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Abstract 
The original Bell inequality was obtained in a statistical derivation assuming 
three mutually cross-correlated random variables (four in the later version). 
Given that observations destroy the particles, the physical realization of three 
variables from an experiment producing two particles per trial requires two 
separate trial runs. One assumed variable value (for particle 1) occurs at a 
fixed instrument setting in both trial runs while a second variable (for particle 
2) occurs at alternative instrument settings in the two trial runs. Given that 
measurements on the two particles occurring in each trial are themselves cor-
related, measurements from independent realizations at mutually exclusive 
settings on particle 2 are conditionally independent, i.e., conditionally depen-
dent on particle 1, through probability. This situation is realized from variables 
defined by Bell using entangled particle pairs. Two correlations have the form 
that Bell computed from entanglement, but a third correlation from condi-
tionally independent measurements has a different form. When the correla-
tions are computed using quantum probabilities, the Bell inequality is satis-
fied without recourse to assumptions of non-locality, or non-reality. 
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1. Introduction: Problems in Physical Application of the Bell  
Inequality 

The Bell theorem [1] and inequality, together with violation of the inequality 
under certain experimental procedures, have led to more than 50 years of specu-
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lation and controversy [2] [3]. However, inconsistencies between the mathemat-
ical structure of the Bell inequality and its experimental use require critical ex-
amination. Below, Bell’s derivation of the three variable inequality is reviewed, 
followed by a proof that it is identically satisfied by cross-correlations of any three 
numerical data sets corresponding to the three cross-correlated, random variables 
used in Bell’s original derivation [4]. 

How then have classic experiments such as [5] produced data claimed to vi-
olate the inequality in “test” experiments. The answer is, by using three indepen-
dent correlations from six data sets rather than the three cross-correlations of 
three data sets used in the Bell derivation of the inequality. Given the statistical 
derivation of the inequality, and that experiments directly produce data for cor-
relations produced by particle pairs, it seems to be casually assumed that the cor-
rect correlations are obtained from three (or four in the four variable case) sta-
tistically independent particle pairs, or six data sets. This assumption is inconsis-
tent with the inequality derivation as shown in the following sections. The corre-
lations from three independently produced particle pairs (six variables) bear only 
partial resemblance to the cross-correlations among three correctly used quan-
tum variables because, in the latter case, the final correlation reuses data from 
the previous two correlations. Since the observations of two of the variables are 
conditionally dependent on a third in Bell’s usage, the third correlation is dif-
ferent from the first two Bell correlations. 

The original Bell inequality [1] results from the mutual cross-correlation of 
three variables. The resulting expression, as will be shown below, appears to be 
symmetric in the correlations of the variables. But the physical situation to which 
the result is applied is intrinsically asymmetric with the third correlation having 
a different form from the first two. A more general derivation of the inequality, 
as applies to correlations of actual finite physical data sets, rather than predicted 
correlations, shows that the inequality must be identically satisfied, and that the 
correlations in general have different functional forms. These facts will be illu-
strated below, using correlations satisfying the inequality in the quantum me-
chanical case. A similar but clearly more complex procedure, not considered here, 
is required to apply the four variable inequality to experimental photon pairs 
with logical consistency. 

It is useful to consider the processes invoked in the Bell theorem in the con-
text of other known random processes. There are processes in which any num-
ber of variables may be measured using different pairs of coordinates, and for 
which the resulting correlations all have the same functional dependence on 
coordinate differences. These processes are defined as second-order-stationary 
[6]. There are optical processes where the correlations gradually change their 
functional form, but are approximately second order stationary over finite re-
gions [7]. At the other extreme, in the observation of photons, only one mea-
surement per particle may be made in a statistical realization, since measure-
ment destroys the particle. In this case, two measurements can be made by re-
trodiction –prior paths are deduced from a final detector location [8]. Each suc-
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cessive path is then conditionally dependent in terms of probability, on the prior 
path. This is described in quantum mechanics in the context of non-commutation 
and is central to the Bell situation [9]. It is important to recognize, however, 
that the term non-commutation does not in itself imply quantum idiosyncratic 
randomness. The Pauli matrices used to describe the non-commutative behavior 
of spin measurements were originally constructed to describe macroscopic, 
non-commutative 3-D rotations [10]. 

