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Abstract 
The test of Prentice [1] is a non-parametric statistical test for the two-way 
analysis of variance using ranks. The null distribution of this test typically is 
approximated using the Chi-square distribution. However, the exact null dis-
tribution deviates from the Chi-square approximation in certain cases com-
monly found in applications of the test, motivating adjustments to the distri-
bution. This manuscript presents adjustments to this null distribution cor-
recting for continuity, multivariate skewness, and multivariate kurtosis. The 
effects of alternative scoring methods as non-polynomial functions of rank 
sums are also presented as a broader application of the approximation. 
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1. Introduction 

The Prentice test [1] is the nonparametric analog of a two-way ANOVA, widely 
used in survival analysis, agricultural studies, and more generally, in biostatistics. 
The test is particularly useful for analyzing data that do not necessarily follow a 
normal distribution since ranking the data removes dependence on the original 
distribution. This method can be applied to blocked data of several treatments 
with variable and potentially unbalanced replicates corresponding to each block 
and treatment combination. Several special cases exist, including the Kruskal-Wallis 
Test, the nonparametric analog of a one-way ANOVA with one block and varia-
ble replicates [2], and the Friedman test, the case of the Prentice test with one 
replicate per group-block combination [3]. The special cases of the Prentice test, 
as well as its nonparametric nature and adjustments for unbalanced replicates, 
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render the test flexible and applicable to analyzing a wide range of data. These 
features of the Prentice test are particularly significant considering that few if 
any real-world datasets requiring statistical analysis are normally distributed and 
balanced due to participant dropout and noisy data commonplace in many prac-
tical applications.  

Despite being an important statistical test, computing the exact Prentice test 
statistic distribution for practical applications is highly computationally expen-
sive. Tables with Prentice test statistic values for small examples exist, but in 
most practical applications, the Prentice test statistic is applied to larger exam-
ples. Furthermore, the use of tables has the potential to lead to inaccurate con-
clusions, as values achieved in applications rarely match the specific test statistic 
values included in tables, in which interpolation or rounding can result in erro-
neous conclusions especially considering the discontinuous nature of the Pren-
tice distribution.  

Several approximations via less computationally expensive test distributions 
have been developed, namely the Chi-square distribution and the Iman-Davenport 
approximation, but they fail to fully capture the behavior of the Prentice test 
distribution, especially near the tail of the distributions. Since most practical ap-
plications require test statistic values from the tail of the distribution, inaccurate 
approximations can lead to false conclusions which may result in devastating 
consequences.  

The null distribution of the Prentice test and its special cases are commonly 
approximated by the Chi-square distribution. Other multinomial test statistics, 
most notably the generalized likelihood ratio statistic, are not considered in this 
manuscript [4].  

Bounds on the Chi-square approximation to the Friedman test were produced 
for both central and non-central distributions and under the null and alternative 
hypotheses. The general bounds are of order ( )1 2o N −  and in the central case, 
bounds are improved to order ( )( )1k ko N − −  for the Chi-square distribution with 
k − 1 degrees of freedom [5]. More recent bounds on the Chi-square approxima-
tion to the Prentice test statistic have been produced using Stein's method, orig-
inally utilized for approximating the distance between the normal distribution 
and a probability distribution of choice, but which have also been applied to 
bounding approximations to the 2χ  distribution [6]. For k treatments and b 
blocks, the distance between the Prentice test statistic distribution and the 
Chi-square distribution with k − 1 degrees of freedom is bounded by order b−1 
[7]. Furthermore, the bound is dependent on k, approaching zero only if k/b also 
approaches zero [7].  

Limitations to the approximation by the Chi-square distribution result from 
the continuity of the distribution and the assumption that the parameters in the 
multinomial distribution studied are independent and identically distributed [4]. 
The dependence of the Chi-square approximation on the number of blocks and 
treatments as well as the limitations of its i.i.d. assumption will be presented via 
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example in the sections to follow.  
To date, several improvements have been made to the approximation of the 

Friedman and Kruskal Wallis test statistics. Of note is the F Statistic approxima-
tion, one of several approximations made by Iman and Davenport and referred 
to as the Iman-Davenport approximation throughout [8] [9]. While the Chi-square 
approximation frequently underestimates the critical region of the Friedman test 
statistic, the Iman-Davenport approximation frequently overestimates the criti-
cal region making it a useful comparison [8].  

