlinear problem. This is another serious and fun-
damental problem in this approach. 

e) In many published works, the trigonometric series with undetermined 
coefficients are used as solutions of the mathematical models in nonlinear dy-
namics. These solutions are obviously based on superposition which is not valid 
for a nonlinear system. Furthermore, the trigonometric functions are chosen 
such that their linear combinations with undetermined coefficients satisfy the 
necessary BCs and ICs. The values of the undetermined coefficients are estab-
lished based on the fact that this solution must be in agreement with some 
measured experimental response of interest. This approach is more like estab-
lishing an analytical expression using the mathematical model that matches ex-
perimental results, in other words, similar to curve fit to the experimental data. 
From the solutions of ODEs and PDEs, we know that the solution consists of the 
sum of complementary and particular solutions. Complementary solution has 
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undetermined coefficients (as many as supported by BCs and ICs depending 
upon BVP or IVP) and satisfies homogeneous form of the equations. Undeter-
mined coefficients in the complementary solution are determined by ensuring 
that the total solution satisfies all BCs and ICs. In this approach, the solution of 
the mathematical model has nothing to do with experimental measurements i.e., 
it is completely independent of the experiment. A comparison of the solution 
calculated using this approach with the experimental measurements is now 
helpful in determining if the mathematical model and the experiment are ad-
dressing the same physics (of course barring errors in either approach). 

2. Scope of Work 

In this paper, we derive mathematical model for finite deformation, finite strain 
nonlinear dynamics of TVES with memory in Lagrangian description that con-
sists of 1) conservation and balance laws of CCM in which deviatoric second Pi-
ola-Kirchhoff stress tensor and rate of covariant Green’s strain tensor are rate of 
work conjugate pair. 2) The constitutive theories for deviatoric second Piola- 
Kirchhoff stress tensor and heat vector are derived using conjugate pairs in the 
entropy inequality and the representation theorem. The dissipation mechanism 
is based on material derivatives of the Green’s strain tensor up to order n. The 
rheology mechanism requires the constitutive theory for the deviatoric second 
Piola-Kirchhoff stress tensor to be a differential equation in time [6]. Generali-
zation of this leads to consideration of the material derivatives of the deviatoric 
second Piola-Kirchhoff stress up to order m in which the mth material derivative 
is considered as constitutive tensor, remaining material derivatives up to order 
(m − 1) become the argument tensors of mth material derivative. 

Two approaches of obtaining the solutions of the mathematical model (IVPs) 
are discussed in the paper: 1) space-time coupled finite element approach based 
on a space-time strip or a space-time slab with time marching. The approach is 
based on space-time residual functional (STRF) and is unconditionally stable for 
all classes of space-time differential operators [4], 2) a space-time decoupled fi-
nite element method with GM/WF for the spatial discretization. This approach 
results in a system of nonlinear ODEs in time that can integrated in time using 
Newmark linear acceleration method with Newton’s linear method for each in-
crement of time (described in detail in reference [14]). Merits and shortcomings 
of these two methodologies of obtaining solution of IVPs are well documented 
in ref [4]. 

Various factors influencing nonlinear dynamics and dynamic bifurcation in 
TVES with memory are identified and their influence on the nonlinear dynamic 
response and dynamic bifurcation is discussed and illustrated using the mathe-
matical model as well as the model problem studies. The results of the model 
problem studies considered in this paper are also compared with those obtained 
for TVES without rheology to illustrate the influence of rheology on nonlinear 
dynamic response and dynamic bifurcation phenomenon. 
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3. Preliminary Considerations 

Thermoviscoelastic solids with dissipation and memory mechanisms are poly-
meric solids (rubbers or rubber like materials). Such materials contain short 
chain molecules of the solvent and the long chain molecules of the polymer. 
Both provide elasticity and dissipation mechanisms, but the rheology (memory) 
is only due to the presence of long chain molecules [20] [21]. 

If the composition of the polymeric solid is dominated by the short chain mo-
lecules, then the memory mechanism is weak and we refer to these as non-dense 
polymeric solids. If the polymeric solid composition is heavily dominated by the 
long chain molecules then we refer to them as dense polymeric solids with pro-
nounced rheology. 

When an external stimulus is applied to a polymeric solid, the long chain mo-
lecules in the coiled relax state begin to unwind. In doing so these must over-
come the viscous drag due to solvent as well as polymer. Excessively large de-
formation of rubber like materials is due to the unwinding of the long chain 
molecules. Upon cessation of external stimulus, the stretched long chain mole-
cules begin to retreat to their relaxed (stress free) coiled state. In doing so they 
must also overcome the viscous, resistive forces due to the solvent and the poly-
mer. The result is that, after cessation of external stimulus, it takes finite amount 
of time for the long chain molecules to resume their stress free state. The physi-
cal time to achieve relaxed state is a function of a time constant of material re-
ferred to as relaxation time. It can be shown that relaxation modulus that is a 
function of relaxation time can be used to determine clock time for a polymeric 
solid to achieve complete stress relaxation. Such materials are referred to as 
having memory or rheology. A material with larger relaxation time takes longer 
to achieve stress free state as opposed to a polymeric solid with smaller relaxa-
tion time. This physics of rheology is often termed as short term memory phys-
ics. 

In this paper we consider CBL of CCM with finite deformation, finite strain, 
compressible, non-isothermal physics. Constitutive theories for volumetric change, 
distortional change, dissipation and memory mechanisms are derived using en-
tropy inequality in conjunction with representation theorem. This mathematical 
model (in 3 ) has strict adherence to CBL of CCM and the constitutive theo-
ries are strictly based on entropy inequality and representation theorem. Thus, 
this mathematical model is thermodynamically and mathematically consistent. 

The notations and symbols used in this paper are same as in reference [1] [2] 
and the previous recent papers by Surana et al. [13] [14], hence their explanation 
is not repeated in this paper, but list of nomenclature is provided. We consider 
CBL of CCM and constitutive theories in Lagrangian description. Consideration 
of finite deformation and finite strain necessitates use of contravariant second 
Piola-Kirchhoff stress tensor [ ]0σ  and covariant Green’s strain tensor [ ]0ε  as 
well as their material derivatives (same as ordinary time derivative or convected 
time derivatives) of up to order m and n respectively, [ ]; 1,2, ,j j m= σ  and 
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[ ]; 1,2, ,i i n= ε . A quantity Q with over bar Q  is either defined in the current 
configuration or is an Eulerian description of Q, hence depends upon deformed 
coordinates x  and time t i.e. ( ),Q Q x t= . Likewise ( ),Q Q x t=  is Lagran-
gian description of Q in the current configuration that depends on undeformed 
coordinates x and time t. We follow this throughout the paper. 

We remark that in Lagrangian description density ( ),x tρ  in the current 

configuration is deterministic using conservation of mass, ( ) 0,x t
J
ρ

ρ = . Hence,  

density ( ),x tρ  is not a dependent variable in the mathematical model. Thus, 
conservation of mass (45) cannot be considered as part of the mathematical 
model, hence (45) adds no additional equations to the mathematical model. Se-
condly, balance of angular momenta (47) only establishes symmetry of the 
Cauchy stress tensor ( )0σ , hence symmetry of [ ]0σ  but adds no additional eq-
uations to the mathematical model. Entropy inequality (11) is a condition that 
needs to be satisfied for thermodynamic equilibrium of the deforming matter, 
but it also adds no additional equations to the mathematical model. Thus, the 
mathematical model for non isothermal physics consists of BLM (3 equations) 
and energy equation (1 equation), a total of four PDEs in thirteen dependent va-
riables: u  (3), [ ]0σ  (6), ( )3q , ( )1θ , thus nine additional equations are 
needed to provide closure to this mathematical model. These are obtained from 
the constitutive theories for [ ]0σ  (6) and ( )3q . 

4. Complete Mathematical Model 

Complete mathematical model in Lagrangian description for finite deformation, 
finite strain nonlinear dynamics of TVES with rheology consists of: 1) CBL de-
rived using CCM in which contravariant second Piola-Kirchhoff stress tensor 
and covariant Green strain tensor and their material derivatives of up to order m 
and n (respectively) and 2) and the desired constitutive theories derived using 
entropy inequality in conjunction with representation theorem. We present de-
tails of the CBL of CCM for finite deformation, finite strain and details of the 
derivation of the constitutive theories in the following sections. 

4.1. Conservation and Balance Laws of CCM 

Following references [1] [2], we can derive the following in the current configu-
ration for conservation of mass, balance of linear momenta, balance of angular 
momenta, first and second laws of thermodynamics based on CCM in Lagran-
gian description. 

( ) ( )0 ,0 ,J tρ ρ=x x                     (45) 

{ } { } [ ] [ ]( ){ }
2

0
0 02 0bD u

F J
Dt

ρ ρ  − − ∇ = σ             (46) 

[ ] [ ] T0 0σ σ   =                          (47) 

[ ]
[ ]

0
0 0: 0De

Dt
ρ + ⋅ − =g σ ε∇                   (48) 
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[ ]
[ ]

0
0 0: 0D D

Dt Dt
φ θρ η

θ
⋅ + + − ≤ 

 

q g
σ ε               (49) 

The symbols used in (45) - (49), conservation of mass, balance of linear mo-
menta, balance of angular momenta, first and second law of thermodynamics are 
defined in nomenclatures. [ ]J , the deformation gradient tensor, g  the tem-
perature gradients and { }u  the displacement vector are defined as: 

[ ] { }
{ } [ ] { }

{ }
x u

J I
x x

    ∂ ∂
= = +    

∂ ∂        
                 (50) 

θ= ⋅g ∇                          (51) 

{ } [ ]T1 2 3, ,u u u u=                       (52) 

In Lagrangian description, D
Dt t

∂
=
∂

 holds. We remark that specific internal  

energy e and entropy density η  are not dependent variables in the mathemati-
cal model as: 

( ) ( ) ( )( ), , , ,e t e t tρ θ=x x x                   (53) 

Helmholtz free energy density Φ  and η  are not dependent variables in the 
mathematical model as shown in Section 4.2. 

4.2. Constitutive Theories 

In this section, we present derivations of constitutive theories for contravariant 
second Piola-Kirchhoff stress tensor and heat vector. In a compressible poly-
meric solid (or any other deforming solid), the total deformation can be de-
composed into volumetric and deviatoric. The volumetric deformation results in 
change of volume for a fixed mass without change in shape whereas distortion 
deformation results in distortion of the shape of the volume of matter without 
change in volume. Since both of these deformations are mutually exclusive, a 
single constitutive theory for [ ]0σ  stress tensor cannot possibly be used to de-
scribe both deformation physics. This requires additive decomposition of [ ]0σ  
into equilibrium ( [ ]0

eσ ) and deviatoric ( [ ]0
dσ ) stress tensors. 

[ ] [ ] [ ]0 0 0= +e dσ σ σ                        (54) 

The constitutive theory for [ ]0
eσ  addresses volumetric deformation physics 

and the distortional physics is addressed by the constitutive theory for [ ]0
dσ . 

For a volume with fixed mass, a change in volume without change in mass re-
sults in the change of density of the matter in the volume. Also, a uniform tem-
perature increase or decrease for a volume of matter with fixed mass will result 
in pure change in volume, thus influencing density. Thus, volumetric deforma-
tion is a function of density ( ( ),tρ x ) and temperature θ . 

[ ] [ ] ( ) ( )( )0 0 , , , ,t t tρ θ=e e x xσ σ                  (55) 

Since ( ),tρ x  is not a dependent variable in CBL in the Lagrangian descrip-
tion as it is deterministic from conservation of mass (45), the constitutive tensor 
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( )0
eσ  in (55) cannot include ( ),tρ x  as its argument tensor. To correct this 
situation, we need to consider Eulerian description, in which density ( ),tρ x  is 
a dependent variable in the CBL, hence can be included as argument tensor of 

( )0
eσ , equilibrium contravariant Cauchy stress tensor and we would have:  

( ) ( ) ( ) ( )( )0 0 , , , , .e e x t x t tρ θ=σ σ                  (56) 

Substituting (56) in (49), we obtain: 

[ ]
[ ]

[ ]
[ ]

0 0
0 0 0: : 0D D

Dt Dt
θρ η

θ
Φ ⋅ + + − − ≤ 

 
e d

q g
 σ ε σ ε          (57) 

Conjugate pairs [ ]
[ ]

0
0, :

θ
⋅

e
q g

σ ε  and [ ]
[ ]

0
0:d σ ε  in conjunction with axioms  

of constitutive theories [1] [2] suggest [ ] [ ]0 0, ,e dq σ σ  to be the possible choice of 
constitutive tensors with g  and [ ]0ε  to be the possible choice of their argu-
ment tensors. Additionally, θ  is also included as an argument tensor of these 
constitutive tensors due to non isothermal physics. Thus, at this stage, we have 
(time t is assumed to be an argument for al constitutive tensors): 

[ ] [ ]
[ ]( )0 0
0 ,θ=d dσ σ ε                      (58) 

[ ] [ ]
[ ]( )0 0
0 ,θ=e eσ σ ε                      (59) 

( ),θ=q q g                          (60) 

Comparing (59) with (55) and (56), we clearly note that choice of [ ]0ε  as an 
argument tensor of [ ]0

eσ  is not valid. Since the Lagrangian description does not 
have mechanism of deriving constitutive theory for [ ]0

eσ , insistence on doing so 
i.e., substitution of (54) in (49), has caused this situation. We can continue fur-
ther using (49) if we keep in mind that [ ]

[ ]
0

0,e σ ε  is not a valid rate of work 
conjugate pair and that the constitutive theory for volumetric deformation 
physics must be derived using Eulerian description of CBL. 