2. Bell’s Statistical Inequality Derivation Using Three  
Cross-Correlated Variables 

Bell [1] hypothesized three measurements applied to a pair of entangled spins or 
photons, produced as shown in the experimental schematic of Figure 1. He then 
derived a statistical expression assuming three observations on two particles to 
impose a further condition that would shed light on the nature of the random 
processes involved. However, only one measurement may be performed per par-
ticle since a measurement destroys the particle, and that has led to a logical rid-
dle. How is a mathematical construction using three variables to be logically ap-
plied to an experiment yielding two observations per trial? The answer to this 
lies at the heart of the Bell inequality derivation and mystery. More difficult yet, 
how is the four variable version of the inequality to be applied to such particle 
pairs? 

First, the experimental situation must be presented based on the apparatus 
represented in Figure 1. Measurements on the A-side at angular setting a are 
represented in Bell’s notation by the function ( ),A a λ , and on the B-side at an-
gular setting b by ( ),B b λ . The variables λ  are random variables with a probabil-
ity density ( )ρ λ  assumed to determine the results of measurements represented 
by functions A and B, postulated to be deterministic and with outcomes inde-
pendent of each other’s settings. The random results of measurements might then 
be interpreted causally as due to uncontrolled common initial conditions sampled 
randomly. The measurements have values equal to ±1 in Bell’s definition with 
the additional stipulation that ( ) ( ), , 1B a A aλ λ= − = ± , so that the same setting 
on opposite sides in Figure 1 yields outcomes of opposite sign as predicted from 
the condition of entanglement [1].  

From the functions Bell defined, three mutual cross-correlations were consi-
dered and computed between one measurement on the A-side and two alterna-
tive measurements on the B-side of Figure 1. Using the Bell representation, the 
first of these cross-correlations is: 

( ) ( ) ( ) ( ), , , dC a b A a B bλ λ ρ λ λ= ∫                 (2.1) 

(Bell used the variable P instead of C for the correlation, and this has occasio-
nally led to misinterpreting the result as a probability rather than a correlation.) 
From this and a similar expression using an alternative hypothetical measurement 
on the B-side, Bell computed the absolute value of the difference of correlations for 
one observable on the left and two alternatives on the right of Figure 1: 
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Figure 1. Schematic of Bell experiment in which a source sends two particles 
(photons most often used) to two detectors having angular settings Aθ  and Bθ , 
(denoted as a and b in Bell’s notation) and alternative settings Aθ ′  and Bθ ′ . 
While one measurement operation on the A-side, e.g. at setting Aθ , commutes 
with one on the B-side at Bθ , any additional measurements at either Aθ ′  or 

Bθ ′  are non-commutative with prior measurements at Aθ  and Bθ , respectively. 
This figure was drawn by the author and modified in notation for use in [4], as 
well as other papers. 
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Two photons per realization emerge from the source in Figure 1 so that data 
to compute either ( ),C a b  or ( ),C a b′  is obtained from a given run, but not 
( ),C b b′ , since that requires two runs. Bell explicitly indicated (see Chap 8 of 

Bell’s collected papers [1]) that the third random variable at b' is defined simply 
as the outcome that would have occurred at that setting had it been used in place 
of b, in the same experimental trial for a given set of variable values λ . Howev-
er, one cannot undo a random observation at b that depends on random values 
of λ  to obtain another at b'. Thus, it must be concluded that the Bell inequality, 
if interpreted as inextricably dependent on the notation used to derive it and 
Bell’s prescription for its interpretation, does not represent any experimental ob-
servation that may be obtained using a single photon pair.  