Here, we apply the adjustments to the Chi-square distribution presented by 
Yarnold to the Kruskal-Wallis, Friedman, and Prentice tests. The approximation 
applied results from the integration of an Edgeworth asymptotic expansion for 

( )Pr T B∈  where B is a Borel set and T the groupwise sums of k independent 
random vectors. When B is the ellipse corresponding to the critical region for 
the Prentice test, and the Edgeworth approximation is integrated, the resulting 
approximation consists of the adjustments to the Chi-square distribution func-
tion for continuity and kurtosis, respectively [10] [11]. When applied to the 
Kruskal-Wallis, Friedman, and Prentice test statistics, the adjustments intro-
duced by Yarnold provide significant corrections to the Chi-square distribution 
function approximation for each test statistic distribution.  

Notably, the corrections that the Yarnold approximation yields for continuity 
and multivariate kurtosis provide a more accurate representation of the tail proba-
bilities of the Prentice test distribution than previous approximations. The adjust-
ment for continuity provides a more accurate representation of the discontinuous 
behavior of the Prentice distributions than previous approximations, where i.i.d. 
assumptions result in continuous approximations. Furthermore, the adjustment 
for kurtosis in the Yarnold approximation more accurately reflects the distribu-
tion of probability in the tail versus the center of the Prentice distribution, re-
sulting in better approximations to the tail of the distribution, which is especially 
useful for practical applications of the test. These improvements are also applicable 
to all subcases of the Prentice test, which enables more accurate data interpreta-
tion in the diverse research context of the Prentice test commonly used.  

2. Methods 

Let T be a random variable defined as a function of rank sums with a distribu-
tion of k degrees of freedom. Let 2κ , 3κ , and 4κ  denote the second, third, and 
fourth multivariate cumulants respectively. The cumulants are calculated from 
the computed central moments of the test statistics, and depend on the number 
of groups, replicates, and blocks in the design using the algebraic relationship 
between central moments and cumulants [12].  

2.1. The Yarnold Approximation 

The approximation by Yarnold is applied to improve approximations for the 
Kruskal-Wallis, Friedman, and Prentice tests. The second and third partial sums 
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of the Yarnold approximation were considered separately as approximation A 
and approximation B. Approximation A corrects for continuity and approxima-
tion B corrects for both continuity and kurtosis. Here, approximation A is valid  

to 
1O
n

 
 
 

 and it is conjectured, but not proven, that approximation B is valid 

to 
1o
n

 
 
 

 [10]. Approximations A and B are presented in Equations (1) and (2), 

respectively [10]. 
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While the original approximation applied techniques to means of independent 
replicates, we apply the approximation to summaries with standardized cumu-
lants that have the same structure [10]. Hence, we take n = 1. Here,  
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In the equation above, ( )N nc  refers to the number of points on the lattice 
in the probability ellipse and ( )V nc  refers to the volume of the probability el-
lipse [10]. For the test statistic T, the probability ellipse is  

( ) ( )T 1T Y Yµ µ−= − Σ −  

with Y the group rank sums of the test statistic, excluding one group, μ the ex-
pectation of Y, and Σ the null variance-covariance matrix of Y. See Figure 1 for 
an example. 

This approximation was applied to the Prentice test and compared to that of 
the Chi-square distribution with k degrees of freedom and the Monte Carlo 
evaluation of the true distribution of the Prentice test statistic under the assump-
tion of treatment homogeneity. Here, both balanced and unbalanced cases with 
variable group and block counts were considered. Approximations to the 
Kruskal-Wallis and Friedman test statistics occur as special cases of the Prentice 
test approximation. The approximation to the Kruskal-Wallis test statistic oc-
curs in cases when one block is considered and the approximation to the Fried-
man test statistic when one replicate per group-block combination is considered.  
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Figure 1. The ellipse for the Friedman test statistic in a case with three groups and four 
blocks with one replicate in each combination. The number of lattice points falling inside 
of the ellipse are summed in ( )N nc  and the volume of the ellipse is expressed as ( )V nc . 

 
In the case of the Friedman and Kruskal-Wallis test statistics, another compari-
son is made with the Iman-Davenport approximation [8] [9].  