The mechanism of dissipation requires at least [ ]1ε  to be argument tensor of 
[ ]0

dσ . If we assume that strain rates [ ]; 1,2, ,i i n= ε  contribute to dissipation, 
then they all must be included as argument tensors of [ ]0

dσ . Thus, (58) can be 
modified: 

[ ] [ ]
[ ] [ ]( )0 0
0 , , ; 1,2, , .i i nθ= =d d σ σ ε ε                (61) 

From the constitutive theories for polymeric fluid [1] [2] [6], we know that 
presence of memory necessitates that the constitutive theory for the deviatoric 
stress tensor must at least be a first order differential equation in [ ]0

dσ  and time 
i.e., in the constitutive theory for deviatoric second Piola-Kirchhoff stress tensor, 
we must at least consider [ ]0

dσ  as well as [ ]1
dσ , with [ ]1

dσ  as constitutive ten-
sor having [ ]0

dσ  as its argument tensor. We can generalize this choice by con-
sidering stress rate tensors [ ]; 1,2, ,k

d k m= σ  and stress tensor [ ]0
dσ , with 

[ ]m
dσ  as constitutive tensor and [ ]; 0,2, , 1k

d k m= −σ  as its argument tensors. 
Thus, (61) can be written as: 
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[ ] [ ]
[ ] [ ]

[ ]( )0 , , , ; 1,2, , ; 0,1, , 1m m j
d d di i n j mθ= = = − σ σ ε ε σ      (62) 

Choice of φ  and η  as additional constitutive tensors is valid at this stage 
based on entropy inequality (57). 

The choice of the argument tensors of φ  and η  is not so straight forward at 
this stage, but can use principle of equipresence to begin with, thus we can write 
the following: 

[ ] [ ]
[ ]( )0 , , , ,j

di θΦ = Φ gε ε σ                    (63) 

[ ] [ ]
[ ]( )0 , , , ,j

diη η θ= gε ε σ                     (64) 

[ ] [ ]
[ ] [ ]

[ ]( )0 0
0 , , ,j

d d di θ=σ σ ε ε σ                  (65) 

( ),θ=q q g                          (66) 

where 1,2, , ; 0,1, , 1i n j m= = −  . [ ]0
eσ  is omitted in the above list as con-

stitutive theory for [ ]0
eσ  cannot be derived in Lagrangian description. 

Using arguments of Φ , we can obtain material derivative of Φ , 

[ ]( ) [ ]
[ ]( ) [ ] [ ]( )

[ ]
1

0
1 00

: : :
n m

j
di j

i j di

D
Dt

φ θ
θ

−

= =

Φ ∂Φ ∂Φ ∂Φ ∂ ∂Φ
= Φ = + + + ⋅ +

∂ ∂∂ ∂ ∂
∑ ∑ g

ge


  ε ε σ
ε σ

 (67) 

substituting D
Dt
Φ  from (67) into (57): 

[ ]( ) [ ]
[ ]( ) [ ] [ ]

[ ]

[ ]
[ ]

[ ]
[ ]

1

0 0
1 00

0 0
0 0

: : :

: : 0

n m
j

di j
i j di

ρ

φ θ
θ θ

−

= =


∂Φ ∂Φ ∂Φ + + ∂ ∂ ∂

∂ ∂Φ ⋅
+ ⋅ + + − − ≤∂ ∂ 

∑ ∑

e d

e

q gg
g

  



  

ε ε σ
σε

σ ε σ ε         (68) 

Regrouping terms in (68): 

[ ]( )
[ ]

[ ]
[ ]( ) [ ] [ ]

[ ]
1

0
0 0 00

1 00

0 0

: : :

0

n m
j

di j
i j di

ρ ρ ρ

φρ η θ ρ
θ θ

−

= =

 
∂Φ ∂Φ ∂Φ − + +  ∂ ∂ ∂ 

∂Φ ∂ ⋅ + + + ⋅ + ≤ ∂ ∂ 

∑ ∑e
e

q gg
g

  





σ ε ε σ
σε

   (69) 

The entropy inequality (69) holds for arbitrary but admissible [ ]; 1,2, ,i i n=
ε ; 

[ ]; 0,1, , 1j
d j m= −σ , θ , and g  if their coefficients are set to zero i.e., if the 
following holds: 

[ ]
[ ]( )0 0 ; 1,2, ,i

i

i nρ ∂Φ
= ⇒Φ ≠ Φ =

∂
e 

ε
             (70) 

[ ]
[ ]( )0 0 ; 0,1, , 1j

dj
d

j mρ ∂Φ
= ⇒Φ ≠ Φ = −

∂
σ

σ
          (71) 

0 0ρ η η
θ θ

∂Φ ∂Φ + = ⇒ = − ∂ ∂ 
                 (72) 
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( )0∂Φ
= ⇒Φ ≠ Φ

∂
g

g
                    (73) 

Remarks 
From (69) - (73), we can conclude the following: 
1) Equations (70) and (71) imply that Φ  is not a function of [ ]; 1,2, ,i i n= ε  

and [ ]; 0,1, , 1j
d j m= −σ . 

2) Based on (73), Φ  is not a function of g  either. 
3) Equation (72) implies that η  is not a constitutive variable as η  is defined 

by 
θ

∂Φ
−
∂

. 

4) Based on (73), Φ  does not depend upon g . 
5) Thus, now we have the following constitutive tensors and their argument 

tensors:  

[ ]( ),i θΦ = Φ ε                       (74) 

[ ] [ ]
[ ] [ ]

[ ]( )0 , , , ; 1,2, , ; 0,1, , 1m m j
d d di i n j mθ= = = − σ σ ε ε σ    (75) 

( ),θ=q q g                        (76) 

and the entropy inequality (69) reduces to 

[ ]

[ ]
[ ]

[ ]
[ ]

0 0
0 0 0

0

: : 0ρ
θ

 ∂Φ ⋅ − − + ≤
 ∂ 

e d
q g

 σ ε σ ε
ε

           (77) 

We cannot set the coefficient of [ ]0ε  in the first term of (77) to zero as it 
would imply: 

[ ] [ ]( )
[ ]

00
0

0

,θ
ρ

∂Φ
=

∂e

ε
σ

ε
                   (78) 

which implies that [ ]0
eσ  depends upon [ ]0ε , but [ ]0

eσ  depends on density and 
temperature only. Thus, (78) is obviously erroneous. Hence, constitutive theory 
for [ ]0

eσ  cannot be derived using (77). This of course is due to the fact that 
conservation of mass in Lagrangian description permits calculation of density 
( ),tρ x , hence ( ),tρ x  is not a dependent variable in the mathematical model. 

We must consider equivalent of the first term in (77) in Eulerian description to 
derive constitutive theory for [ ]0

eσ . 

4.2.1. Constitutive Theory for [ ]
e

0σ  

In the following, we derive constitutive theories for [ ]0
eσ  for compressible as 

well as incompressible thermoviscoelastic solid with memory. 
Compressible matter 
We consider entropy inequality in Eulerian description [1] [2] (using contra-

variant Cauchy stress tensor): 

( )0 : 0D D
Dt Dt

θρ η
θ

 Φ ⋅
+ + − ≤ 

 

q g Dσ                (79) 
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( ) ( ) ( )0 0 0
e d= +σ σ σ                       (80) 

We can write the following constitutive tensors and their argument tensors for 
thermoviscous case in which dissipation is dependent on D  (symmetric part of 
velocity gradient tensor): 

( ) ( ) ( ) ( )( )0 0 , , , ,e e x t x tρ θ=σ σ                  (81) 

( ) ( ) ( )0 0 , , ,d d ρ θ= Dσ σ                     (82) 

( ),θ=q q g                         (83) 

( )
( )

, , ,

, , ,

ρ θ

η η ρ θ

Φ = Φ

=

D g

D g                       (84) 

Using Φ  in (84) we can write the following for D
Dt
Φ , 

: .D
Dt

ρ θ
ρ θ

Φ ∂Φ ∂Φ ∂Φ ∂Φ
= + + ⋅ +
∂ ∂ ∂ ∂

D g
D g



               (85) 

From continuity equation in Eulerian description: 

( ) : .kk kl lk
D D D
Dt
ρ ρ ρ ρ ρ δ ρ= = − ∇ ⋅ = − = − = −v D d         (86) 

substituting (86) in (85) and regrouping terms: 

( )

( )

02

0

: :

: 0.

e

d

ρ ρ ρ
ρ

ρ η θ
θ θ

 ∂Φ ∂Φ ∂Φ
− − + + ⋅ ∂ ∂ ∂ 

 ∂Φ ⋅
+ + + − ≤ ∂ 

d D D g
D g

q g D







σ

σ            (87) 

The entropy inequality (87) holds for arbitrary but admissible choices of 
,D g   and θ , if the following conditions are satisfied: 

( )0 ,ρ ∂Φ
= ⇒Φ ≠ Φ

∂
D

D
                   (88) 

( )0 ,ρ ∂Φ
= ⇒Φ ≠ Φ

∂
g

g
                   (89) 

0 .ρ η η
θ θ

 ∂Φ ∂Φ
+ = ⇒ = − ∂ ∂ 

                  (90) 

From (90), we can conclude that η  is not a constitutive variable as it is de-

fined by φ
η
∂

−
∂

. The arguments of Φ  reduces to 

( ),φ φ ρ θ=                         (91) 

and the entropy inequality (87) reduces to 

( ) ( )0 02 : : 0.e eρ
ρ θ

 ∂Φ ⋅
− − + − ≤ ∂ 

q gD Dδ σ σ            (92) 

The first term in (92) can be thought of as equivalent of first term in (77) in 
Lagrangian description. Since ( ) ( ) ( )0 0 ,e e ρ θ=σ σ , we can set the coefficient of 
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D  in the first term of (92) to zero to obtain: 

( ) ( )0 2 ,e pρ ρ θ
ρ

∂Φ
= − =

∂
σ δ δ                  (93) 

( ) 2,p ρ θ ρ
ρ

∂Φ
= −

∂
                     (94) 

in which ( ),p ρ θ  is thermodynamic pressure for compressible matter. From 
(93) we can write (Lagrangian description of (93)): 

( ) ( ) ( )( )0 , , ,e p t tρ θ= x xσ δ                   (95) 

recall the relationship between Cauchy stress ( )0σ  and second Piola-Kirchhoff 
stress [ ]0σ  [1] [2]: 

[ ] [ ] [ ] [ ]
T1 10 0

e eJ J Jσ σ− −    =                      (96) 

hold also. Substituting [ ]0
eσ 
   from (95) in (96), we finally have constitutive 

theory for [ ]0
eσ  for compressible matter. 

[ ] ( ) ( )( ) [ ] [ ]
T1 10 , , ,e J p t t J Jσ ρ θ − −     =     x x            (97) 

We note that [ ]0
eσ  is not a pressure field as is the case in (95). 

Incompressible matter 
For incompressible matter, density remains constant i.e., ( ) ( ) 0, ,0tρ ρ ρ= =x x . 

Thus, from conservation of mass (in Eulerian description), we have: 

( ) 0ρ ρ= − ⋅ =v ∇  (CM)                   (98) 

and 

( ),
0.

ρ θ

ρ

∂Φ
=

∂
                       (99) 

Thus, in this case, entropy inequality (92) reduces to 

( ) ( )0 0: : 0.e dθ
⋅

− + − ≤
q gD Dσ σ                 (100) 

In order to derive the constitutive theory for ( )0
eσ  for an incompressible 

matter, we introduce incompressibility condition (98) in (100). 
From conservation of mass (98), we have have the following for incompressi-

ble case: 

: 0.kk kl lkD D δ⋅ = = = =v Dδ∇                 (101) 

If (101) holds, then the following holds too: 

( ) : 0.p θ =Dδ                        (102) 

( )p θ  is a Lagrange multiplier. Adding (102) to (100) and regrouping terms: 

( ) ( )( ) ( )0 0: : 0.e ep θ
θ
⋅

− + − ≤
q gD Dδ σ σ            (103) 

Entropy inequality (103) is satisfied for arbitrary but admissible D  if the 
coefficient of D  in the first term in (103) is set to zero. 
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( ) ( )0 .e p θ=σ δ                        (104) 

Equation (104) is the constitutive theory for ( )0
eσ  for incompressible non 

isothermal physics in Eulerian description. In Lagrangian description, (104) re-
duces to 

( ) ( )( )0 , .e p tθ= xσ δ                     (105) 

Using (97) and (105) we obtain the desired constitutive theory for [ ]0
eσ  in 

[ ] ( ) [ ] [ ]
T1 10

e p J J Jσ θ − −     =                     (106) 

We note that [ ]0
eσ  in this case is also not a pressure field. In case of isother-

mal physics, (106) holds but ( )p θ  is replaced by p, mechanical pressure. 
Thus, the entropy inequality (103) in Eulerian description reduces (reduced 

form) to the following: 

( )0 : 0.d θ
⋅

− + ≤
q gDσ                     (107) 

Likewise in (77), the entropy inequality in Lagrangian description, the first 
term is eliminated and we have the following reduced form of entropy inequality 
in Lagrangian description: 

( )
[ ]

0
0: 0d θ

⋅
− + ≤

q g
σ ε                     (108) 

4.2.2. Constitutive Theory for Deviatoric Contravariant Second  
Piola-Kirchhoff Stress Tensor 

We have already established [ ]m
dσ  as constitutive tensor and its argument ten-

sors in (62): 
[ ] [ ]

[ ] [ ]( )0 , , 1,2, , ; 0,1, , 1m m
d d i i n j mθ= = = − σ σ ε ε       (109) 

We derive constitutive theory for [ ]m
dσ  using representation theorem [2] 

[22]-[29]. If S be the space of tensor [ ]m
dσ , then the basis of this space must be 

determined using argument tensors of [ ]m
dσ  in (109). Since [ ]m

dσ  is a sym-
metric tensor of rank two, we determine combined generators ; 1,2, ,i i Nσ =G 



 
of the argument tensors of [ ]m

dσ  in (109) that are symmetric tensors of rank 
two. The tensor I  and the generators ; 1,2, ,i i Nσ =G 



 constitute integrity 
(irreducible set) that forms the basis of the space S of constitutive tensor [ ]m

dσ . 
Thus, [ ]m

dσ  can be expanded using a linear combination of the tensors in the 
integrity i.e., the basis of the space “S”. 

