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Abstract 
Cation exchange capacity (CEC) is one of the most important properties of 
soils. The NH4OAc (pH = 7.0) exchange method is usually recommended to 
determine CEC (CEC1) of all soils with different pH values, particularly for 
studies on soil taxonomy. But comparatively the BaCl2-MgSO4 forced-exchange 
method is more authentic in determining CEC (CEC2) of tropical and sub-
tropical highly-weathered acid soils. But so far little is known about the dif-
ference between CEC1 and CEC2. In this study, the physiochemical data of 
114 acid B horizon soils from 112 soil series of tropical and subtropical China 
were used, CEC1 and CEC2 were determined and compared, the influencing 
factors were analyzed for the difference between CEC1 and CEC2, and then a 
regression model was established between CEC1 and CEC2. The results showed 
that CEC2 was significantly lower than CEC1 (p < 0.01), CEC2 was 14.76% - 
63.31% with a mean of 36.32% of CEC1. In view of the contribution to CEC 
from other properties, CEC2 was mainly determined by pH (45.92%), fol-
lowed by silt (21.05%), free Fe2O3 (17.35%) and clay contents (12.76%), CEC1 
was mainly decided by free Fe2O3 content (40.38%), followed by pH (28.39%) 
and silt content (27.29%; and the difference between CEC1 and CEC2 was 
mainly affected by free Fe2O3 (50.92%), followed by silt content (26.46%) and 
pH (21.80%). The acceptable optimal regression model between CEC2 and 

CEC1 was established as CEC2 = 2.3114 × 1.1496
1CEC  (R2 = 0.410, P < 0.001, RMSE 

= 0.15). For the studies on soil taxonomy, the BaCl2-MgSO4 forced-exchange 
method is recommended in determining CEC of the highly-weathered acid soils 
in the tropical and subtropical regions. 
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1. Introduction 

Soil cation exchange capacity (CEC) is one of the most important chemical cha-
racteristics of agricultural lands [1], which can influence the stability of soil 
structure, nutrient availability, soil pH and the soil’s reaction to fertilizers and 
other ameliorants, provide a buffer against soil acidification [2]. CEC is often 
used as a measure of soil fertility, nutrient retention capacity [3], and also used 
as an identification and classification index of soil types in soil taxonomy [4] [5], 
in which the NH4OAc (pH = 7.0) exchange method [6] [7] is recommended to de-
termine CEC for all soils with different pH values. However, for highly-weathered 
acid soils in the tropical and subtropical regions, the BaCl2-MgSO4 forced-exchange 
method [8], which doesn’t adjust pH of soil samples, is recommended to deter-
mining CEC. Comparatively, because the buffer salt system (pH = 7.0) in the 
first method will increase soil pH, thus will increase the charge of soil colloids 
and result in higher measurement results [9] [10], which may lead to the mis-
judgment of soil types [11].  

But so far, little is known about the difference in CEC values determined by 
the two methods, thus, in this study the physiochemical data of 114 acid B hori-
zon soils from 112 soil series in the tropical and subtropical regions of south 
China were used to: 1) disclose the difference in CEC values determined by the 
two methods, 2) clarify the influencing factors of the difference, and 3) setup the 
regression model for predicting CEC2 by CEC1. 

2. Materials and Methods 
2.1. Background of Tested Soil Samples 

Figure 1 shows the spatial distribution of used 112 soil series in the tropical and 
subtropical regions of south China [12]-[22]. For a soil sample, the particle size 
distribution was determined by the pipette method, pH was measured with by 
the potentiometer method (soil:water = 1:2.5), organic matter was obtained by 
the Walkley-Black wet oxidation method, free Fe2O3 was determined by the phe-
nanthroline colorimetry method, CEC was analyzed by the NH4OAc (pH = 7.0) 
exchange method (CEC1) [6] [7] and the BaCl2-MgSO4 forced-exchange method 
(CEC2) [8], respectively. 

2.2. Data Statistical Analysis 

Microsoft Excel 2016 and IBM Statistics SPSS 22.0 software were used for statis-
tical analysis of the data, and Duncan test method (2-tailed) was used for va-
riance analyses and multiple comparisons.  
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Figure 1. Spatial distribution of used 112 soil series in tropical and subtropical regions of south China. 