To apply the Yarnold approximation with the homogeneity assumption to 
each test statistic, the average rank sums were computed for each specified 
number of groups, blocks, and replicates.  

The Friedman, Prentice, and Kruskal-Wallis tests are generalizations of the 
Wilcoxon rank sum test. The Wilcoxon test is a member of larger family of gen-
eral score statistics, formed by replacing the ranks by a monotonic transforma-
tion of ranks. Members of this family with scores other than the raw ranks can 
be chosen based on the expected distribution of errors. The particular choice of 
ranks as scores is optimal for Laplace errors [13].  

Alternative scoring measures were also applied here, where the scores as-
signed to each item were non-polynomial functions of the ranks, namely loga-
rithmic functions. The new scores were then summed by group, and the asso-
ciated quadratic form was used as the test statistic. The application of the Yar-
nold approximation was otherwise unchanged.  

The central moments and cumulants are calculated from the number of repli-
cates in each block by treatment category, and are thus dependent on the case 
considered. Along with the degrees of freedom as k − 1, the second, third, and 
fourth cumulants and second central moment of each case enabled the Yarnold 
approximation to be tailored to each test.  
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2.2. Central Moments of Generalized Rank Statistics 

Suppose that jkY  is the rank sum for observations in group j and block 
{ }1, ,k K∈  . Let .jY  be the sum of ranks in group i over all blocks;  

. 1
K

j jkkY Y
=

= ∑ . Let Σ be the J J×  matrix of variances and covariances for these 
rank sums; . .Cov ,j jY Y Σ =   

. Let Λ represent the inverse of Σ with row and 
column J removed. Then the Prentice statistic is  

( ) [ ]( )1 1
. . . .1 1 E EJ J j

j jj Y Y Y Y− −

= =
 − Λ − ∑ ∑ 

 



. 
Let a

iI  be an indicator of whether the subject ranked i falls into group a. 
Consider the test statistic for group a, 1

na a
i iiX r I

=
= ∑ , for scores jr . The stan-

dard Wilcoxon rank sum statistic is given by ir i= . Its centered version is given 
by ( )1 2ir i n= − + . Let *∑  represent summation over all sets of subscripts 
on ranks, omitting any with repeated values; then, for example, for any integers 
p and q, 1

np q p q
i j i ji j iijr r r r∗

= ≠
=∑ ∑ ∑ . 

Second powers of the test statistic are given by 1 1
n na b a b

i i j ji jX X r I r I
= =

= ∑ ∑ . 
Separating into sums without repeated indices,  

2

1
.

n n
a b a b b a b a b

i i i i j j i i i i j i j
i j i

X X r I r I r I r I I r r I I
∗ ∗

= ≠

 
= + = + 

 
∑ ∑ ∑ ∑  

The expectation of the sum is the sum of expectations, and so  

2E E E .a b a b a b
i i i i j i jX X r I I r r I I

∗ ∗
     = +     ∑ ∑  

Let μ with ordered subscripts and superscripts represent the expectation of the 
product of indicators; that is, for example, Eab a b

ij i iI Iµ  =   . Then  

2E .a b ab ab
i ii i j ijX X r r rµ µ

∗ ∗
  = +  ∑ ∑  

Because under the hypothesis of homogeneity, ab
ijµ  does not depend on the 

values of i and j so long as one keeps track of which of these are distinct, then 
2 2

1 11 2 12E a b ab abX X S Sµ µ  = +  , for  

2 2 2
1 2; .i i jS r S r r

∗ ∗

= =∑ ∑  

When ir i= ,  

( )( ) ( )( )2
2 2

1 2

1 3 21 2 1
; .

6 12

n n n nn n n
S S

+ − −+ +
= =  

When ( )1 2ir i n= − +  then  

( ) ( )2 2
2 2

1 2

1 1
; .

12 12

n n n n
S S

− −
= =  

Table 1 contains expectations of these indicators, depending on which group 
indicators are equal. A pattern with adjacent indicators indicates equality, and 
with bars between them inequality. The first row in this table represents the case 
in which a b= , and the second represents the case in which a b≠ . 

Third powers of the test statistic are given by  
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Table 1. Expectations of products of two indicators. 