[ ] ( )0

1

N
m i i

i

σ σ σα α
=

= +∑I G
  

σ                     (110) 

If : 1,2, ,jI j Mσ = 



 are combined invariants of the argument tensors of 
[ ]m

dσ  in (109), then the coefficients ; 0,1, ,i i Nα = 



 in the linear combination 
can be functions of these invariants and temperature θ  i.e., 

( ), ; 1,2, , .i i JI j Mσα α θ= = 

 

                  (111) 
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Using (110) and (111) we can derive material coefficients [1] [2]. We expand 
; 0,1, ,i i Nα = 



 in Taylor series in ; 1,2, ,jI j Mσ = 



 about a known confi-
guration Ω  and retain only up to linear terms in ; 1,2, ,jI j Mσ = 



 (for sim-
plicity). Taylor series expansion is not considered in θ , as the stresses due to 
thermal field have already been accounted for in the equilibrium stress. 

( )
( ) ( )

1
; 0,1, , .

iM
i i j j

j
j

I I i N
I

σ
σ σ σ σ

σ

α
α α

Ω Ω
=

Ω

∂
= + − =

∂
∑ 

 



         (112) 

Substituting (112) in (110) and collecting coefficients of , ,j iIσ σI I G
 

 and 

( ); 1,2, ,j iI j Mσ σ =G 

 

 and 0,1, ,i N=   and defining new coefficients us-
ing: 

( )
( ) ( ) ( )

( )
( )
( ) ( ) ( )

( )

0 0
0 0

1

1

;

; .

M
j

jj j
j

i iM
i j

i ijj j
j

I a
I I

b I c
I I

σ σ
σ σ

σ σ

σ σ
σ σ

σ σ

α α
σ α

α α
α

Ω Ω Ω
=

Ω Ω

Ω Ω
=

Ω Ω

 ∂ ∂ = + − = ∂ ∂ 
 

∂ ∂
= + − =

∂ ∂

∑

∑

 

 

 

 

      (113) 

for 1,2, ,i N=   and 1,2, ,j M=  . 
We can write (110) as follows: 

[ ] ( ) ( ) ( )( )0

0 1 1 1
.

M N N M
m j i j i

d j i ij
j i i j

a I b c Iσ σ σ σ

= = = =

= + + +∑ ∑ ∑∑I I G G
      

σ σ    (114) 

,j ia b
 

 and ijc


 are material coefficients. These are functions of  
; 1,2, ,jI j Mσ

Ω
= 



 and θ
Ω

. This constitutive theory requires M + NM + N 
material coefficients. 0



σ  is known initial stress in the known configuration Ω . 
The constitutive theory (114) is based on complete basis of the space S of the 
constitutive tensor [ ]m

dσ . 

4.2.3. Simplified Constitutive Theories for Contravariant Deviatoric  
Second Piola-Kirchhoff Stress Tensor 

First, we consider an ordered rate theory of orders m and n that is linear in the 
components of tensor [ ]; 0,1, ,i i n= ε  and [ ]; 0,1, , 1j

d j m= −σ  and the 
invariants ; 0,1, , 1jI j mσ = −



. Thus, in this constitutive theory, we use gene-
rators [ ]; 1,2, ,i i n= ε ; [ ]; 0,1, , 1j

d j m= −σ  and the invariants jIσ



 that are 
given by [ ]( )itr ε , [ ]( )j

dtr σ ; 0,1, ,i n=   and 0,1, , 1j m= − . Thus, in this 
case (114) reduces to (redefining material coefficients): 

[ ]
[ ] [ ]( ) [ ]( ) [ ]( )

[ ]( ) [ ]( )

0 1 2
1 20

1 1
1 1

1 2

0 0

n n
m

d i ii i i
i i

m m
j j

j d j d
j j

a a tr b b tr

c c tr

= =

− −

= =

= + + + +

+ +

∑ ∑

∑ ∑

I I I

I



σ σ ε ε ε ε

σ σ
   (115) 

The material coefficients in (115) can still be functions of invariants  
; 1,2, ,jI j mσ

Ω
= 



 and θ
Ω

. We rewrite (115) as follows (neglects 0



σ  with-
out loss of generality): 
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[ ] [ ]( ) [ ]( )( )
[ ] [ ]( ) [ ]( ) [ ]( )( )

1
1 2

1

1 2
1 20

1

m
m j j

d j d j d
j

n

i ii i i
i

c c tr

a a tr b b tr

−

=

=

− +

= + + +

∑

∑

I

I I

σ σ σ

ε ε ε ε
         (116) 

Divide throughout by 1
0c  (assuming 1

0 0c ≠ ) and introduce new notation for 
the material coefficients. 

2
00

1 1
0 0

1 2
1 1
0 0

1 2

1 1
0 0

1
1 22

1 1
0 0

1 ;

2 ;

2 ; ; 1, 2, ,

; ; 1, 2, , 1

i i
i

j
j

j j

c
c c
a a
c c

b b
i n

c c

c c j m
c c

λ λ

µ λ

η κ

λ λ

− = =

− = − = −

− = − = =

− = − = = −









            (117) 

[ ] [ ] [ ]( ) [ ]( ) [ ]( )( )
[ ] [ ]( ) [ ] [ ]( )( )

1
0 00 1 2

1

0 0
1

2 2

m
m j j

d d d j d j d
j

n

i ii i
i

tr tr

tr tr

λ λ λ λ

µ λ η κ

−

=

=

+ + + +

= + + +

∑

∑

I I

I I




σ σ σ σ σ

ε ε ε ε
   (118) 

The term [ ]( )00
dtrλ Iσ  is neglected in the currently used constitutive theo-

ries. 
Remarks 
Based on this constitutive theory (118) we make following remarks:  
1) Elasticity requires two material coefficients in finite deformation, finite 

strain case also (similar to Lames constants).  
2) Each strain rate [ ]iε  contributing to nonlinear dissipation mechanism also 

requires two material coefficients.  
3) λ  is primary relaxation time. Each stress rate [ ]; 1,2, , 1k

d j m= −σ  is 
associated with their own relaxation time defined by 1

jλ  and 2
jλ . This is a ra-

ther new and important phenomenon, the existence of which is only justified 
and revealed due to derivations of ordered rate constitutive theory presented 
here. We explain this further. The polymer molecules generally connect to 
neighbors, forming colonies and a colony may also be interconnected to neigh-
boring colonies. In addition to this, some polymer molecules may remain iso-
lated in the solvent by themselves. In this complicated network of polymer mo-
lecules, upon cessation of external stimulus, it is highly unlikely that relaxation 
of all polymer molecules can be described by a single relaxation time. The con-
stitutive theory suggests that ( 1 2,j jλ λ ) are progressively decreasing relaxation 
times that are associated with relaxation at multiple time scales. Relaxation time 
λ  is a bulk relaxation time (aggregate) that accounts for majority of this relaxa-
tion phenomenon. Generally, the terms [ ]( )2 j

j dtrλ Iσ  are also neglected in 
(118). Thus, we now have (by redefining 1

jλ  as jλ ). 
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[ ] [ ]( ) [ ]( )

[ ] [ ]( ) [ ] [ ]( )( )

1
0

1

0 0
1

2 2

m
m j

d d j d
j

n

i ii i
i

tr tr

λ λ

µ λ η κ

−

=

=

+ +

= + + +

∑

∑I I




σ σ σ

ε ε ε ε
          (119) 

In (119), we clearly observe elasticity material coefficients 2 ,µ λ




 and dissipa-
tion material coefficients 2 ,i iη κ  corresponding to strain rate [ ]iε . Bulk relaxa-
tion time λ  accompanied by hierarchy of relaxation times jλ  associated with 
stress rates [ ]j

dσ . In the absence of ; 1,2, , 1j j mλ = −
, the relaxation is ho-

mogeneous i.e., it occurs in the entire deformed matter uniformly and is un-
iformly controlled by bulk relaxation time λ . Presence of relaxation times 

; 1,2, , 1j j mλ = −
 suggest inhomogeneous relaxation process, perhaps more 

realistic due to complexity of the network of polymer molecules in the solvent 
constituting the composition of the matter. 

4) Commonly used constitutive theories are a subset of further simplifications 
of (119) for 1, 1m n= = . In (119), if we choose 1m =  and 1n = , then we ob-
tain: 

[ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )0 1
1 10 0 1 12 2d d tr trλ µ λ η κ+ = + + +I I





σ σ ε ε ε ε     (120) 

5) Constitutive theories (118) or (119) or (120) can be easily written in matrix 
and vector form [1] [2] using Voigt’s notation. 

4.2.4. Constitutive Theory for q 
We consider ( ),θ=q q g  and use representation theorem [2] [22]-[29]. The 
combined generators of the tensors g  and θ  that are tensors of rank one is 
just g  and the combined invariants of g  and θ  is ⋅g g  (or qI



). Thus, we 
can write the following in the current configuration: 

qα= −q g


                         (121) 

in which 

( ),q q qIα α θ=
 

                       (122) 

Material coefficients in the constitutive theory for q  given by (122) are ob-
tained by considering Taylor series expansion of qα



 in qI


 about a known 
configuration Ω  and only retaining up to linear terms in qI



 (for simplicity). 

( )
q

q q q q
q I I
I
αα α

Ω Ω
Ω

∂
= + −

∂


  



                 (123) 

Substituting (123) in (121) and collecting coefficients of the terms defined in 
the current configuration yield (after introducing new notation for the terms in 
Ω ): 

( )1 2κ κ
Ω Ω

= − − ⋅q g g g g                   (124) 

This constitutive theory is based on integrity, hence uses complete basis of the 
space of tensor q . Constitutive theory (124) is cubic in g . 1κ  and 2κ  are 
material coefficients (thermal conductivities) defined in the known configura-
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tion Ω . The material coefficients are functions of qI
Ω


 i.e. ( )
Ω

⋅g g  and θ
Ω

. 
From (124) we can obtain a constitutive theory for q  that is linear in g  by 
neglecting product terms of g . 

1κ Ω
= −q g                        (125) 

5. Complete Mathematical Model 

The partial differential equations constituting complete mathematical model 
consists of balance of linear momenta, energy equation and constitutive theories 
(complete linear theory) for contravariant second Piola-Kirchhoff stress tensor 
(119) and the heat vector. Conservation of mass and entropy inequality are also 
part of the mathematical model, but do not provide additional equations, hence 
are not included in the following: 

{ } { } [ ] [ ]( ){ }
2

0
0 02 0bu

F J
t

ρ ρ σ
∂  − − ∇ = ∂

             (126) 

[ ]
[ ]

0
0 0: 0e

t
ρ ∂

+ ⋅ − =
∂

q σ ε∇                   (127) 

[ ] [ ] [ ]0 0 0= +e dσ σ σ                       (128) 

[ ] ( ) [ ] [ ]
T1 10

e p J J Jσ θ − −     =                      (129) 

[ ] [ ] [ ]( ) [ ]( ) [ ]( )( )
[ ] [ ]( ) [ ] [ ]( )( )

1
0 1 2

1

0 0
1

2 2

m
m m m j j

d d d j d j d
J

n

i ii i
i

tr tr

tr tr

λ λ λ λ

µ λ η κ

−

=

=

+ + + +

= + + +

∑

∑

I I

I I

σ σ σ σ σ

ε ε ε ε
   (130) 

( )1 2κ κ
Ω Ω

= − − ⋅q g g g g                     (131) 

Remarks 
1) A reduced form of (126) - (131) in 2  constitutes the mathematical mod-

el for 2D beams and plane stress, plane strain deformation physics. 
2) Equations (126) - (131) is the mathematical model of nonlinear dynamic 

deformation physics of viscoelastic plates, shells and 3D beams with memory i.e., 
in 3 .  

6. Methods of Solutions for IVPs Described by (126) - (131) 

First we note that (126) - (131) are a system of nonlinear PDEs in [ ]0, ,θ du σ  
and q  in which all dependent variables are simultaneously dependent on space 
and time. Thus space-time coupled finite element methods of solution are ideally 
suited for obtaining their solution. Space-time decoupled finite element methods 
can also be used for obtaining solutions of the IVPs defined by (126) - (131). We 
make some remarks: 

1) In case of thermoelastic and thermoviscoelastic (no memory) solid matter 
with dissipation and elasticity, the constitutive theories for [ ]0

dσ  are not diffe-
rential equations in time, hence [ ]0

dσ  from the constitutive theory can be subs-

https://doi.org/10.4236/am.2024.151009


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/am.2024.151009 138 Applied Mathematics 
 

tituted in the balance of linear momenta as done by Surana et al. in references 
[13] [14]. The resulting balance of linear momenta is nonlinear PDEs in dis-
placement (for isothermal physics). Application of space-time decoupled finite 
element method of approximation using GM/WF for a spatial discretization [4] 
yields a system of nonlinear familiar ODEs in degrees of freedom { }δ  and 
their time derivatives { }δ  and { }δ . This form permits use of many standard 
solution methods for ODEs in time. Details of the mathematical model and the 
space-time decoupled solution method for IVPs and BVPs have been presented 
by Surana et al. [13] [14]. 

2) In the present mathematical model it is not possible to substitute [ ]0
dσ  

from the constitutive theory into balance of linear momenta to obtain three 
PDEs purely in terms of spatial and time derivatives of displacement. This is ra-
ther a serious restriction as it precludes use of standard methods of solutions ap-
plicable to BLM in displacements. 