3. Results 
3.1. Statistical Results of Soil Physiochemical Properties 

Table 1 lists the measured values of soil physiochemical properties, it showed 
that CEC1 ranged from 5.12 to 35.41 cmol(+) kg−1 with a mean of 12.40 cmol(+) 
kg−1, while CEC2 ranged from 2.22 to 6.60 cmol(+) kg−1 with a mean of 4.16 
cmol(+) kg−1. Comparatively, CEC2 was significantly lower than CEC1 (p < 0.01), 
CEC2 was 14.76% - 63.31% with a mean of 36.32% of CEC1.  

Table 1 also showed that clay content was meanly 412 g·kg−1, while sand con-
tent was meanly 281 g·kg−1; meanwhile, free Fe2O3 content was meanly 44.01 
g·kg−1, which prove further that soils in the tropical and subtropical regions of 
south China are clayey and rich in free Fe2O3 [23]. 

3.2. Factors Influencing CEC1, CEC2 and Their Difference 

Table 2 lists the correlation between CEC1, CEC2 and the difference between 
CEC1 and CEC2 (ΔCEC, CEC1-CEC2) with other properties. It could be found 
that pH had significant positive correlation with CEC1 (p < 0.01), CEC2 (p < 
0.01) and ΔCEC (p < 0.05), free Fe2O3 had significant positive correlation with 
CEC1 and ΔCEC (p < 0.01), sand content had significant negative correlation 
with CEC1 and ΔCEC (p < 0.05), silt content had significant positive correlation 
with CEC1 (p < 0.05) and CEC2(p < 0.01), while clay content had significant 
negative correlation with CEC2 (p < 0.05).  
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Table 1. Statical descriptions of soil chemical properties. 

Soil property Minimum Maximum Mean ± S.D. C.V. (%) Skewness Kurtosis 

CEC1 5.12 35.41 12.40 ± 4.81A 38.79 1.73 5.20 

CEC2 2.22 6.60 4.16 ± 0.81B 19.45 0.46 0.51 

pH 3.73 6.90 5.13 ± 0.65 12.65 0.84 0.30 

SOM 2.41 33.57 8.24 ± 5.38 65.25 2.02 5.04 

Free Fe2O3 6.38 105.96 44.01 ± 18.55 42.14 0.61 0.20 

Sand 44 640 281 ± 157 55.84 0.43 −0.75 

Silt 84 664 306 ± 111 36.29 0.34 −0.25 

Clay 95 815 412 ± 146 35.50 0.45 0.14 

Note: 1) Sand, silt, clay, SOM and free Fe2O3, g·kg−1; CEC1 and CEC2, cmol(+) kg−1; 2) CEC1 and CEC2, de-
termined by the methods of NH4OAc (pH = 7.0) and BaCl2-MgSO4, respectively. The same below; 3) data of 
CEC1 and CEC2 followed by different capitals are significantly different at p < 0.01 level. 

 
Table 2. Pearson correlation between soil CEC and other properties.  

CEC Correlation pH SOM Free Fe2O3 Sand Silt Clay 

CEC1 Pearson Correlation 0.248** 0.069 0.263** −0.193* 0.195* 0.060 

 
Sig. (2-tailed) 0.008 0.468 0.005 0.039 0.038 0.528 

CEC2 Pearson Correlation 0.373** 0.001 −0.142 0.012 0.272** −0.220* 

 
Sig. (2-tailed) 0.000 0.990 0.131 0.896 0.003 0.019 

ΔCEC Pearson Correlation 0.203* 0.075 0.314** −0.214* 0.163 0.106 

 Sig. (2-tailed) 0.030 0.427 0.001 0.022 0.083 0.261 

Note: 1) *, **, Correlation is significant at p < 0.05 or 0.01 level (2-tailed)l; 2) ΔCEC = CEC1 − CEC2. 