Pattern 11
abµ  12

abµ  

ab  an
n   

( )
( )

1
1

a an n
n n

−
−

 

|a b  0 ( )1
a bn n

n n −
 

 

1 1 1
.

n n n
a b c a b c
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X X X r I r I r I
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Separating into sums without repeated indices,  

3 2 2

2 .
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i i i i i k i i k i j i j i
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Then 3 3 3 3 3
1 111 2 112 2 121 2 211 3 123E a b c abc abc abc abc abcX X X S S S S Sµ µ µ µ µ  = + + + +  , for  

3 3 3 2 3
1 2 3; ; .i i j i j kS r S r r S r r r

∗ ∗ ∗
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When ir i= ,  
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3 3
1 2

2 3 2
3
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1 11
; ;

4 6
1 2 2

.
8

n n nn n
S S
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+ −+
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When ( )1 2ir i n= − +  then 3 0mS =  for 1,2,3m = . 
Table 2 contains expectations of these indicators, depending on which group 

indicators are equal. A pattern with adjacent indicators indicates equality, and 
with bars between them inequality; note |a bc  represents a b c≠ = . The [3] in 
the heading to the column with 1 1 2E a b cI I I    represents the fact that a, b, and c 
can be matched with subjects 1 and 2 in three distinct ways; the column entries 
represent the sum of the three rearrangements. The first entry in this column has 
the multiplier 3, because all arrangements lead to the identical expectation when 
all groups are the same. The second entry lacks this multiplier, since it represents 
the case with two distinct groups; only the arrangement placing both with sub-
ject 1 into the same group represents a positive probability. The third entry is 
zero, since that entry represents the case with three distinct groups, and this 
cannot happen if subject 1 is assigned both to groups a and b. 

Fourth powers of the test statistic are given by  

1 1 1 1
.

n n n n
a b c d a b c d

i i j j k k m m
i j k m

X X X X r I r I r I r I
= = = =

= ∑ ∑ ∑ ∑  

Separating into sums without repeated indices,  
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Table 2. Expectations of products of three indicators. 

Pattern 111
abcµ  112

abcµ  [3] 123
abcµ  

abc  an
n   

( )
( )

3 1
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−
−

 
( )( )
( )( )

1 2
1 2

a a an n n
n n n

− −

− −
 

|a bc  0 ( )1
a bn n

n n −
 ( )

( )( )
1

1 2
a b bn n n

n n n
−

− −
 

| |a b c  0 0 ( )( )1 2
a b cn n n

n n n− −
 

 

4 3 3

2 2 2 3

2 2 2 2 2

a b c d a b c d a b c d a b c d
i i i i i i m i i i m i k i i k i

a b c d a b c d a b c d
i k i i k k i k m i i k m i j i j i i

a b c d a b c d a b c d
i j i j i j i j m i j i m i j i j j i

i j

X X X X r I I I I r r I I I I r r I I I I

r r I I I I r r r I I I I r r I I I I

r r I I I I r r r I I I I r r I I I I

r r

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗

= + +

+ + +

+ + +

+

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ 3 2 2

2 2 .

a b c d a b c d a b c d
i j j j i j m i j j m i j k i j k i

a b c d a b c d a b c d
i j k i j k j i j k i j k k i j k m i j k m

I I I I r r r I I I I r r r I I I I

r r r I I I I r r r I I I I r r r r I I I I

∗ ∗

∗ ∗ ∗

+ +

+ + +

∑ ∑

∑ ∑ ∑

 

Taking expectations,  

4 3 3 2 2
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For the centered scores ( )1 2ir i n= − + ,  

( )4 2
4 4

1

3 10 7

240i

n n n
S r

∗ − +
= =∑  

( )5 3
4 3
2

3 10 7

240i j

n n n
S r r

∗ − + −
= =∑  

( )5 4 3 2
4 2 2
3

5 9 10 30 5 21

720i j

n n n n n n
S r r

∗ − − + + −
= =∑  

( )5 4 3 2
4 2
4
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720i j k

n n n n n n
S r r r

∗ − + + − − +
= =∑  

( )5 4 3 2
4
5

5 18 10 60 5 42
.