3) We note that [ ]0
dσ  in the constitutive theories are functions of space and 

time. In phenomenological constitutive models in 1D [9] [ ]0
dσ  reduces to 

[ ]0
11dσ  and we have a single ODE in time for [ ]0

11dσ . In this case time integration 
is possible as done in ref [1] [2] to obtain memory modulus, but the result of 
time integration is an integral form and not differential or algebraic form. Se-
rious shortcomings of this approach are: 1) not applicable to continuous matter 
2) and secondly, it cannot be extended to obtain a constitutive theory for conti-
nuous matter. 

4) Thus, we conclude that we must seek solution methods that can be directly 
applied to PDEs (126) - (131). Of course substitutions of (128) in (126), (127) 
and (131) in (127) are made to obtain PDEs in desired dependent variables and 
to reduce the number of dependent variables.  

6.1. Finite Element Formulations 

As mentioned earlier, (126) - (131) is a system of nonlinear PDEs in dependent 
variables [ ]0, ,θ du σ  and q  in which all dependent variables exhibit simulta-
neous dependence on space coordinates x  and time t. Thus, space-time 
coupled finite element processes in which simultaneous dependence of evolution 
on space coordinates x  and time t is maintained are ideally suited [4]. These 
methods are highly meritorious for IVPs in 1  and 2  (in space) but be-
come rather demanding for IVPs in 3 . Thus, when addressing methods of 
solutions of the IVPs described in (126) - (131) i.e., methods of approximations 
such as finite element method, we must consider space time decoupled methods 
also in which simultaneous dependence of evolution in x  and t is not pre-
served. This is necessitated to avoid computational complexities of space-time 
coupled methods in 3 . We present details of both methods in the following 
sections. 

Space-Time Coupled Finite Element Methods of Approximation 
In deriving finite element formulations of (126) - (131), it is advantageous to 
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substitute constitutive theory for heat flux q  in the energy Equation (127). Also, 
we note the following: 

We substitute [ ] [ ] [ ]0 0 0= +e dσ σ σ  in (127). Thus, we can write BLM as: 

{ } { } [ ] [ ] [ ]( ) { }
2

0 0
0 02 0b

e d

u
F J

t
ρ ρ σ σ

∂     − − + ∇ =     ∂
       (132) 

or 

{ } { } [ ] [ ] { } { } [ ] [ ]( ) { }
2

0 0
0 0 02

b b
d e

u
F J F J

t
ρ ρ σ ρ σ

∂      − − ∇ = − ∇       ∂
 (133) 

Let  

[ ] [ ]0 *
dJ Jσ   =                           (134) 

Substituting (134) in (133) and defining { }VF  (due to volumetric change), 
we obtain: 

{ } [ ] [ ] { }0V
eF J σ  = ∇  

                    (135) 

*2

0 02
iji Vi

b i
j

Ju F F
xt

ρ ρ
∂∂

− − =
∂∂

                   (136) 

for simplicity of illustration we choose 1m =  in (130) and assume ve c θ= ; vc  
is constant specific heat. 

In finite element processes, matrix and vector forms of equations are readily 
usable, hence we rewrite constitutive theory (130) in Voigt’s notation. 

[ ]{ } [ ]{ } [ ] [ ]{ } [ ] [ ]{ }0 0
0

1

n

d d i i
i

D C
t

σ λ σ ε ε
=

∂
+ = +

∂ ∑
 

           (137) 

Coefficients of [ ]D  are given by: 

[ ]

2 2 2 0 0 0

2 2 0 0 0

2 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

D

µ λ µ µ

λ µ λ µ

λ λ µ λ

µ

µ

µ

+ 
 

+ 
 + =  
 
 
 
  



  

 

 

 











          (138) 

Coefficients of [ ]iC


 can be obtained by replacing ,η λ




 in (138) by 2 ,i iη κ . 

[ ]{ } [ ] [ ] [ ] [ ] [ ] [ ]T0 0 0 0 0 0 0
11 22 33 23 31 12, , , , ,d d d d d d dσ σ σ σ σ σ σ =             (139) 

Elements of [ ]0ε 
   and [ ]iε 

   in [ ]{ }0ε  and [ ]{ }iε  are arranged in the 

same order as those of [ ]{ }0
dσ  in [ ]{ }0

dσ . 

It is convenient to use new notation for the components of [ ]{ } [ ]{ }0
0,dσ ε  

and [ ]{ }iε . 
[ ]0 1 2 3 4 5 6

dσ σ σ σ σ σ σ   =                      (140) 

[ ]
1 2 3 4 5 6

0ε ε ε ε ε ε ε   =                       (141) 
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[ ]
1 2 3 4 5 6
i i i i i iiε ε ε ε ε ε ε   =                      (142) 

where i in (142) refers to time derivative of order i. Using (140) - (142) in (137), 
substituting (131) in (127) and using (128) we have the following mathematical 
model. 

*2

0 02
ijb Vi

i i
j

Ju F F
xt

ρ ρ
∂∂

− − =
∂∂

                  (143) 

[ ]
[ ]

[ ]
[ ]

0 02
0 1 0 0: : 0vc

t
θρ κ θ∂
− ∇ − − =

∂ e d σ ε σ ε            (144) 

[ ] [ ]

11 1 1

22 2 2

33 3 3

44 4 4
1

55 5 5

66 6 6

0

i

i
n

i
i

i i

i

i

D C
t

εσ σ ε
εσ σ ε
εσ σ ε

λ
εσ σ ε
εσ σ ε
εσ σ ε

=

      
      
      
      ∂       + − − =       

∂       
       
       
              

∑
 

          (145) 

These are the final PDEs describing the IVPs related to beams, plates and 
shells in ten variables ( , ,i iu σ θ ). These equations must be nondimensionalized 
before using them in computations. We do this when we present numerical stu-
dies. For deriving finite element formulations, (143) - (145) suffice as the non-
dimensionalization only introduces dimensionless parameters. 

6.2. Space-Time Coupled Finite Element Method of  
Approximation 

If we write (143) - (145) as: 

( )0 , xt x tt− = ∀ ∈Ω =Ω ×ΩA f xφ               (146) 

in which A  is the space time differential operator and φ  is a vector of de-
pendent variables then it is straight forward to see that A  is not linear, and 
since A  is space time differential operator, it cannot be symmetric. Thus, out 
of all space-time coupled finite element formulations [4] (space-time Galerkin 
method (STGM), space-time Galerkin method with weak form (STGM/WF), 
space-time Petrov Galerkin method (STPGM), space-time weighted residual 
method (STWRM) and space-time finite element method based on space-time 
residual functional (STRF)) only the finite element method based on STRF yields 
space-time integral form that is space-time variationally consistent [4], hence the 
resulting computational processes are unconditionally stable during the entire 
evolution [4]. We present details of the STRF method in 3  (can be easily re-
duced to 1  and 2 ). 

Let ( )( )Tn
xtΩ  be the discretization of the space-time domain ( )n

xtΩ  of the nth 
space-time strip [ ]1,x n nt t +Ω ×  (see ref [4]), then: 

( )( ) ( )( )and
T Tn ie T

xt xt xt xt
e i

Ω = Ω Ω = Ω
 

              (147) 

in which e
xtΩ  is a p-version hierarchical space-time finite element with higher 
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order global differentiability in space and time. 
Let { }T 1 2 3 4 5 6

1 2 3u u uφ σ σ σ σ σ σ θ =    be the order of dependent va-
riables. 

Let ( )( ) ( )( ), , ,
ee j

i h h
u t tσx x  and ; 1,2,3; 1,2, ,6e

h i jθ = =   be the local ap-
proximations of , j

iu σ  and θ  over a space time element e
xtΩ , then we have 

(using equal order equal degree approximation) the following: 

( )( ) ( ) { }
( )( ) ( ) { }

( ) { }
{ } ( ) ( )T

, , ; 1,2,3

, , ; 1,2, ,6

,

, ,

i

j

e e
i uh

ej e

h

e e
h

eee j e
h i hh h

u t N t i

t N t j

N t

u

σ

θ

δ

σ δ

θ δ

φ σ θ

 = = 

 = = 

 =  

 =   

x x

x x

x



           (148) 

Substituting (148) in (143) - (145) we obtain residual equation:  

( ); 1,2, ,10 , .e e
k xtE k x t= ∀ ∈Ω  

The approximation { }hφ  over ( )( )Tn
xtΩ  is given by: 

{ } { }e
h h

e
φ φ=



                       (149) 

Substituting { }hφ  in (143) - (145) yield residual equations ; 1,2, ,10kE k =   
for the discretization ( )( )Tn

xtΩ  and we can construct STRF ( )hI φ  over  
( )( )Tn
xtΩ . 

( ) ( ) ( ) ( )
10 10

1 1
, ,Tn ext xt

e e
h k k k k

k e k
I E E E E Ω  Ω = =

 = =  
 

∑ ∑ ∑φ          (150) 

If the space-time functional ( ).I  is differentiable in its arguments, then 

( )hIδ φ  is unique and ( ) 0hδ =φ  is a necessary condition for an extremum of 

( )hI φ  defined by (150). 

( ) ( ) ( ) ( )

{ } { }

10 10

1 1
2 , 2 ,

0

Tn ext xt

e e
h k k k k

k e k

e

e

I E E E E

g g

δ δ δ Ω  Ω = =

 = =  
 

= = =

∑ ∑ ∑

∑

φ
       (151) 

If  

{ } { } { } { } { } { }TTT T
; , ,ji

e e e e e
u

e
θσ

δ δ δ δ δ δ = =   

           (152) 

then { }g  in (151) is a nonlinear function of { }δ . We satisfy { }( ){ } 0g δ =  
iteratively by using Newton’s linear method with line search [4]. Thus, if { }0

δ  
is assumed starting solution, then improved solution { }δ  is given by: 

{ } { } { }*
0

δ δ α δ= + ∆                      (153) 

in which { }δ∆  is calculated using:  

{ } ( )
{ }

{ }( ){ }
0

12
0hI g

δ
δ δ δ

−
 ∆ = − φ                 (154) 

( )2
hIδ φ  is approximated by [4]. 

https://doi.org/10.4236/am.2024.151009


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/am.2024.151009 142 Applied Mathematics 
 

( ) ( ) ( ) ( )
10 10

2

1 1
2 , 2 ,Tn ext xt

e e
h k K k k

k e k
I E E E Eδ δ δ δ δ Ω  Ω = =

 − =  
 

∑ ∑ ∑φ . 

*α  is determined using line search [4]. 
Using new { }δ , we check if { }( ){ }g δ ≤ ∆  holds. If it does, then { }δ  is the 

converged solution, if not then we set { } { }0
δ δ=  and repeat the iteration 

process till convergence. ∆  is a preset tolerance for computed zero. Computa-
tions begin with first space-time strip and then time marching using subsequent 
space-time strip till the final time is reached [4]. 

Remarks 
1) This method can be easily reduced to IVPs in 1  and 2 . 
2) Newton’s linear method requires that starting or initial solution { }0

δ  
must be in close proximity of the true solution { }δ . Generally, physics of the 
IVPs provide means for appropriate choice of { }0

δ .  

Space-Time Decoupled Finite Element Processes 
As mentioned earlier, in this mathematical model, [ ]0

dσ  from the constitutive 
theory cannot be substituted in the balance of linear momenta, thus standard 
form of ODEs resulting from space-time decoupled methods using GM/WF for 
a discretization giving mass, stiffness and damping matrices is not possible. Thus, 
we are left with no choice but construct a space-time decoupled finite element 
formulation of (143) - (145) as they are. 

Let T e
xt x

e
Ω = Ω



 be discretization of spatial domain xΩ  in which e
xΩ  is a  

typical p-version hierarchical finite element “e” in space with higher order global 
differentiability. We consider following space-time decoupled local approxima-
tion over an element e over ( e

xΩ ). 
Local approximation over an element e over ( e

xΩ ):  

( )( ) ( ) ( ){ }
( )( ) ( ) ( ){ }

( )( ) ( ) ( ){ }

, ; 1,2,3

, ; 1,2, ,6

, ,

i

j

e e
i uh

ej e

h
e e e

xth

u x t N x t i

x t N x t j

x t N x t x t

σ

θ

δ

σ δ

θ δ

 = = 

 = = 

 = ∀ ∈Ω 

               (155) 

Let 1 2 3, ,β β β  be test functions such that ( )e
i i h

uβ δ=  and ( )4
e

hβ δ θ= , 

( )4 ; 1,2, ,6
ej

j h
jβ δ σ+ = =  . If we denote (143) - (145) as ( ). 0; 1,2,3i iA f i− = = , 

( )4 4. 0A f− =  and ( ). 0 ; 5, ,10k kA f k− = =  , then for the discretization T
xΩ  

of xΩ , we can write the following using fundamental lemma of the calculus of 
variations. 

( )( ). , 0; 1,2, ,10T
x

i i iA f iβ
Ω

− = =                (156) 

Since (156) are functionals, we can write: 

( )( ) ( )( ). , . , 0; 1,2, ,10T e
x x

e e
i i i i i i

e
A f A f iβ β

Ω Ω
− = − = =∑ 

      (157) 

e
iA  and e

if  signify that they are over e
xΩ . Each  

; 1,2, ,10; 1,2, ,i jN i j nβ = = = 
. 
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Consider ( )( ). , e
x

e e
i i iA f β

Ω
−  and substitute ( ).eA  and e

if  from (143) - 
(145). First consider: 

( )( ) ( )

( )

2 *

0 02

2 *

0 02

. , ,

d

no sum on ; 1,2,3

e
x

e
x

e
x

e
i ije e bh

i i i i i
j

e
i ijbh

i i i
j

u J
A f F

xt

u J
F x

xt

i i

β ρ ρ β

ρ β ρ β

Ω

Ω

Ω

 ∂ ∂
 − = − −
 ∂∂ 

 ∂ ∂
 = − −
 ∂∂ 

=

∫       (158) 

In the last term we perform integration by parts once to transfer differentia-
tion to iβ . We also note that *J  is a function of gradients of iu  and jσ . 