 
The contribution of one property to CEC was calculated as the follows: firstly, 

all properties were normalized by the Z-score method with IBM Statistics SPSS 
20.0 to ensure them with the same magnitude, and then the regression coeffi-
cients between each property with CEC was used to indicate their contribution 
to CEC [24] [25] [26]. The contribution of one property (Ci) to CEC was calcu-
lated as Ci = Ki/Ksum, in which Ki is the regression coefficient of the i property, 
and Ksum is the total sum of all coefficients, the obtained linear regression models 
of CEC with other properties were listed in Table 3, and the calculated contribu-
tion of other properties to CEC were listed in Table 4. 

In view of the contribution of other properties to CEC, it can be seen from 
Table 4 that CEC1 was mainly decided by free Fe2O3 (40.38%), followed by pH 
and silt content (28.39% and 27.29%, respectively); CEC2 was mainly determined 
by pH (45.92%), followed by silt content (21.05%), then followed by free Fe2O3 
and clay content (17.35% and 12.76%, respectively), and ΔCEC was mainly af-
fected by free Fe2O3 (50.92%), followed by silt content and pH (26.46% and 
21.80%, respectively). 
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Table 3. Linear regression model between CEC and other soil properties. 

Liner regression model R2 RMSE F Sig. 

CEC1 = 0.180pH + 0.009SOM + 0.256Fe2O3 + 0.173Silt − 0.016Clay + 
1.672 × 10−5 

0.145 0.95 3.67 0.004 

CEC2 = 0.360pH + 0.023SOM − 0.136Fe2O3 + 0.165Silt − 0.100Clay + 
1.581 × 10−5 

0.220 0.90 6.11 0.000 

ΔCEC = 0.131pH + 0.005SOM + 0.306Fe2O3 + 0.159Silt + 1.536 × 10−5 0.149 0.94 3.79 0.003 

 
Table 4. Contribution of other soil properties to CEC. 

Property pH SOM Free Fe2O3 Sand Silt Clay Total 

CEC1 (%) 28.39 1.42 40.38 0 27.29 2.52 100.00 

CEC2 (%) 45.92 2.93 17.35 0 21.05 12.76 100.00 

ΔCEC (%) 21.80 0.83 50.92 0 26.46 0 100.00 

3.3. CEC2 Predicting Model Based on CEC1 

The scatter diagram of CEC2 and CEC1 are shown in Figure 2, and IBM statistics 
SPSS 20.0 was used to obtain the optimal regression model between CEC2 and 
CEC1. It could be found from Figure 2 that a significant positive power correlation 
between CEC2 and CEC1, and the optimal regression model was as CEC2 = 2.3114 
× 1.1496

1CEC  (R2 = 0.410**, P < 0.001 F = 77.99, RMSE = 0.15, RMSE/S.D = 0.19).  

4. Discussions 
4.1. Value Difference CEC Determined by Different Methods 

For highly-weathered acid soils in the subtropical and tropical regions, because 
the buffer salt system (pH = 7.0) could increase soil pH, thus would increase the 
charge of soil colloids, so CEC determined by the NH4OAc (pH = 7.0) exchange 
method (CEC1) usually is higher than that determined by the BaCl2-MgSO4 
forced-exchange method (CEC2) [9] [10]. Our study quantitatively assessed this 
phenomenon, for the acid B horizon soils in the subtropical and tropical regions 
of south China, CEC2 was significantly lower (P < 0.01) than CEC1, the former 
meanly 36.32% of the latter (see Table 1).  

Our study also disclosed the differences in the influencing factors of CEC1 and 
CEC2, in which pH and silt content were the common factors of CEC1 and CEC2, 
but CEC1 was also influenced by free Fe2O3 and sand content, while CEC2 was 
also affected by clay content (see Table 2). Furthermore, our study proved fur-
ther that the difference between CEC1 and CEC2 was mainly decided by free 
Fe2O3 content (the contribution was 50.92%, see Table 4), followed by silt con-
tent and pH (the contributions were 26.46% and 21.80%, respectively, see Table 
4), while little or no effect from sand and clay contents. 

4.2. Influencing Factors of CEC 

Table 5 lists the correlation between CEC and other properties of soils found in  
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Figure 2. Relationship between soil CEC1 and CEC2 determined by methods of NH4OAc 
(pH = 7.0) and BaCl2-MgSO4, respectively. 
 
Table 5. Correlation between soil CEC and other properties in published literatures. 