240i j k m

n n n n n n
S r r r r

∗ − − + + −
= =∑  

Then  

[ ] [ ] [ ]4 4 4 4 4
1 1111 2 1112 3 1122 4 1123 5 1234E 4 3 6 ,a b c d abcd abcd abcd abcd abcdX X X X S S S S Sµ µ µ µ µ  = + + + +   

Table 3 contains expectations of these indicators, depending on which group  
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Table 3. Expectations of products of four indicators. 

Pattern 1111
abcdµ  1112

abcdµ  [4] 1122
abcdµ  [3] 1123

abcdµ  [6] 1234
abcdµ  

abcd  an
n

 
( )
( )

4 1
1

a an n
n n

−
−

 
( )
( )

3 1
1

a an n
n n

−
−

 
( )( )
( )( )

6 1 2
1 2

a a an n n
n n n

− −

− −
 

( )( )( )
( )( )( )

1 2 3
1 2 3

a a a an n n n
n n n n

− − −

− − −
 

|a bcd  0 ( )1
a bn n

n n −
 0 

( )
( )( )

3 1
1 2

a b bn n n
n n n

−

− −
 

( )( )
( )( )( )

1 2
1 2 3

a b b bn n n n
n n n n

− −

− − −
 

|ab cd  0 0 ( )1
a bn n

n n −
 ( )

( )( )
2

1 2
a b a bn n n n
n n n

+ −

− −
 

( ) ( )
( )( )( )

1 1
1 2 3

a a b bn n n n
n n n n

− −

− − −
 

| |a b cd  0 0 0 ( )( )1 2
a b cn n n

n n n− −
 ( )

( )( )( )
1

1 2 3
a b c cn n n n

n n n n
−

− − −
 

| | |a b c d  0 0 0 0 ( )( )( )1 2 3
a b c dn n n n

n n n n− − −
 

 
indicators are equal. A pattern with adjacent indicators indicates equality, and 
with bars between them inequality; note | |a b cd  represents a b c d≠ ≠ =  and 
a c≠ .  

3. Results 

This section presents an illustrative example to demonstrate the improvements 
of our approximation on previous approximations and several cases to demon-
strate the general applicability of our approximation. 

3.1. Illustrative Example 

Consider the effectiveness of advertising for a marketing firm via direct mail, 
newspaper, and magazine for twelve companies over the course of a year. In this 
example, each of the clients receives each advertising method over the course of 
a year and the Friedman test is run to discern the effects of the median response 
rate for each advertising method [14]. 

In this smaller example, the greater applicability of our approximation is bet-
ter demonstrated. In these results in Table 4, our approximation results yields a 
conservative estimate of the critical value of the Prentice Test statistic, which we 
approximated via Monte Carlo simulation. However, the Chi-Square and Im-
an-Davenport approximations yield liberal estimates that are much further off 
from the accepted critical value. 

3.2. General Cases 

To demonstrate the applicability of our approximation, several cases are pre-
sented varying numbers of blocks and groups. In each case presented, plots 
comparing the distribution of the test statistic in comparison to other approxi-
mations and the error of the approximations relative to the Prentice test statistic 
will be presented from the 50th to the 99th quantile of the distribution of the 
Chi-square test statistic with k − 1 degrees of freedom.  
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Table 4. Approximation results of the marketing firm example. 

Approximation Critical Value 

Prentice Test (Monte Carlo) 0.94196 

Chi-Square 0.95 

Iman-Davenport 0.957544 

Yarnold A 0.9391942 

Yarnold B 0.9386689 

 
The mean (Mean RE) and standard deviation (SD RE) of the error of each ap-

proximation relative to the Prentice test will also be presented with each example 
for comparison purposes.  

Note that the scale for the relative error plot changes depending on the range 
of relative error observed in each case. Figure 2 displays a case with relatively 
low counts of groups, blocks, and replicates for comparison purposes.  

Even in this small example, the Yarnold A (Mean RE 0.258, SD RE 0.2973824) 
and Yarnold B (Mean RE 0.239, SD RE 0.2577215) approximations yield a gen-
eral improvement over the Chi-Square (Mean RE 0.312, SD RE 0.312 and Im-
an-Davenport (Mean RE 0.321, SD 0.255) approximations.  

As will be displayed by the mean and standard deviation of the relative error 
of each approximation, generally, both approximations A and B improve as the 
counts of groups, blocks, and replicates increase, but becomes less differentiated 
from the Chi-square distribution. The approximation improves most markedly 
as the number of blocks increase.  