To construct an experimental realization of Bell’s prescription, consider the 
analogy of flipping a loaded coin or die. After a single flip, one may ask Bell’s 
question: suppose the loading had been different on that flip, what would the 
result have been? This question can only be answered in terms of probabilities, 
even though the underlying process in this case is thought to be causal. The ex-
perimental answer would be to change the loading and perform a large number 
of flips to determine the probability for heads and tails with each loading. In the 
case of the common random process of coin flips, multiple interactions and ranges 
of causal variable values control the final outcome. Further, in such processes, a 
change in parameter in any decimal place may switch outcomes at a boundary 
between different outcomes. Thus, causality does not necessarily imply predicta-
bility in a world of finite instrument precision.  
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In the Bell experiment case, quantum mechanics provides the predicted con-
ditional probabilities for observations at different conditionally independent [11] 
instrument settings on the B-side of the apparatus using different particles, given 
one selected setting and outcome for particles on the A-side. The analogy with 
coin flipping indicates that the data for a second instrument setting requires data 
sets from two different experimental runs. However, to obtain ( ),C b b′  requires 
a different procedure than used to obtain the first two correlations occurring in 
the inequality. Since ( ),C b b′  must be computed from the previous data sets us-
ing conditional dependence, the result has a functional form different from the 
other correlations, a fact not recognized by Bell or experimentalists who have 
copied his assumptions and thus obtained the same result—violation of (2.2). An 
additional fact [4] not obvious from Bell’s statistical derivation, will now be con-
sidered that further clarifies the situation. 

3. A Bell Inequality Cannot Be Violated by Three Laboratory  
Data Sets 

In laboratory experiments of the Bell type, correlations are not directly observed: 
finite data sets of ±1’s are observed from which the correlations of (2.2) are es-
timated [5]. When the same algebraic steps are applied to the correlation esti-
mates resulting from three finite data sets that Bell applied to correlations of 
three theoretically predicted infinite data sets, the same Bell inequality is ob-
tained and is identically satisfied. This surprising result implies that for physical 
data that is intrinsically finite, the Bell inequality holds as a mathematical fact 
with or without Bell’s assumptions of locality and representation of hidden va-
riables λ . Bell’s assumptions, widely believed to be intrinsic to the derivation of 
the Bell inequality because they were used in its derivation, are unnecessary, and 
separate from the simpler and more basic mathematical and physical facts that 
themselves imply the inequality. This is an unusual situation in which purely 
logical principles override the commonly accepted conclusion that Bell’s assump-
tions determine the results of the Bell theorem. Given the important implica-
tions that follow from the more general result, it will now be re-derived for ex-
amination.  

Assume that three data sets, random or deterministic, labeled a, b, and b' have 
been obtained so that they can be written on paper. (Only after these are ob-
tained can the Bell inequality be applied in practice.) The data set items are de-
noted by ia , ib , and ib′ , with N items in each set. Each datum equals ±1. One 
may begin by writing the equation 

( )1i i i i i i i i i ia b a b a b a b a b′ ′− = −                   (3.1) 

and sum it over the N data triplets of the data sets. After dividing by N, one ob-
tains 

( ) ( )
1 1

1 1 1
N N

i i i i i i i i i i
i i

a b a b a b a b a b
N N= =

′ ′− = −∑ ∑ .            (3.2) 

Taking absolute values of both sides, 
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            (3.3) 

or since 2 1ia = , 

( ) ( )1 1N N N N N
i i i i i i i i i i i i ii i i i ia b a b a b b a b b b b b

N N N N N
′ ′ ′ ′− − −

− = = ≤∑ ∑ ∑ ∑ ∑ . (3.4) 

The Bell inequality as applied to experimental data sets equal in number to 
Bell’s variables, is thus a fact of algebra independent of the physical origin or 
properties of the data, and it holds for deterministic as well as random data. The 
sums on the two sides of (3.4) have the form of correlation estimates although 
the data may be random, deterministic, or a combination of the two. In the case 
where the data are all random, they may exhibit correlations due to a variety of 
circumstances, e.g., the correlations may result from correlation to other va-
riables not indicated or known. The final correlation of (3.4) reuses the data used 
to compute correlations of variables ( ),a b and ( ),a b′ , since ( )( )i i i i i ia b a b b b′ ′= , 
a fact used explicitly in (3.3) as well as in Bell’s derivation in (2.2). As a result, 
the ( ),b b′  correlation is not expected to have the same form as the previous 
correlations, since it is computed from the product of their data pairs, and not 
the process that created their correlation.  

To repeat: (3.4) holds independently of physical attributes of the data except 
for detector clicks recorded as ±1’s. (The trigonometric identities of planar geo-
metry do not change if the angles in them arise from AC circuits rather than 
surveyor data.) The data sets may represent nonsense or be severely corrupted 
due to nonlocal interference between detectors. However, once data are selected 
and subscripted to represent a Bell variable, it does not matter what physical ef-
fects influenced their behavior. A startling conclusion follows: nonlocal interac-
tion (i.e., pickup) between detectors cannot cause violation of the Bell inequality 
under the condition of cross-correlation of three data sets corresponding to the 
three cross-correlated variables assumed in Bell’s derivation. Bell’s locality as-
sumption is irrelevant to satisfaction of the inequality. It will, however, affect the 
form of the correlations. 