( )( ) ( )2
*

0 02

*

. , , d

d no sum over  and

e
x e

x

e

e
ie e bh i

i i i i i i ij i
j

ij i j

u
A f F J x

xt

J n i j

β
β ρ β ρ β β

β

Ω
Ω

Γ

 ∂ ∂ − = − −
 ∂∂ 

+ Γ

∫

∫

    (159) 

using local approximation for ( )e
i h

u  from (155), (159) can be written as: 

( )( ) { } { } { } { } { }1 2. , e i ix

e e e e e e e e e e
i i i u u u u uA f M K K f Pσβ δ δ δ

Ω
     − = + + − −     

  (160) 

{ }i

e
uf  is due to b

iF  and { }i

e
uP  is due to concomittant in (159). 

Consider integral form (144) based on fundamental lemma, we can write the 
following: 

( )( )
[ ]

[ ]( ) [ ]
[ ]( )

4 4 4

0 02
0 4 1 4 4 40 0

. ,

: : d
e
x

e e

v

A f

c x
t

β

θρ β κ θβ β β
Ω

−

∂ = − ∇ − − ∂ ∫ e d σ ε σ ε
  (161) 

In the second term we perform integration by parts once to transfer one order 
differentiation to 4β . 

( )( ) [ ]
[ ]( )

[ ]
[ ]( ) )

04
4 4 4 0 4 1 4 40

0
40

. , :

: d d

e
x

e

e e
v h

e
h

A f c
t

x

θβ ρ β κ β θ β

θ
β κ

Ω

Γ

∂− = + ⋅ − ∂

∂
− − Γ

∂

∫

∫

e

d n







σ ε

σ ε

∇ ∇

   (162) 

or 

( )( ) { } { } { } { } { }4
4 4 4 3 4. ,

j

e e e e e e e e e e
uA f C H K K Pθ θ σ θβ δ δ δ δ       − = + − − −       

   (163) 

in which eC    and eH    are symmetric matrices. The third and fourth term 
in (163) result due to trace terms in (162) and { }ePθ  are secondary variables 
due to concomitant in (162). 

Consider integral form of (145) based on fundamental lemma. 

( )( )

( )( ) ( ) { }( )
( ) { }( )

4

4 4 4

, 4
1

. ,

, , ,

, ; 1,2, ,6

e
x

e ex xe
x

e
x

e e
k k k

e
ee k jh

k k k kj kh h

n ep
i i kkp hi

A f

D
t

c k

β

σ
σ β λ β ε β

ε β

+ Ω

+ + +
Ω Ω

Ω

+
Ω=

−

 ∂
 = + −
 ∂ 

− =∑







      (164) 
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Substituting local approximations in (164). 

( )( ) { } { } { } { } { }4 5 6 ,
1

. , e
x

n
e e e e e e e e e u e
k k k u i i

i
A f K K K C Pσ σ σβ δ δ δ δ+ Ω

=

       − = + − − −       ∑

(165) 

where { }σδ  are all degrees of freedom due to ( ) ; 1,2, ,6
e

j h
jσ = 

. 
Assembly of the element expression for this discretization (based on (160), 

(165) and (164)): 

{ } { } { } { } { }1 2 i i

e e e e e e e e
u u u u uM K K f Pσδ δ δ     + + − −     

         (166) 

{ } { } { } { } { }6 ,
=1

n
e e e e e e u e

u i i
i

K K C Pσ σ σδ δ δ δ     + − − −     ∑        (167) 

{ } { } { } { } { }3 4 j

e e e e e e e e
uH K K Pθ θ σ θδ δ δ δ     + − − −     

          (168) 

If we group { } { } { } { }T T TT
u σ θδ δ δ δ =    and consider only 1n =  and define 

{ } { },1
u

uδ δ=  , then we can write (166) - (168) as: 

[ ] [ ]
[ ] [ ]
[ ] [ ]

{ }
{ }
{ }

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

{ }
{ }
{ }

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

{ }
{ }
{ }

{ } { }
{ }
{ }

1 6

3

1 2

5

4

0 0 0 0
0 0 0
0 0 0

0
0

0

u u
u

u u u

M
C K
K C

K K f P
K K P

K H P

σ σ

θ θ

σ σ

θ θ

δ δ

δ δ

δ δ

δ
δ
δ

   
      

      +      
               

     +
    + =    
         

 

 

 

        (169) 

This is a system of nonlinear second order system of ODEs in time. 
These can be integrated using any of the time integration methods. Based on 

our previous work [14], Newmark linear acceleration method with Newton’s li-
near method is well suited. In these equations, initial conditions and initial solu-
tions are always critical and important to determine to ensure that time integra-
tion methods yield physical evolution. 

Initial conditions 
For a system at rest and at NTP, we have the following initial conditions 

{ } { }0, 0u uδ δ= =  

If 
0 0tθ θ=  is known temperature, then { }θδ  are known. 

For a system at rest, iσ  are zero i.e., { }σδ  are zero. Secondary variables for 
unknown dofs are known in (169) 

In any time integration method for nonlinear ODEs in time we begin with a 
known solution. Assume { } { }0

0δ δ= = , then all matrices in (169) can be com-
puted. 

1) Since { }
0 0u t

δ
=

 and { }
0 0tσδ =

 are known { }
0 0t

δ
=

  can be calculated using 
assembled form of (166). 

{ } [ ] [ ]{ } [ ]{ } { } { }( )1
1 2 i iu u u u uM K K f Pσδ δ δ−= − − + +        (170) 

2) From assembled Equations (168), since { } { }
0 00 0

,u t tθδ δ
= =

 and { }
0 0u t

δ
=

  are 
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known, { }
0 0tθδ =

  can be calculated using assembled of (168): 

{ } [ ] [ ]{ } [ ]{ } [ ]{ } { }( )1
3 4 juC H K K Pθ θ σ θδ δ δ δ−= − + + +       (171) 

{ }
0 0tθδ =

  is zero at 0 0t =  as it is not part of the ODEs. 
3) Knowing { } { } { }

0 000 00
, ,u ut tt σδ δ δ

= ==
  (with 1n = ), { }

0 0tσδ =
  can be deter-

mined using assembled form of Equations (167). 

{ } [ ] [ ]{ } [ ]{ } [ ]{ } { }( )0 0 00 0

1
6 1 50 0 00 0u ut t tt t

K K C K Pσ σ σδ δ δ δ−

= = == =
= + − −   (172) 

{ }
0 0tσδ =

  is zero as 0 0t =  as it is not part of the mathematical model. Then at 

0 0t = , commencement of the evolution of all degrees of freedom and their first 
and second time derivatives are known. 

Remarks 
1) Details of the time integration using Newmark linear acceleration method 

in conjunction with Newton’s linear method to each integration time step are 
similar to those presented in ref [14]. 

2) The mathematical model needs to be nondimensionalized, these details are 
presented in the section containing model problem studies.  

7. Factors Influencing Non-Linear Dynamics and Dynamic  
Bifurcation in TVES with Rheology 

From the complete mathematical model in Section 5, Equations (126) - (131), we 
note that the constitutive theory for deviatoric second Piola-Kirchhoff stress 
tensor is a partial differential equation in deviatoric second Piola-Kirchhoff 
stress tensor ( [ ]0

dσ ) and its time derivatives up to orders m. Thus, in this case 
[ ]0

dσ  cannot be substituted in the balance of linear momenta (126) to obtain a 
system of three PDEs in displacements iu  as done in case of TVES without 
memory [14]. As a consequence, decoupling of space and time in (126) using 
fundamental lemma followed by GM/WF for the spatial discretization obviously 
will not yield the same information regarding stiffness and damping matrices as 
in TVES without memory [14] as we have seen in the previous section. In the 
present mathematical model, space-time decoupling must be considered for (126) 
- (131) preferably without any substitutions (as done here), as it cannot be done 
with substitutions, hence the main benefit of substitution of deviatoric stress 
tensor in the BLM cannot be realized in this case. Hence, in the present mathe-
matical model, integrating nonlinear ODEs in time resulting from the space-time 
decoupling using Newmark linear acceleration method with Newton’s linear 
method for each time increment will not yield the same tangent matrix [ ]TH  
as in case of TVE solids without memory [14]. In reference [14], the factors in-
fluencing nonlinear dynamics and dynamic bifurcation in TVES without mem-
ory were clearly identified using tangent matrix [ ]TH , controlling the calcula-
tion of incremental solution for each time step. In the absence of the [ ]TH  
precisely in the same form as in ref [14], can we still identify the factors influen-
cing the nonlinear dynamics in TVES with memory using the mathematical 
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model (126) - (131) and the methods of solutions PDEs in Section 5. We proceed 
as follows. 

We note that in the absence of rheology ( [ ] 0, 1,2, ,i
d i m= = σ ), the constitu-

tive theory for [ ]0
dσ  for TVES with rheology given by (130) reduces to exactly 

same constitutive theory as in reference [14] for TVES without memory for 
which tangent matrix [ ]TH  is valid. This suggests that all of the physics of 
TVES solid without memory is implicitly present in its entirety in the mathe-
matical model (126) - (131). Presence of the physics of rheology may require 
consideration and/or additional factors over and beyond those due to [ ]TH  in 
ref [14] that influence nonlinear dynamics and dynamic bifurcation in TVES 
with rheology (polymeric solids). Polymeric solids (rubber like solid materials) 
consist of solvent (short chain molecules) and a polymer (long chain molecules). 
In such solids, in the absence of external stimuli, the polymeric solid is in stress 
free state. The long chain polymer molecules in this stress free state are in re-
laxed configuration (coilded, observed in electron microscopy). The solvent has 
its own viscosity and so does the polymer. The viscosity of the polymeric solid is 
not the sum of the two, but must be determined experimentally. 

The mechanical behavior of polymeric solids of course depends upon whether 
the polymeric solid constitution is dominated by solvent or by the polymer. 
When dominated by solvent, the polymeric solid roughly behave more like iso-
tropic solid with mild rheology. In polymeric solids dominated by the long chain 
molecules, the rheological behavior is more pronounced. 

Micro-photographs of polymeric solids show that in the relaxed state, the po-
lymer molecules are connected to the neighboring molecules forming colonies of 
polymer molecules that are interim interconnected wit the neighboring colonies. 
Of course individual stray molecules are also observed in the solvent. Upon ap-
plication of external stimuli to polymeric solids, the long chain polymer mole-
cules exhibit complex motion (Brownian motion). 1) The polymer molecules 
begin to unwind from their relaxes coiled state, 2) in doing so they have to 
overcome the viscous drag (forces) due to viscosity of the solvent as well as the 
polymer. This resistance offered by the viscous forces creates dynamic stiffness. 
Polymer molecules collectively act as one dimensional springs in the direction of 
the disturbance. This dynamic stiffness obviously requires time dependent de-
formation of the polymeric solid. This dynamic stiffness is over and beyond the 
tangent stiffness [ ]TK  (ref [14] [20]). Thus, TVES with rheology have stiffness 
[ ]TK  plus dynamic stiffness compared to TVES without rheology (only [ ]TK ). 
When compared to [ ]TK , the dynamic stiffness is small, hence only plays a 
minor role in influencing the total effective stiffness during nonlinear dynamic 
motion. Overall stiffness ( [ ]TK  + dynamic stiffness) of a polymeric solid is 
lower than the corresponding TVES without rheology. Due to presence of long 
chain molecules TVES with rheology are easier to deform compared to TVES 
without memory. With progressively increasing rheology TVES will progres-
sively loose stiffness. 
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Upon cessation of external stimuli, the polymer molecules try to return to 
their unstressed coiled state. In doing so, they have to overcome the viscous drag 
(resistance to motion) due to viscosity of the medium. Thus, upon cessation of 
external stimuli, the polymer molecules take finite amount of time to achieve 
their uncoiled stress free state. During this time, the stress in the polymeric solid 
is not zero but is continuously reducing with elapsed time. This phenomenon is 
known as stress relaxation, rheology or memory mechanism. Every polymeric 
solid has a characteristic time constant called “relaxation time”. The physical 
time it takes for a polymeric solid to achieve stress free state depends upon re-
laxation time but is not the relaxation time. It has been shown [1] [2] [6] that 
physical time for complete stress relaxation depends upon relaxation modulus 
which is a function of relaxation time. Higher relaxation time implies longer 
clock time for stress relaxation and vice versa. Thus, in TVES with rheology, the 
stress field at any time during evolution is affected by relaxation phenomenon. 
For example, a memory deviatoric stress pulse in TVES without memory leaves 
zero stress behind it during propagation, whereas in case of TVES with memory, 
the stress behind a propagating stress pulse is not zero. Its magnitude and base 
depends upon relaxation time and the speed of sound in the solid matter. In 
summary, we can conclude from this discussion that in TVES with memory the 
stress field is enhanced (higher) compared to TVES without memory. This, of 
course holds for compressive stress field as well as tensile stress field and that 
TVES with rheology have lower stiffness compared to TVES without rheology. 

Remarks 
A) In nonlinear dynamics, there are two opposing mechanisms: those that re-

sult in increase in the stiffness (positive [ ]K+ ) and those that result in decrease 
of stiffness (negative [ ]K− ) during evolution or frequency response. When the 
magnitude of [ ]K+  is greater than the magnitude of [ ]K− , we have stable dy-
namic response of the system. [ ] [ ]K K+ −=  is the condition for instability. At 
this point, a sudden change must occur in the response (amplitude) of the sys-
tem to restore stable configuration. This of course is dynamic bifurcation. 

B) Thus, in nonlinear dynamics of TVES with rheology, we must identify the 
mechanism that contributes to [ ]K+  and [ ]K− . 