Decreasing the number of blocks to 1, as shown in Figure 3, greatly reduces 
the accuracy of all approximations other than the Iman-Davenport approxima-
tion  

(Mean RE 0.191, SD RE 0.174) specific to the Kruskal Wallis test [9]. Ap-
proximations A  

(Mean RE 1.448, SD RE 2.811) and B  
(Mean RE 1.461, SD RE 2.819) only have marginally lower relative error than 

the Chi-square distribution  
(Mean RE 1.472, SD RE 2.825) However, the difference in relative error im-

proves with larger sample sizes, as shown in Figure 4, where the replicates are 
increased from 3 to 10 in each group-block combination. In this case, all ap-
proximations are highly accurate with a small disparity between the Iman Da-
venport (Mean RE 0.048, SD RE 0.049) and Yarnold B (Mean RE 0.1088358, SD 
RE 0.108) approximations and the Chi-Square (Mean RE 0.115, SD RE 0.128) 
and Yarnold A approximations (Mean RE 0.115, SD RE 0.128).  

Figure 5 displays the improvement of the approximation at high numbers of 
blocks, holding the replicate and group counts at relatively low values.  

In this case, approximations A (Mean RE 0.0232, SD RE 0.02109596) and B 
(Mean RE 0.0202, SD RE 0.016) display marked improvements to Chi-Square  
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Figure 2. The figure displays the distribution of the Friedman test statistic (left) and the relative error with respect to the distribu-
tion of the Friedman test statistic (right) for the case with three groups, six blocks, and one replicate per group. 

 

 

Figure 3. The figure displays the distribution of the Kruskal Wallis test statistic (left) and the relative error with respect to the 
distribution of the Kruskal Wallis test statistic (right) for the case with three groups, one block, and three replicates per group. 

 
(Mean RE 0.051, SD RE 0.044) and Iman Davenport (Mean RE 0.058, SD RE 
0.045) approximations.  

Increasing the number of replicates improves the performance of approxima-
tions A (Mean RE 0.060, SD RE 0.068) and B (Mean RE 0.057, SD RE 0.057) over 
the Chi-Square (Mean RE 0.064, SD RE 0.069) approximation.  

See an example with three replicates in Figure 6. 
The most significant limitation of approximations A and B occurs in the case  
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Figure 4. The figure displays the distribution of the Kruskal Wallis test statistic (left) and the relative error with respect to the 
distribution of the Kruskal Wallis test statistic (right) for the case with three groups, one block, and ten replicates per group.  
 

 

Figure 5. The figure displays the distribution of the Friedman test statistic (left) and the relative error with respect to the distribu-
tion of the Friedman test statistic (right) for the case with three groups, thirty blocks, and one replicate per group. 

 
with higher group counts. In these cases, the distribution of the Prentice test sta-
tistic exhibits more frequent but smaller discontinuities, and appears more con-
tinuous when plotted. Hence, the correction for continuity in the Yarnold A  

(Mean RE 0.373, SD RE 0.4223) has a far lesser effect than the cases consi-
dered previously. The adjustment for kurtosis in the Yarnold B  

(Mean RE 0.3303, SD RE 0.3473) approximation yields a better approximation 
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Figure 6. The figure displays the distribution of the Friedman test statistic (left) and the relative error with respect to the distribu-
tion of the Friedman test statistic (right) for the case with three groups, six blocks, and three replicates per group. 

 
than the chi-square  

(Mean RE 0.373, SD RE 0.422) and Yarnold A approximations in terms of rel-
ative error. However, the more significant correction for continuity in the Im-
an-Davenport approximation  

(Mean RE 0.110, SD RE 0.108) yields a much better approximation in terms of 
relative error than the other approximations. See Figure 7 for an example. 

Lastly, we present the effects of an alternative logarithmic scoring system. This 
results in more frequent discontinuities than in the previous cases considered 
due to the non-discrete nature of the scores, rendering the correction for conti-
nuity minimally effective. Hence, only the first and third terms from approxima-
tion B (Mean RE 0.371, SD RE 0.500) were utilized as a comparison to the 
Chi-Square approximation (Mean RE 0.396, SD RE 0.561). 