In the case where the data are random and estimates statistically converge to 
correlations in (3.4) as N becomes large, one has for the first correlation  

( )1 ,C a b  of variables a and b, 

( )1 , lim
N

i ii

N

a b
C a b

N→∞
= ∑ , 

with similar results for the other correlations of (3.4). A more general form of 
the Bell inequality results: 

( ) ( ) ( )1 2 3, , 1 ,C a b C a b C b b′ ′− ≤ − .               (3.5) 
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The correlation arguments a, b, etc., now refer to instrument angular settings 
while when subscripts are added, as in (3.4), they indicate individual data out-
puts at those settings. Given that no data characteristics have been specified, the 
three correlation functions will in general have different functional forms, as in-
dicated by their subscripts, but without violating (3.5). However, the final corre-
lational forms are constrained by (3.5).  

The physical situation to which (3.5) is applied now imposes restrictions on 
the data. In the physical experiment as suggested above, the two B-side data sets 
occur at mutually exclusive angular settings that, in Bell’s prescription, can only 
be realized in independent trials. To apply the Bell inequality to this situation, 
outputs in different trails at two different settings on the B-side must be corre-
lated, for each of the two possible outputs at a given setting on the A-side of the 
apparatus. The four data sets acquired in two experimental runs may then be 
contracted to three, and (3.5) holds with ( ),C b b′  data extracted from ( ),C a b  
and ( ),C a b′ .  

4. Bell Inequality Violation from Non-Cross-Correlated Data 

The Bell inequality is widely believed to be violated by carefully recorded expe-
rimental data as in [5]. How can this be, given that the inequality is identically 
satisfied by any three cross-correlated, physically obtained data sets indepen-
dently of whether they are deterministic or random? Note that from the deriva-
tion reproduced in Section 2 it is not immediately obvious that the general result 
of Section 3 is true. In the Bell derivation of Section 2, various physical attributes 
of the data were originally spelled out such as independence of data at A from 
settings at B, etc. As seen above, this has no bearing on the satisfaction of the in-
equality though it would certainly in general change the form of the correlations. 
It has not been recognized that the inequality results from the cross-correlation 
of three variables (or four resulting in the four variable case). It is commonly be-
lieved (following Bell) that the correlations all have the same form, and as a re-
sult, they may be computed using independent pairs of data as in [5]. This as-
sumption suggests a belief that the basic process is second order stationary which 
is inconsistent with non-commutativity, and the resulting conditionality of proba-
bilities.  

The fact that three finite data sets, corresponding to Bell’s three random va-
riables, identically satisfy (3.5) proves that the correlations ordinarily inserted 
into the inequality that violate it are logically inconsistent with any three data 
sets that can exist. (Note, all experimental data sets are finite, and thus satisfy 
(3.4).) The correlations ( ),C a b  and ( ),C a b′  follow from direct measure-
ments of Bell pairs produced from the source. These forms have been confirmed 
in classic experiments such as [5]. The third correlation ( ),C b b′  must then be 
derived from the same data to be logically consistent with the Bell inequality in 
the form of (3.4) or (2.2). When that is accomplished using quantum data, the 
inequality is applied consistently with the mathematics of its derivation, and is 
satisfied.  
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The results of the above requirements for obtaining ( ),C b b′  will be described 
in detail in the next section. 

5. How Two Quantum Mechanical Correlations Determine  
the Third 

5.1. Derivation Using Bell’s Notation 

To convert Bell’s interpretation of the inequality into the realm of experimental 
probability implies that variables ( ),B b λ  and ( ),B b λ′  be obtained from two 
mutually exclusive settings and that each be correlated with the same value of 
( ),A a λ  in (2.2). The correlations must be obtained for each value of ( ),A a λ  

in turn. The contribution to the correlation of variables ( ( ),B b λ , ( ),B b λ′ ) is 
thus determined by two conditions that hold simultaneously. Since  
( )2