C) As discussed earlier, TVES with rheology have all of the mechanisms of 
stiffness, damping and mass as in TVES without memory [14], but also contain 
some additional mechanisms due to presence of rheology due to long chain mo-
lecules. 

D) In the absence of rheology ( [ ] , 1,2, ,i
d i m= σ ), the constitutive theory for 

TVES with rheology (Equation (130)) reduces to the constitutive theory for 
TVES without memory (ref [14]), confirming that the physics of TVES without 
memory is intact in the mathematical model for TVES with rheology. Thus, 
nonlinear dynamics in TVES with rheology also depends upon tangent matrix 
[ ]TH  (Equation (94) in ref [14]). Symmetric tangent matrix [ ]TH  consists of 
mass matrix [ ]M , tangent stiffness matrix [ ]TK  and tangent damping matrix 
which in turn consists of [14]: 
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[ ] [ ]1 2 3
TK K K K Kσ     = + + +     

 

              (173) 

[ ] [ ]1 2 3
TC C C C Cσ     = + + +     

 

               (174) 

Thus, the nonlinear dynamic response due to [ ]TH  depends upon all of the 
above. 

1) Translational inertial physics ( [ ]{ }M δ ) with increasing frequency of exci-
tation results in progressively reducing stiffness. 

2) The influence of tangent stiffness [ ]TK  on the nonlinear dynamics is  
through 1K   , 2K  



, 3K  


 and [ ]Kσ . Coefficients of 1K    are constant,  

coefficients of 2K  


 and 3K  


 are linear and quadratic functions of { }δ  
(total dofs for the discretization). Matrix [ ]Kσ  is due to stress field. Increasing 
stiffness inhibits bifurcation. When the deformation is finite, contributions of 

3K  


 can be quite significant. Tensile stress field results in positive [ ]Kσ , thus 
increasing stiffness, hence inhibiting dynamic bifurcation. On the other hand, 
compressive stress field results in negative [ ]Kσ , thus reducing stiffness, hence 
promoting existence of dynamic bifurcation. 

3) The influence of tangent damping matrix [ ]TC  on nonlinear dynamics is  
through 1C   , 2C  



, 3C  


 and [ ]Cσ . 1C    is a constant coefficient matrix 

and the coefficients of 2C  


, 3C  


 are linear and quadratic functions of  

{ }δ . Matrix [ ]Cσ  in similar to [ ]Kσ  but contain stresses due to viscous 
forces, hence its coefficients are relatively small compared to [ ]Kσ . It influences 
total dissipation in the dynamic response but its individual contribution is hard 
to quantify. Dissipation provides resistance to motion, hence increasing dissipa-
tion progressively inhibits likelihood of the existence of dynamic bifurcation and 
vice versa. 

4) Thus, due to [ ]TH , when:  
a) [ ]Kσ  is positive due to tensile stress field, stiffness 1K   , 2K  



, 3K  


, 
dissipation and [ ]Kσ  are contributing to [ ]K+  and only translational inertial 
physics ( [ ]{ }M δ ) contributes to [ ]K− .  

b) When [ ]Kσ  is negative due to compressive stress field; 1K   , 2K  


, 
3K  


 and dissipation are contributing to [ ]K+  whereas translation inertial phys-
ics ( [ ]{ }m δ ) and [ ]Kσ  contribute to [ ]K− .  

5) We keep in mind that reduced dissipation, negative [ ]Kσ  and progressively 
increasing influence of translational inertial physics, all contribute to [ ]K− . We 
have shown in ref [14] in the numerical studies for model problem II that lack of 
dynamic bifurcation for some 0σ  (model problem II) and damping can be 
overcome by reducing damping. Likewise, lack of dynamic bifurcation for some 

0σ  and damping can also be overcome by increasing 0σ . 
6) In TVES with rheology, there is additional physics over and beyond [ ]TH  

(discussed in item (D)) that must be considered to determine how it influences 
nonlinear dynamics and dynamic bifurcation. Due to rheology, the additional 
physics are: a) additional stiffness due to stretching of long chain molecules but 

https://doi.org/10.4236/am.2024.151009


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/am.2024.151009 149 Applied Mathematics 
 

overall total lower stiffness compared to TVES without memory, b) the stress 
relaxation phenomenon. 

Surana et al. [20] [21] have shown that additional stiffness in TVES with 
memory due to stretching of long chain molecules called dynamic stiffness is 
very small compared to the stiffness due to strain. Authors (in ref [20]) isolated 
this physics in wave propagation studies to confirm that this is indeed true. Thus, 
the total stiffness of the deforming TVES with rheology is not affected apprecia-
bly by this dynamic stiffness. The stress relaxation phenomenon on the other 
hand needs more careful consideration. As discussed earlier, in TVES with rhe-
ology, upon cessation of external stimuli, finite amount of time is needed for the 
material to achieve stress free state. This physical clock time is determined using 
relaxation modulus related to relaxation time, a material property. TVES with 
longer relaxation time requires more clock time to relax and vice versa. Thus, in 
TVES with rheology, there is speed of sound and there is relaxation time or 
modulus. Thus, depending upon the speed of sound and relaxation time, we 
could have a situation in which a propagating disturbance leaves behind nonzero 
stress field, thus altering the stress field behind the propagating disturbance. A 
consequence of this is that due to change in the stress field, [ ]Kσ , the stiffness 
due to stress field will change. We consider two possibilities that can exist. 

E) If the external stimuli creates a compressive stress field, then the stress re-
laxation may leave additional compressive (negative) stress field behind the 
propagating disturbance (depends upon relaxation time) thereby increasing the 
magnitude of the total compressive stress field which enhances negative [ ]Kσ , 
hence adds in [ ]K− . This additional reduction in stiffness promotes existence of 
dynamic bifurcation at an earlier (lower) frequency compared to TVES without 
memory as now we do not require as much reduction in stiffness due to transla-
tional inertial physics. In summary, for the same material coefficients and load-
ing, dynamic bifurcation in TVES with memory can occur at a lower frequency 
compared to TVES without rheology. There could also be instances where TVES 
without rheology show no dynamic bifurcation for some choices of parameter, 
but for the same parameters dynamic bifurcation could exist in TVES with 
memory due to additional loss of stiffness by increased contribution of negative 

[ ]Kσ . In the axial rod model problem considered in a later section, [ ]Kσ  is 
negative, hence the details presented here are applicable. In this case, we expect 
dynamic bifurcation for TVES with memory to occur at a frequency smaller than 
for TVES without memory. 

F) When the external stimuli creates a tensile stress field, then the stress relax-
ation may leave additional tensile (positive) stress field behind the propagating 
disturbance thereby increasing the magnitude of the total tensile stress field 
which enhances positive [ ]Kσ , hence aids to [ ]K+ . This additional increase in 
stiffness need to be overcome by additional reduction in stiffness due to transla-
tional inertial physics, hence will require a larger value of frequency compared to 
TVES without memory at dynamic bifurcation. There could also be instances 
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where TVES without rheology show bifurcation for some choices of parameters, 
but for the same choice of parameters dynamic bifurcation could be eliminated 
for TVES with rheology due to increase in stiffness because of higher positive 
[ ]Kσ . In applications such as nonlinear dynamics of plates, beams etc. [ ]Kσ  is 
always positive (for simple BCs), hence we expect the dynamic bifurcation to 
occur at higher frequency for TVES with memory compared to TVES without 
memory. 

G) We present a comparison of bifurcation phenomenon in TVES without 
memory and TVES with memory. In doing so, we assume that the structure of 
matrices in TVES without memory is implicitly present in case of TVES with 
memory with additional physics of rheology. This can be verified by discarding 
relaxation term in the constitutive theory. In case of TVES without memory 
BLM expressed in displacement followed by GM/WF, Newmark linear accelera-
tion with Newton’s linear method reveals the elegant structure of various ma-
trices associated with specific physics that facilitate understanding of dynamic 
bifurcation phenomenon. In TVES with memory, BLM cannot be expressed 
purely in terms of displacements, hence structure of matrices in TVES without 
memory cannot be explicitly obtained for TVES with memory. Nonetheless, 
consideration of common physics between TVES with and without memory is 
compelling and strong argument (in addition to obtaining same PDEs as for 
TVES without memory when 1 0λ =  in the PDEs for TVE with memory) to use 
the [ ]TH ; [ ]TK  and structure of other matrices in TVES without memory to 
explain the contribution of additional physics of rheology on dynamic bifurca-
tion in case of TVES with memory. 

Thus, when we compare the physics of TVES with rheology and TVES with-
out rheology we find: 

1) TVES with rheology have lower (linear and nonlinear) stiffness compared 
TVES without rheology due to presence of long chain molecules. As the concen-
tration of long chain molecules increases (dense polymeric solid), progressively 
increasing rheology, the overall stiffness decreases. Thus, for the same external 
stimulus a TVES with progressively increasing rheology will yield progressively 
increasing deformation (displacements). Thus, in frequency response, we expect 
higher amplitudes for TVES with rheology compared to TVES without rheology. 

2) Rheology increases the residual stress field in compression as well as ten-
sion, thus increases negative [ ]Kσ  as well as positive [ ]Kσ , but only in nonli-
near case as there is no [ ]Kσ  for linear case. 

3) In TVES, the dynamic bifurcation depends upon the following:  
a) We except same contributions to [ ]TH  (though [ ]TH  in the same form 

as for TVES without memory is not possible in this case) as in case of TVES 
without memory but the stiffness is reduced due to long chain molecules, thus 
effective stiffness is lower in TVES with rheology compared to TVES without 
memory. 

b) [ ]Kσ  as in case of TVES without memory. When the stress field is com-
pressive, presence of rheology enhances negative stress field which in turn in-
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creases negative [ ]Kσ , thus reducing effective stiffness. 
c) Translational inertial physics. Since in (a) effective stiffness is reduced and 

in (b) effective stiffness is also reduced, thus requires reduction in stiffness due 
to translational inertial physics, implying that dynamic bifurcation should hap-
pen at a lower frequency i.e., to the left of the TVES without memory. 

d) When [ ]Kσ  is positive, the situation can be quite different. When com-
pared with TVES without memory, we observe and note the following. 

i) Lower stiffness (linear and nonlinear without [ ]Kσ ) in case of TVES with 
memory. This reduction compared to TVES without memory depends upon 
rheology. Let [ ]K∆  be the reduction in stiffness due to rheology.  

ii) Increase in tensile stress field due to rheology. Hence, increase in positive 
[ ]Kσ  compared to TVES without memory. Let [ ]Kσ∆  be the increase in stiff-
ness due to additional stress field because of rheology.  

iii) If [ ]K∆  is greater than [ ]Kσ∆  then the dynamic bifurcation will occur 
at a frequency lower than that for corresponding TVES without memory.  

iv) If [ ]Kσ∆  is greater than [ ]K∆ , then the dynamic bifurcation will occur 
at a frequency greater than that for corresponding TVES without memory.  

We remark that stress relaxation phenomenon is primarily responsible for 
change in the stress field that depends upon relaxation time. For smaller relaxa-
tion time, the stress free state is achieved quicker (in terms of clock time) and 
vice versa. Thus, in general, higher the relaxation time, more is the deviation 
between the bifurcation frequencies for TVES without memory and TVES with 
memory. 

8. Model Problems 

In references [13] [14], we had considered phenomenological mathematical 
models as well as those derived using CBL of CCM. In case of TVES with mem-
ory, the deviatoric second Piola-Kirchhoff stress tensor constitutive theory can-
not be substituted in the BLM as the constitutive theory is PDE in time. None-
theless, we find that in almost all published works, this is done in some manner 
or other. Thus, our view is that these mathematical models have inconsistencies 
or serious assumptions. For this reason, in the present work we only consider 
mathematical models for the model problems based on CBL of CCM and con-
sistent constitutive theories. 