See Figure 8 for an example. 

4. Discussion 

Generally, approximation A is at least as good as the Chi-square distribution and 
approximation B is better than approximation A. This pattern indicates that the 
correction for kurtosis in approximation B has a greater effect than the correc-
tion for continuity in approximations A and B. Even though this pattern holds 
overall, there are some exceptions where the performance of the Chi-square dis-
tribution exceeds that of approximations A and B and when the performance of 
approximation A exceeds that of approximation B. However, it should be noted 
that approximation B is most often the best approximation for the tail probabil-
ity of each distribution. 
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Figure 7. The figure displays the distribution of the Friedman test statistic (left) and the relative error with respect to the distribu-
tion of the Friedman test statistic (right) for the case with six groups, six blocks, and one replicate per group. 
 

 

Figure 8. The figure displays the distribution of the Friedman test statistic with logarithmic scoring (left) and the relative error 
with respect to the distribution of the Friedman test statistic with logarithmic scoring (right) for the case with three groups, six 
blocks, and one replicate per group. 

 
In cases with one replicate per group, both approximations A and B frequently 

outperform the Iman-Davenport approximation [8] [9]. However, this does not 
hold true in all cases and the Iman-Davenport approximation frequently outper-
forms approximations A and B in cases with high group counts or low block counts. 
In Figure 3 which demonstrates the effect of low block counts, some lines are 
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terminated early to account for the early termination of the Kruskal-Wallis ap-
proximation relative to the Chi-square, A, and B approximations. Each terminated 
line is ended with a bullet point for clarity. In this case, in particular, it is recom-
mended that the Iman-Davenport statistic approximation is used over other ap-
proximations, since the high relative error of the Chi-square, A, and B approxima-
tions renders them inaccurate approximations to the Kruskal-Wallis test statistic.  

With increasing group counts, the relative accuracy of approximations A and 
B remains unchanged. This is demonstrated by the consistently low relative ac-
curacy of the approximations with low group counts in Figure 2 and higher 
group counts in Figure 7.  

However, the relative accuracy of approximations A and B increases with a 
high number of blocks, as demonstrated by the example in Figure 5. These ef-
fects result from the dependence on the block counts in the standard deviation 
σ  of the Friedman test statistic [3]:  

2 1
12
p

b
σ −
=  

In the formula above, p refers to the number of ranks in the design and b the 
number of blocks in the design. As shown, the standard deviation of the Fried-
man test statistic is inversely related to the number of blocks, and as the number 
of blocks increases, the standard deviation decreases. Therefore, the impact of 
the correction for continuity in the second term of our approximation decreases, 
reducing the relative accuracy of both approximations A and B.  

The effect of high numbers of replicates is somewhat more significant than 
that for high numbers of blocks, as demonstrated by the relative error decrease 
for a modest increase in replicates in 6. With high numbers of replicates, the rel-
ative error quantity for all approximations is so small as to deem all approxima-
tions equal. Therefore, for computational simplicity, it is recommended that the 
chi-square approximation is used in these cases since the calculation of N(nc) 
quickly becomes less efficient as the number of replicates increases in approxi-
mations A and B.  

Lastly, the use of alternative non-polynomial scoring systems results in sums 
of scores by treatment that is not supported on a lattice. Hence, the typically dis-
crete distribution is closer to a continuous distribution and the correction for 
continuity in Yarnold A is not necessary. However, the correction for kurtosis in 
Yarnold B presents an improvement to the chi-square approximation, as dem-
onstrated by the lower relative error in Figure 8. Also, the delta2 term is non-zero 
in this case, reflecting the skewness of the underlying score sum distribution due 
to the dependence of delta2 on the third multivariate cumulant. Comparisons to 
the Iman-Davenport approximation are not included as the alternative scoring 
system cannot be applied. 

5. Conclusions 

We presented an approximation to the Prentice test statistic with corrections for 
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continuity and kurtosis in approximations A and B [10].  
The approximation presents an improvement on the previous Chi-square and 

Iman-Davenport approximations to the Prentice test statistic. The Yarnold ap-
proximation is particularly effective for large block counts with limitations when 
applied to scenarios with large group counts.  

The approximation also presents an improvement in the Chi-square distribu-
tion with the use of alternative non-polynomial scoring systems. 
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