1, 1A a λ = , ( ) ( ) ( ) ( ) ( ) ( )1 1, , , , , ,i i i iA a B b A a B b B b B bλ λ λ λ λ λ′ ′=  in (2.2). 
But for correlations computed by averaging over two different values of λ  in 
statistically independent trials: 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1 2 2

1 1 2 2

, , , ,

, , , , ,

C A a B b A a B b

C A a B b C A a B b

λ λ λ λ

λ λ λ λ

′

′=
           (5.1a) 

where subscripts 1 and 2 on λ  indicate the separate trials. The correlation then 
necessarily factors since probabilities in independent trials factor and must be 
multiplied. The condition ( ) ( )1 2, ,A a A aλ λ=  must also be imposed, since the 
same value of ( ),A a λ  multiplies both ( ),B b λ  and ( ),B b λ′ . It follows that  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 2 2 1 2, , , , , ,C A a B b C A a B b C B b B bλ λ λ λ λ λ′ ′= .  (5.1b) 

Since each of the correlations on the left is given by the well-known Bell cor-
relation, the result is  

( ) ( )( ) ( ) ( )( ) ( ) ( )1 2, , cos cos cos cosC B b B b b a b a b a b aλ λ  ′ ′ ′= − − − − = − −  (5.1c) 

This important result will be re-derived below in more mathematically explicit 
detail using quantum probabilities. As stated, ( ),B b λ  and ( ),B b λ′  are variables 
each correlated to fixed outcomes at A, and so are correlated to each other as 
conditionally independent. 

5.2. Derivation Using Quantum Probabilities 

The correlation of (5.1c) will now be re-derived using quantum mechanical prob-
abilities to predict correlations at alternate variable setting pairs ( ),a b  and ( ),a b′  
on the two sides of the apparatus of Figure 1. These probabilities result from 
entanglement and are well known [9] (the subscripted pluses and minuses indi-
cate ±1 outputs at instrument settings a and b respectively): 

( ) ( )

( ) ( )

2

2

1, , sin ;
2 2
1, , cos .
2 2

b aP a b P a b

b aP a b P a b

++ −−

+− −+

−
= =

−
= =

               (5.2a) 
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The angular setting difference divided by 2 holds for Bell’s original case of en-
tangled spins. (In the optical version that corresponds to most Bell experiments, 
the 2 does not occur, with the result that a factor of 2 occurs in the argument of 
the final correlation.) Note, the joint probabilities (5.2a) are expressed in terms 
of conditional probabilities. Again using ± subscripts on the probabilities to in-
dicate ±1 outcomes, ( ) ( ) 1 2P a P a+ −= =  and the conditional probabilities of 
outcomes on the B-side given those on the A-side from (5.2a) are 

( ) ( )

( ) ( )

2

2

| | sin ;
2

| | cos .
2

b aP b a P b a

b aP b a P b a

++ −−

+− −+

−
= =

−
= =

              (5.2b) 

The probabilities at an alternative setting b' are obtained by inserting it in 
place of b in (5.2a,b). From the joint probabilities (5.2a), the correlation ( ),C a b  
is 

( ) ( )( ) ( )( )

( )( ) ( )( )

( )

2

2

2 2

1, 1 1 1 1 sin
2 2

11 1 1 1 cos
2 2

cos sin cos ,
2 2

b aC a b

b a

b a b a b a

−
= + + + − −  

−
+ + − + − +  

− − = − − = − − 
 

 

       (5.3a) 

and the correlation ( ),C a b′  is immediately 

( ) ( ), cosC a b b a′ ′= − − .                  (5.3b) 

To implement Bell’s prescription of Section 2 for two variables on the B-side 
of Figure 1, two sets of observations must be performed just as in the case for 
observing probabilities in the analogous situation of two differently loaded coins. 
To be relatable to observations in Bell experiments, the probability densities used 
in the Bell notation must be replaced by quantum probabilities as appropriate to 
an ensemble of observations. The conditional probabilities of (5.2b) for setting 
coordinates (b, b’) on the same side of a Bell apparatus are then required. 