We consider the same model prolem of 1D axial TVE rod without memory 
considered in [14] but with rheology so that we can illustrate the influence of 
rheology on the nonlinear dynamics and dynamic bifurcation. We consider a 
TVE axial rod with rheology of length L, fixed at 1 0x =  (left end) and subjected 
to harmonic excitation ( )0 sinf tω  at 1x L=  (right end), as shown in Figure 
1(a). Assuming that all points in each cross section of the rod deform in the 1x  
direction by the same amount, we can idealize the rod by a line shown in Figure 
1(b). For simplicity, we consider isothermal physics. Thus, balance of linear 
momenta and the constitutive theory for deviatoric second Piola-Kirchhoff  

https://doi.org/10.4236/am.2024.151009


K. S. Surana, S. S. C. Mathi 
 

 

DOI: 10.4236/am.2024.151009 152 Applied Mathematics 
 

 

Figure 1. Schematic, discretization, BCs and ICs for an axial rod (model problem II). (a) 
Schematic; (b) Space-time domain; (c) Discretization of xtΩ  in space-time strip: 

( )iT
xt xt

i

Ω = Ω


; (d) Discretization ( )( )1 T

xtΩ  of the first space-time strip ( )1
xtΩ : ( )( )1 T e

xt xt
e

Ω = Ω


; 

(e) BCs and ICs. 
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stress are the only equations that constitute the mathematical model. The con-
stitutive theory for the equilibrium second Piola-Kirchhoff stress is defined us-
ing equation of state [1] [2], hence is known. In the derivation of the constitutive 
theories, we consider the dissipation mechanism to be dependent on Green’s 
strain rates up to order “n” and the rheology to be dependent upon the rates of 
the deviatoric second Piola-Kirchhoff stress tensor up to order m (see reference 
[1] [2]). The deviatoric second Piola-Kirchhoff stress rate of order m is used a 
constitutive variable and [ ]; 0,1, , 1i

d i m= −σ  are considered as argument 
tensors of [ ]m

dσ . In the present numerical studies, we choose 1m =  and 1n =  
for which we can obtain the following: 

[ ] ( )
2

01 1
0 0 1 112

1 1

1 0 BLMbu uF
x xt

ρ ρ σ
  ∂ ∂∂

− − + =   ∂ ∂∂   
         (175) 

[ ] [ ] [ ]0 0 0
e d= +σ σ σ                       (176) 

[ ]
[ ]( )

[ ]( ) [ ]( ) [ ]( ) [ ]( )
0

110
11 1 1 10 0 0 011 11 11 11

2 2
d

d t

σ
σ λ µ ε λ ε µ ε λ ε

∂
+ = + + +

∂
    (177) 

[ ]( )
2

1 1
0 11 1 1

1
2

u u
x x

ε
 ∂ ∂

= +  ∂ ∂ 
                   (178) 

[ ]( ) [ ]( )0 011 11t
ε ε∂

=
∂

                      (179) 

We note that for 1D case 2 Eµ λ+ = , modulus of elasticity and ( )1 12µ λ η+ = , 
viscosity. 1λ  in (177) is relaxation time. We nondimensionalize (175) - (179) 
with hat (  ) on all quantities indicating they have their usual dimensions or 
units (neglecting equilibrium stress) 

[ ]
2

01 1
0 0 1 112

1 1

ˆ ˆˆˆ ˆ ˆ1 0ˆ ˆ ˆ
b

d
u uF

x xt
ρ ρ σ

  ∂ ∂∂
− − + =   ∂ ∂∂   

            (180) 

[ ] [ ]( ) [ ]( ) [ ]( )0 0
11 1 11 0 011 111

ˆ ˆ ˆ ˆˆ ˆ
ˆd d E
x

σ λ σ ε η ε∂
+ = +

∂
             (181) 

[ ]( )
2

1 1
0 11 1 1

ˆ ˆ1ˆ
ˆ ˆ2
u u
x x

ε
 ∂ ∂

= +  ∂ ∂ 
                   (182) 

[ ]( )
2

1 1
0 11 1 1

ˆ ˆ1
ˆ ˆ2
u u

t x x
ε

  ∂ ∂∂  = +   ∂ ∂ ∂  
                 (183) 

( ), xtx t∀ ∈Ω  

( )

[ ]

( )

0 01 1 1
0 1 1 0

0 0 0 0 0

[0]
0 11 1

11 1
0 0 0 0

2 0 01
0 0 0 0 0 1 0 2

0 0 0

ˆ ˆ ˆ ˆ
; ; ; ; ;

ˆˆˆ ˆ
; ; ;

ˆ
; ; ;

ref

d
d

b
b

ref

Lu v xu v x t
L v L v

EE De
E t

E LFE v v F F
F v

ρ
ρ

ρ

σ λησ η λ
σ η

σ ρ
ρ


= = = = = 



= = = = = 


= = = = =



       (184) 
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0v  is reference speed of sound. ( )0 0 0, ,
ref

Eτ ρ  and 0 0,t η  are reference stress, 
modulus of elasticity, density, reference time and reference viscosity. 

We substitute [ ]( )0 11
ε  and [ ]( )2

0 11
ε  form (182) and (183) into (181), expand 

the third term in (180), introduce 1
1

uv
t

∂
=
∂

 and then nondimensionalize using 

(184) to obtain the following: 

[ ]( ) [ ]( ) [ ]( )
2

0 0 01 1 1
0 0 1 11 11 112

1 1 1 1

0b
d d d

u u uF
x x x xt

ρ ρ σ σ σ
∂ ∂ ∂ ∂ ∂

− − + − =
∂ ∂ ∂ ∂∂

    (185) 

[ ] [ ]( )
2

0 0 1 1 1 1 1
11 11

1 1 1 1 1

1 0
2d d

u u v u vDe E c
t x x x x x

σ σ
    ∂ ∂ ∂ ∂ ∂∂  + − + − + =    ∂ ∂ ∂ ∂ ∂ ∂    

   (186) 

1
1 0uv

t
∂

− =
∂

                        (187) 

( ) ( ) ( ), 0, 0,xt x tx t L τ∀ ∈Ω =Ω ×Ω = ×  in which 1E =  if 0
ˆE E=  and  

( ) ( )
0 0 0

0 0 0 0 0 0 0 0

ˆ ˆ

ref ref

v vc
L L L Re

η η η ηη
σ ρ σ ρ σ

 
 = = = =
 
 

. 

where 
( )0 0 0

0

v L
Re

ρ
η

= . c is dimensionless damping coefficient and 1

0

ˆ
De

t
λ

=  is  

dimensionless relaxation time (Deborah number). We calculate solution of (185) 
- (187) using space-time finite element method based on space-time residual 
functional for a space-time strip with time marching. Figure 1(c) shows 
space-time domain [ ] [ ]0, 0,xt x t L τΩ = Ω ×Ω = × , τ  being value of time. A  
discretization ( )iT

xt xt
i

Ω = Ω


 of space time domain xtΩ  into space-time strips 

( ) ; 1,2,i
xt iΩ =   is shown in Figure 1(c). 

In the computational studies choose 1L =  and dimensionless density 

0 0.001ρ = . Thus, the dimensionless wave speed in the linear elastic medium is  

0

1 31.6218
0.001

Ev
ρ

= = =  and the natural frequencies of axial vibration  

(small strain, linear elasticity without dissipation) are given by  
( ) ( )
2 1

2 1 49.673; 1,2,
2n

n v
n n

L
ω

− π
= = − =   

Figure 1(d) shows a discretization ( )( )1 T
e

xt xt
r

Ω = Ω


 of the first space-time  

strip using p-version nine node space-time finite elements with hierarchical local 
approximations of higher degree and higher order global differentiability in 
space and time. Figure 1(e) shows BCs: 1 10, 0u v= =  at 1 0x =  [ ]0,t t∀ ∈ ∆ , 
ICs: 1 10, 0u v= =  at 0t =  [ ]1 0,x L∀ ∈ . BCs at 1x L=  consists of 

[ ] ( )0
11 0 sind tσ σ ω= . Using [ ]0

11dσ  values of the degrees of the freedom are calcu-
lated for the element nodes at 1x L=  and [ ]0,t t∈ ∆ . For the second space-time 
strip, these dofs are calculated for [ ],2t t t∈ ∆ ∆  and so on. This process enables 
application of [ ] ( )0

11 0 sind tσ σ ω=  at 1x L=  in time accurately. In this process, 
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a change in ω  is done at a value of time t when [ ]0
11 0dσ = , so that change in 

ω  does not cause unnecessary discontinuity in the application of [ ]0
11dσ  at 

1x L=  in time. Convergence studies using mesh refinement and p-level in-
crease confirm that a 10 element discretization with p-level of 9 in space and 
time with global differentiability of order one ( 2k = , order of the approxima-
tion space) are sufficient to obtain space-time residual functional I for ( )( )1 T

xtΩ  
of ( )810O −  or lower indicating accurate evolution for ( )( )1 T

xtΩ . 
Evolution is continued using time marching till steady cyclic response is 

reached for each frequency. We use integration time step of 1 2
20

t
w
π ∆ =  

 
.  

Evolution is computed for 20 cycles of each frequency. This is found to be ade-
quate enough to reach cyclic response. During the entire evolution, I values of 

( )810O −  are achieved, ensuring accurate evolution. 
As in case of model problem II in ref [14], here also there is a negative shift 

(due to compression of the rod) in the peak positive and negative values ob-
served in the cylic response, we record and report both. In this model problem 

[ ]Kσ  is always negative. 
We present a number of numerical studies for various combinations of 0σ , 

damping coefficient c and Deborah number De. The objective of these model 
problem studies is to demonstrate the influence of rheology on the nonlinear 
dynamic response and dynamic bifurcation. We intentionally choose same com-
bination of 0σ  and c used for nonlinear dynamic response of TVES without 
memory in reference [14], but incorporate rheology through De. In the numeri-
cal studies we choose two values of De to illustrate the influence of increasing 
rheology on nonlinear dynamic response and dynamic bifurcation. 

8.1. Linear TVES with Memory 

In this study, we consider small deformation, small strain physics with linear 
damping and memory. We choose 0 0.025σ = , 0.003c =  and 0.0005De = . 
We observe no path dependency in this case i.e., L R→  and L R←  fre-
quency responses are identical as shown in Figure 2.  

8.2. Linear TVES with and without Rheology 

In this study we consider small deformation, small strain physics with linear 
damping. We choose 0 0.03σ = , 0.003c = , same as used in ref. [14] for model 
problem II, Section 8.3.1. case (2), figure 8(b). When 0De = , the frequency re-
sponse shown in Figure 3 is same as in figure 8(b) of ref [14]. We observe no 
path dependence i.e., L R→  and L R←  frequency responses are identical. 
We also perform numerical studies for 0 0.03σ = , 0.0035c =  and 

0.0005De = . Figure 3 also shows frequency response for 0.0005De =  for 
L R→  and L R← . In both studies (for 0De = , 0.0005De = ) we have kept 
some values of 0σ  and damping coefficient c (0.003) so that we can demon-
strate the influence of rheology. Presence of long chain molecules decreases the 
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stiffness of the solid matter resulting in high displacement values. This is quite 
visible in Figure 3. Peak amplitude of 0.12 for 0.0De =  increases to 0.15 at 

0.0005De = . We remark that presence of rheology also increases damping 
coefficient c, which increases resistance to motion, hence causes reduction in 
amplitude of motion. Thus, with actual damping of the polymeric solid, the peak 
values would be lower than 0.15 but we expect it to be higher than 0.12 (for 

0.0De = ). 
 

 

Figure 2. TVES with memory: Linear frequency ω  vs amplitude u response for 
0.003c = . 

 

 

Figure 3. TVES without memory and with memory: Linear frequency ω  vs amplitude 
u response for 0.003c = , 0.0,0.0005De = . 
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8.3. Fixed Values of σ0, De with Decreasing c 

In this study, we consider fixed values of 0 0.030σ =  and two values of 
0.003,0.002c = . We determine frequency response for 0.0De =  and 0.0005 for 

L R→  and L R←  paths of excitation frequency for both values of c. 
First, we consider 0 0.030, 0.003cσ = =  and calculate frequency response for 

0.0De =  and 0.0005. Figure 4(a) shows frequency response for 0.003c =  and 
0.0De =  i.e., TVES without memory (Same as figure 9(c) in ref [14]). We ob-

serve virtually no dynamic bifurcation and very little path dependencies. Figure 
4(b) shows frequency response for the same values of 0σ  and c but for 

0.0005De = . We observe distinct dynamic bifurcation in the neighborhood of 
46ω =  Hz. Peak amplitude for both positive and negative peaks as higher in 

Figure 4(b) compared to Figure 4(a). This of course is due to lower stiffness of 
TVES with memory compared to TVES without memory and increased influ-
ence of negative [ ]Kσ  which results in presence of dynamic bifurcation, higher 
peak amplitudes for both negative and positive peaks. Wee also observe mild 
path dependency in the response. 

Next, we consider 0 0.030σ =  (same as before) but 0.002c =  (reduced 
damping) and determine frequency response for 0.0005De = . Figure 4(c) 
shows frequency response for 0.0De =  (same as figure 9(d) of ref [14]). We 
observe clear dynamic bifurcation and some path dependency. Figure 4(d) 
shows frequency response for 0.0005De = . We see distinct bifurcation at 

45ω =  Hz with both positive and negative peaks higher than in Figure 4(c) for 
the same reason as discussed for 0.003c = . 

From this study, we clearly note that when [ ]Kσ  is compressive (as in this 
case), presence of rheology (hence lower stiffness) for some 0σ  and 0c  en-
hances dynamic bifurcation i.e., 1) more distinct in appearance; 2) results in 
higher peak amplitudes compare to the case without rheology due to reduced 
stiffness in TVES with memory and higher negative [ ]Kσ . 

8.4. Fixed Values of σ0, c with Increasing De 

In this study, we consider fixed values of 0 0.025, 0.003cσ = =  for  
0.0,0.0005,0.001De = . First, we consider 0 0.025, 0.003cσ = =  and  
0.0,0.0005De = . Figure 5(a) shows frequency response for 0.0De = . We do 

not observe dynamic bifurcation as well as significant path dependencies. Figure 
5(b) shows frequency response for 0.0005De = . We observe mild dynamic bi-
furcation at 46.5ω =  Hz and very little path dependency. Both positive and 
negative peaks in Figure 5(b) for 0.0005De =  are higher than those in Figure 
5(a) for 0.0De = . Figure 5(c) shows dynamic response for 0.001De = . We 
observe distinct dynamic bifurcation at 46ω =  Hz. There is very little path 
dependency. Both positive and negative peaks are higher than for 0.0De =  and 

0.0005De = . Higher peaks are due to reduced stiffness for 0.001De =  (com-
pared to 0.0De = ) and enhance negative [ ]Kσ . 
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(d) 

Figure 4. (a) TVES without memory: Frequency ω  vs amplitude u response for 
0.003c = , 0.0De = ; (b) TVES with memory: Frequency ω  vs amplitude u response 

for 0.003c = ; (c) TVES without memory: Frequency ω  vs amplitude u response for 
0.002c = , 0.0De = ; (d) TVES with memory: Frequency ω  vs amplitude u response 

for 0.003c = , 0.0005De = . 

8.5. Fixed Values of σ0, c with Increasing De 

This study is similar to Section 8.3 except that in this case 0 0.03σ = , higher 
than 0.025 used in Section 8.3. We use 0.003c =  and 0.0,0.0005,0.001De = . 
Figure 6(a) shows frequency response for 0.0De = . We observe mild bifurca-
tion, but insignificant path dependency. Both positive and negative peaks are 
higher for 0.0De ≠  compared to 0.0De =  as shown in Figure 6(b) and Fig-
ure 6(c). Furthermore, the positive and negative peaks for 0.001De =  are even 
higher than those for 0.0005De = . This is due to the same reason stated in ear-
lier two studies. 

1) From the studies presented here for the linear dynamic with linear damp-
ing, we confirm that peak value of the amplitude in the frequency response is 
higher for 0De ≠  compared to 0De = . That is for a TVES without rheology 
the presence of long chain molecules result in reduced stiffness, hence increased 
peak amplitudes. We keep in mind that when 0De ≠ , the compressive stress 
field is enhanced due to rheology, but it cannot cause reduction in stiffness due 
to absence of [ ]Kσ  in linear dynamics. In this study, same damping coefficient 
c is used for 0.0De =  and 0De ≠ . In actual case c for 0De ≠  may be 
slightly higher (or higher) than for 0De = . This will result in slight reduction 
in the peak amplitude for 0De ≠ . 

2) In nonlinear dynamic studies, the presence of rheology for some 0σ  and c, 
enhances compressive stress field due to rheology, hence results in increased 
negative [ ]Kσ  causing reduction in stiffness (over and beyond reduced stiffness  
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(a) 

 
(b) 

 
(c) 

Figure 5. (a) TVES without memory: Frequency ω  vs amplitude u response for 0.0De = ; 
(b) TVES with memory: Frequency ω  vs amplitude u response for 0.0005De = ; (c) 
TVES with memory: Frequency ω  vs amplitude u response for 0.001De = . 
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(b) 

 
(c) 

Figure 6. (a) TVES without memory: Frequency ω  vs amplitude u response for 
0.003c = , 0.0De = ; (b) TVES with memory: Frequency ω  vs amplitude u response 

for 0.003c = , 0.0005De = ; (c) TVES with memory: Frequency ω  vs amplitude u re-
sponse for 0.003c = , 0.001De = . 
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of the TVES with rheology due to long chain molecules) which in turn: a) results 
in increased positive and negative peak values. b) If dynamic bifurcation is al-
ready present for 0De = , then progressively increasing De, increases likelihood 
of dynamic bifurcation at a lower frequency than for 0.0De =  progressively 
enhance dynamic bifurcation. c) If dynamic bifurcation is not present for 

0De = , then progressively increasing De enhances the likelihood of the pres-
ence of dynamic bifurcation. 

3) In all the studies presented here we have kept damping coefficient “c” same 
for TVES without and with memory, knowing fully well that in the presence of 
rheology the higher polymer viscosity ( pη ) (compared to the solvent viscosity 
( sη )) will undoubtedly result in a polymeric solid with viscosity η  greater than 

sη , hence damping coefficient higher than that of the solvent ( 0De = ). This is 
intentional so that we could clearly demonstrate the influence of rheology with-
out bringing in another aspect of physics due to change in damping coefficient c. 

4) In reality for TVES without memory c is much lower than those of TVES 
with memory. Thus, if we use actual damping coefficient, a higher value of 0σ  
may be required to reach unstable region of dynamic bifurcation, but we see no 
issues here. This has been confirmed in our studies. 

5) Unfortunately, for these model problems, studies with positive [ ]Kσ  are 
not possible to conduct. These will be presented in a follow up paper on nonli-
near dynamics of plates and shells. 

9. Summary and Conclusions 

In the following, we summarize the work presented in the paper and draw some 
conclusions. 

1) The CBL of CCM derived using contravariant second Piola-Kirchhoff stress 
tensor and the Green’s strain tensor augmented with consistent ordered rate 
constitutive theories of orders (m, n) for deviatoric contravariant second Pi-
ola-Kirchhoff stress tensor based on Green’s strain rates up to orders n and the 
deviatoric second Piola-Kirchhoff stress tensor rates of up to order m completely 
define the finite deformation, finite strain nonlinear dynamics of TVES with 
rheology. 

2) As in case of TVES without memory [14], here also the factors influencing 
nonlinear dynamics and dynamic bifurcation are difficult to establish using the 
mathematical model described in (1). 

3) In case of TVES with memory, the constitutive theory for deviatoric second 
Piola-Kirchhoff stress tensor is a differential equation in deviatoric second Pi-
ola-Kirchhoff stress tensor and time. Thus, in this case the deviatoric second Pi-
ola-Kirchhoff stress tensor cannot be substituted in BLM. The consequence of 
this is that we cannot obtain BLM purely in terms of spatial and time derivatives 
of the displacement. This eliminates the possibility of using GM/WF for BLM to 
obtain nonlinear ODEs in time containing mass, damping and stiffness matrices 
and dofs related to displacements, velocities and accelerations: ({ } { },δ δ  and 
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{ }δ ). That is, the following system of ODEs (valid for TVES without rheology) 
are not possible for TVES with memory (shown for 1n =  and 1m = ): 

[ ]{ } [ ]{ } [ ]{ } { } { }M C K F Pδ δ δ+ + = +                 (188) 

4) Based on item (3), it is straight forward to conclude that all mathematical 
models in published works (phenomenological or otherwise) based on similar 
nonlinear ODEs as in item (3) for TVES with memory are in violation of CBL of 
CCM and the constitutive theories, hence cannot possibly describe the nonlinear 
dynamics of TVES with rheology correctly. 

5) Item (3) clearly suggests that the approach used for identifying factors in-
fluencing nonlinear dynamics and dynamic bifurcation for TVES without mem-
ory (ref [14]) based on (188) and the time integration scheme cannot be used for 
TVES with memory as in this case (188) cannot be derived. Thus, we must con-
sider an alternative approach to determine the various factors influencing non-
linear dynamics and dynamic bifurcation in TVES with rheology. 

6) We note only the presence of long chain molecules in TVES with rheology 
distinguishes them from the TVES without rheology. This suggests that perhaps 
all of the physics of TVES without rheology is also present in TVES with rheol-
ogy. The presence of long chain molecules brings in new physics of rheology that 
is not present in TVES without memory and may result in some modifications 
regarding the intensities of the various physics present in TVES without memory. 
The validity of the above suggestion becomes obvious when we set relaxation 
time 1 0λ =  in the mathematical model to recover the precise mathematical 
model for TVES without memory for which (188) and the factors influencing 
nonlinear dynamics and dynamic bifurcation presented in reference [14] remain 
valid. Thus, we can conclude that even though (188) is not possible in TVES 
with memory, but based on the basis of the arguments given above the factors 
influencing nonlinear dynamics and dynamic bifurcation in TVES without 
memory remain valid for TVES with memory. Additionally, we need to consider 
the influence of rheology which is not present in TVES without memory. 

7) Presence of long chain molecules reduces stiffness, but increases resistance 
due to dissipation (higher damping coefficient). The overall stiffness of the po-
lymeric solid is lower than its counterpart without rheology. The frequency re-
sponse presented for linear TVES with and without memory illustrates this quite 
well when the damping coefficient is the same for TVES with and without memo-
ry. Increased damping coefficient for TVES with memory will result in some 
reduction in the amplitude but the response will still have amplitudes higher 
than those for TVES without memory. This is the first significant difference be-
tween TVES with memory compared to TVES without memory. 

8) The second major difference between TVES with memory and those with-
out memory is the presence of rheology or relaxation phenomenon in TVES 
with memory. In an externally applied moving disturbance, the stress behind the 
disturbance does not attain zero value immediately after the movement of the 
disturbance. The relaxation modulus which is a function of relaxation time con-
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trols the physical time for the stress behind the disturbance to reach zero stress 
state. The consequence of this is that both tensile and compressive stress fields 
are enhanced in the case of TVES with rheology compared to TVES without 
rheology due to the presence of additional stresses because of rheology. The pre-
cise increase in the stress field depends upon the relaxation time. In any case, 
[ ]Kσ , both positive and negative are enhanced in the case of TVES with rheolo-
gy compared to TVES without memory (of course for the same material coeffi-
cients). 

9) The dynamic bifurcation in TVES with memory depends upon the same 
physics and factors as in the case of TVES without memory [14] but additionally 
we must take into account the reduced stiffness due to long chain molecules and 
enhanced [ ]Kσ  due to increased stress field. We consider the following possi-
bilities. 

a) When [ ]Kσ  is negative, but enhanced compared to [ ]Kσ  for TVES 
without memory, then reduced stiffness due to long chain molcules [ ]K∆  and 
increased negative [ ]Kσ  ( [ ]Kσ∆ ) will result in total stiffness that is lower than 
that for TVES without memory, hence reduced influence of the translational in-
ertial physics is needed for dynamic bifurcation, implying that dynamic bifurca-
tion will occur at a lower frequency compared to TVES without memory i.e., to 
the left of the dynamic bifurcation for corresponding TVES without rheology. 

b) When [ ]Kσ  is positive, but enhanced compared to [ ]Kσ  for TVES 
without memory, then the reduced stiffness due to rheology ( [ ]K∆ ) and in-
creased stiffness due to stress field [ ]Kσ∆  control bifurcation frequency. If 
[ ]K∆  is lower than [ ]Kσ∆ , then the dynamic bifurcation will occur at a higher 
frequency compared to corresponding TVES without memory and vice versa.  

10) Model problem studies presented in the paper demonstrate all aspects 
discussed above here except positive [ ]Kσ , as this is not possible for the model 
problem considered in the present study. Model problems clearly illustrate the 
influence of rheology on the dynamic bifurcation when compared with TVES 
without memory. 

11) The work presented in this paper establishes the factors influencing dy-
namic bifurcation in TVES with memory compared to TVES without memory 
and illustrates their validity in the model problem studies. 

12) The space-time coupled finite element method based on residual func-
tional for a space-time strip or a space-time slab with time marching used in the 
present work is the best methodology for obtaining solutions of the nonlinear 
PDEs in space and time. In this methodology, space-time integral forms are 
space-time variationally consistent, hence ensuring unconditional stability of 
computations during the entire evolution. In this approach, use of minimally con-
forming approximation spaces in space and time and with appropriate choices of 
h and p, the space time residual functional can be ensured to be of the order of 
( )810O −  or lower, ensuring that the PDEs in the mathematical model are satis-

fied accurately at each point in the space-time domain. This ensures that the 
calculated solutions are almost time accurate. 
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13) In the space-time decoupled methods of approximation, the approxima-
tions due to space-time decoupling, accuracy and stability of the time integration 
method and the inability of these techniques to quantitatively judge how well the 
PDEs are satisfied are of concern. This approach is undoubtedly inferior to the 
space-time coupled methods of approximation. 

14) As in the case of TVES without memory, here also we expect path depen-
dency due to nonlinear PDEs with irreversibility. The severity of path depen-
dency depends upon the severity of entropy production. 

This paper presents thermodynamically and mathematically consistent ma-
thematical model based on CBL of CCM for nonlinear dynamics and dynamic bi-
furcation physics and methods of obtaining their solutions. Space-time coupled fi-
nite element method can be almost time accurate and has no issues of stability. 
Thus, reported solutions are true solutions of the PDEs in the mathematical 
model. As we mentioned in our previous paper on TVES without memory, 
whether the solutions reported here match experimental data is another issue. If 
they do, we have a computational tool that eliminates experiments. If they do 
not, then obviously either the physics considered in the two differ or there are 
other sources of errors that are contaminating the results. We remark that in the 
solutions presented in this paper, the only source of confusion can be a lack of 
consideration of some physics that is present in the experiment. In view of the 
fact that the material presented in this paper is strictly based on CBL of CCM 
and the solutions of the IVPs are obtained using space-time coupled finite ele-
ment method that is unconditionally stable and provides control over the accu-
racy of the solution for nonlinear dynamics and dynamic bifurcation, pheno-
menological mathematical models and questionable methods of obtaining their 
solutions can be completely avoided. 
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Appendix 

Nomenclature 
x , ix , { }x : deformed Coordinates  
x , ix , { }x : undeformed Coordinates  

0ρ : reference density  
ρ : density in Lagrangian description  
ρ : density in Eulerian description  
η : specific entropy in Lagrangian description  
η : specific entropy in Eulerian description  
e : specific internal energy in Lagrangian description  
e : specific internal energy in Eulerian description  
J : deformation gradient tensor in Lagrangian description  

s J : symmetric part of deformation gradient tensor in Lagrangian description  

a J : skew-symmetric part of deformation gradient tensor in Lagrangian de-
scription  

d J : displacement gradient tensor in Lagrangian description  
i

a
ΘJ : skew-symmetric part of internal rotation gradient tensor in Lagrangian 

description  
q , iq , { }q : heat vector in Lagrangian description  
q , iq , { }q : heat vector in Eulerian description  
v , iv , { }v : velocities in Lagrangian description  
v , iv , { }v : velocities in Eulerian description  
u , iu , { }u : displacements in Lagrangian description  
u , iu , { }u : displacements in Eulerian description  
P : average stress in Lagrangian description  
P : average stress in Eulerian description  
σ , ijσ , [ ]σ : Cauchy stress tensor in Lagrangian description  

( )0σ , ijσ , [ ]σ : Cauchy stress tensor in Eulerian description  

sσ : symmetric part of Cauchy stress tensor tensor  
( )sd
σ : deviatoric part of the symmetric Cauchy stress tensor tensor  

( )se
σ : equilibrium part of the symmetric Cauchy stress tensor tensor  

θ : temperature in Lagrangian description  
θ : temperature in Eulerian description  
k : thermal conductivity in Lagrangian  
p : thermodynamic or Mechanical Pressure in Lagrangian description  
p : thermodynamic or Mechanical Pressure in Eulerian description  
g , ig , { }g : temperature gradient tensor in Lagrangian description  
g , ig , { }g : temperature gradient tensor in Eulerian description  
L : velocity gradient tensor in Eulerian description  
D : symmetric part of velocity gradient tensor in Eulerian description 
TES: thermoelastic solid 
TVES: thermoviscoelastic solid 
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