From (3.3-3.4) and corresponding steps in (2.2), the correlation of outcomes 
at ( ),b b′  is the sum of conditional averages for ( ) 1A a+ =  and ( ) 1A a− = −  
each occurring with probability ½. In each case, the value observed at setting a is 
a parameter for the conditional probabilities now used to provide the products 
of probabilities for outcomes in the two independent trials. The normalization of 
these probabilities equals 1 for ( ) 1A a+ = : 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

| | | |

| | | |

sin 2 sin 2 cos 2 cos 2

sin 2 cos 2 cos 2 sin 2

1,

P b a P b a P b a P b a

P b a P b a P b a P b a

b a b a b a b a

b a b a b a b a

++ ++ −+ −+

++ −+ −+ ++

′ ′+

′ ′+ +

′ ′= − − + − −              
′ ′+ − − + − −              

=  

(5.4a) 

A similar normalization may be computed for the opposite outcome at  
( ) 1A a− = − . Using the conditional probabilities from (5.2b), the correlation of 
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the conditionally independent [11] variables ( ),i ib b′  is ( )| ,1C bb a′  where the 
1 after setting a denotes the numerical output selected at that setting: 

( ) ( )( ) ( ) ( )
( )( ) ( ) ( )
( )( ) ( ) ( )
( )( ) ( ) ( )
( ) ( )

2 2

2 2

2 2

2 2

| ,1 1 1 sin 2 sin 2

1 1 cos 2 cos 2

1 1 sin 2 cos 2

1 1 cos 2 sin 2

cos cos .

C bb a b a b a

b a b a

b a b a

b a b a

b a b a

′ ′= − −      
′+ − − − −      

′+ − − −      
′+ − − −      

′= − −

     (5.4b) 

Similarly: 

( ) ( ) ( )| , 1 cos cosC bb a b a b a′ ′− = − − .           (5.4c) 

Since the two values at a  occur with probability ½ the overall correlation is [12] 

( ) ( ) ( ) ( ) ( )
( ) ( )

, | | ,1 | , 1

cos cos .

1 2 1 2C b b a C bb a C bb a

b a b a

′ ′ ′= + −

′= − −
        (5.5) 

The steps of the calculation may be grouped differently to simplify the inter-
pretation of the result. Correlation ( )| ,1C bb a′  may be written 

( ) ( ) ( ) ( )| ,1 , | ,1 | ,1 | ,1
i i i i

i i i i i i i i
b b b b

C bb a b b P b b a b b P b a P b a
′ ′

′ ′ ′ ′ ′= =∑ ∑ ,  (5.6a) 

where ( ), | ,1i iP b b a′  factors since ib  and ib′  are outputs at different settings 
in two independent experiments with data collected only for outcome +1 at a. 
The result is  

( ) ( ) ( ) ( ) ( )| ,1 | ,1 | ,1 ,1 ,1
i i

i i i i
b b

C bb a b P b a b P b a b a b a
′

′ ′ ′ ′= =∑ ∑ ,  (5.6b) 

where 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2

2 2

,1 1 1| ,1 1 1| ,1 sin 2 cos 2 cos ,

,1 1 1| ,1 1 1| ,1 sin 2 cos 2 cos ,

b a P a P a b a b a b a

b a P a P a b a b a b a

= − − = − − − = − −

′ ′ ′ ′= − − = − − − = − −
(5.6c) 

and 

( ) ( ) ( )| ,1 cos cosC bb a b a b a′ ′= − − .         (5.6d) 

The same result is obtained for ( )| , 1C bb a′ −  so that (5.5) again follows.  
The point of this exercise is to show that the final result of (5.5) is analogous 

to that obtained in coin flipping experiments to compare probabilities for two 
different coin loadings. The more elaborate data matching procedure mentioned 
previously may thus be bypassed. After using appropriate trig identities, (5.5) 
has been shown to satisfy the Bell inequality given by (2.2) [13]. 

6. Discussion 

A summary of logical steps associated with the derivation and use of the Bell in-
equality may prove useful to the reader. Reviewing the logic of the Bell inequality 
begins with Bell’s derivation using three cross-correlated random variables, A, B, 
B' each having values of ±1 only. Three correlations ( )C ab , ( )C ab′ , and ( )C bb′  
result with each variable correlated with two others in a rather symmetrical form. 
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However, it has not been noticed from the mathematical steps with which the 
computation proceeds, that the difference of the first two correlations alone de-
termines the form of the inequality, and that their two functional forms deter-
mine the different functional form of the third correlation. This follows because 
the values of ( )B b ) and ( )B b′  that occur for each fixed value of ( )A a  deter-
mine ( )C bb′  also since ( ) ( )C abab C bb′ ′= , given that ( )2 1A a = . Thus, cor-
related particle-pair data initially produce correlations ( )C ab  and ( )C ab′ , but 
the third correlation ( )C bb′  then results through reuse of the previous data val-
ues. Bell did not directly compute the final correlation but seemingly assumed 
that it had the same form as ( )C ab  and ( )C ab′ , as have generations of ex-
perimentalists. This is in contradiction of the Bell inequality derivation.  

An additional significant fact emerges when Bell’s sequence of mathematical 
steps is applied to three finite (laboratory) data sets, random or deterministic, 
each consisting of ±1’s. The same Bell inequality results for the finite correlation 
estimates, and the inequality must be identically satisfied by any three data sets, 
random or deterministic. Further, the correlations may have different functional 
forms. These results are independent of nonlocal interactions among the detec-
tors, i.e., pickup, which would affect the form of correlations, but not their satis-
faction of the inequality. Thus, when applied to actual physical data rather than 
assumed correlations, the inequality in three variables cannot be violated. (The 
same result is easily proven to hold in the four variable case.) 

Given the physical experiment to which the inequality pertains, a further com-
plication arises: a mathematical inequality in three variables is applied to an ex-
periment based on particle pairs in which only one measurement per particle may 
be obtained. It is intrinsically impossible to observe variables b and b' at mutual-
ly exclusive settings in one random realization as required by Bell’s derivation. 
To obtain data at such alternative instrument settings, two experimental runs are 
required, one experimental run for each pair of settings ( ),a b  and ( ),a b′ . Since 
outputs at both b and b' are obtained and correlated for a given output value at 
a  in the derivation of the Bell inequality, they are then correlated to each other, 
i.e., are “conditionally independent” in the mathematical usage. This is consis-
tent with the Bell inequality as expressed in a form corresponding to data obser-
vations. The Bell version does not correspond to actual physical observation. 
That is due to the fact that one cannot undo a random experimental event to 
obtain a result at an alternative mutually exclusive instrument setting.  

Given that particles are produced in pairs in the experiments to which the in-
equality has been applied, it has been assumed that it is correct to insert three 
independently realized correlations of data pairs into the inequality. This is ma-
thematically inconsistent with the Bell derivation. Since its use is at variance 
with the derivation, the inequality may be violated.  

When quantum probability predictions are used to describe the merging of 
data from two experiments as necessary to apply the inequality, a different form 
results for the third correlation than that assumed by Bell, and later by experi-
mentalists. The form in question is the product of the contributions that pro-
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duced the correlations ( )C ab  and ( )C ab′  for fixed outputs at a , as derived 
above. Thus, correction of Bell experimental results so that they are logically 
consistent with quantum mechanics requires logical application of experimental 
observations already known. The inequality, if used consistently with its deriva-
tion, is satisfied. This is accomplished without assumptions of non-locality or 
non-reality. 

7. Conclusions 

1) The Bell three-random-variable inequality, if inextricably tied to bell’s hidden 
variable notation cannot be applied to any experiment, since one cannot undo 
the results at one instrument setting to obtain results at an alternative setting. 2) 
However, the same steps that Bell used in the derivation assuming three va-
riables may be applied to three arbitrary data sets, random or deterministic, with 
the result that the Bell inequality when applied to actual data must be identically 
satisfied independently of Bell’s various assumptions. The estimates now taking 
the place of Bell’s assumed correlations may clearly have different functional 
forms. 3) When applied to an actual experiment in which only one pair of data is 
obtained per random realization, application of the inequality to answer Bell’s 
question regarding results at alternative settings requires two experimental runs. 
A fixed setting and fixed random output are chosen on one side of an apparatus, 
and two alternate mutually exclusive settings and outcomes are observed for a 
second variable. The alternate variable outcomes are now “conditionally inde-
pendent”, or conditionally dependent on the fixed variable, and the Bell inequa-
lity for correlations is satisfied by quantum mechanical results logically employed.  

Anyone who, in spite of the above, believes that the Bell inequalities may in 
principle be violated by physical data needs to perform the following task: write 
three very small data sets (or four in the four variable case) on the back of an 
envelope that violate the inequality and show them to the world. 
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