Property Negative correlation Positive correlation 

pH [27] [28] [29] [30] [31] [32] [33] [34] [35] 

SOM or SOC 
 

[27] [28] [30]-[40] 

Sand [29] [31] [38] [40] [41] 
 

Silt [32] [34] [28] [31] [32] [34] [38] 

Clay [38] [28] [29] [30] [31] [32] [34] [37] [38] [39] [40] 

 
some previous studies. pH usually has significant negative correlation with CEC 
for soils with high pH (for example, higher than 7.0) [27] [28] [29] [30] but has 
positive correlation with CEC for soils with low pH (for example, lower than 7.0) 
[31] [32] [33] [34] [35]. Since all soil samples used in our study were acid (pH < 
7.0), so significant positive correlation was found in our study between pH and 
CEC1 and CEC2.  

SOM usually has significant positive correlation with CEC [27] [28] [30]-[40], 
but our results showed that SOM had no significant correlation with CEC1 and 
CEC2 (Pearson correlation coefficient was 0.069 and 0.001, respectively, See Ta-
ble 2; contribution to CEC was 1.42% and 2.93%, respectively, see Table 4), 
which could be attributed to the low SOM content [28] [37] [38] [41] in B hori-
zon soils in the subtropical and tropical regions of south China (mean SOM 
content was 8.24 g·kg−1 in our study).  

Clay content usually also has significant positive correlation with CEC of hu-
mid soils [28]-[40], but our results showed that clay had no significant correla-
tion with CEC1 (R was 0.060, see Table 2; contribution to CEC was 2.52%, see 
Table 4) and had weak negative significant correlation with CEC2 (R was 0.220, 
p < 0.05, see Table 2; contribution to CEC was 12.76%, see Table 4), which could 
be attributed to greater microaggregating effect of Fe oxides in highly-weathered 
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soils in the tropical and subtropical regions [42], which enhanced the participa-
tion of clay in the microaggregation, reduced the amount of “free” clay particles, 
thus decreased clay contribution to CEC [40]. Few studies analyzed the correla-
tion between free Fe2O3 and CEC because free Fe2O3 in subtropical and tropical 
highly-weathered soils usually exist as clay fraction or strongly cemented with 
clays [42] [43] [44], so more attentions were paid to the correlation between clay 
content rather than free Fe2O3 with CEC (p < 0.01). However, our studies found 
that free Fe2O3 was significantly correlated with CEC1, while clay content was 
significantly correlated with CEC2 (p < 0.05).  

Our study also found that CEC1 had negative correlation with sand content, 
which is consist with the previous studies [29] [31] [38] [40] [41], while CEC2 
had significant positive correlation with silt content as found in other studies 
[32] [34], which could be attributed to that in subtropical and tropical humid 
climate soils, sand fraction is mainly composed of quartz and iron concretions 
which present low charge density [45], while the silt fraction is often composed 
of vermiculite and mica minerals which can hold negative charges [46].  

4.3. Recommendation Using CEC2 Predicting Model for Soil  
Taxonomy 

In Chinese Soil Taxonomy, the LAC-ferric horizon is the diagnostic horizon for 
Ferrosols, one of its requirements is that CEC7 < 24 cmol (+) kg−1 clay in partial 
B horizons (≥10 cm in thickness) [4]. However, CEC7clay is not directly measured 
by the extracted clays, it was calculated as: soil CEC7 × 1000/clay content [4]. 
Our study shows that for B horizons of the highly-weathered acid soils in the 
tropical and subtropical regions of south China, CEC determined by the 
NH4OAc (pH = 7.0) exchange method is 1.58 - 6.78 times with a mean of 2.96 
times of that decided by the BaCl2-MgSO4 forced-exchange method. This ob-
vious overestimation of CEC [9] is most likely to lead to some authentic LAC-ferric 
horizons being misjudged as other diagnostic horizons, thus leading to mis-
judgment of soil types [10]. However, since the NH4OAc (pH = 7.0) exchange 
method was used in almost all previous studies on soil taxonomy, thus, to verify 
the identification accuracy of soil types in the previous studies, the CEC2 pre-
dicting model established in our study based on CEC1 is recommended to obtain 
CEC of highly-weathered acid soils in the tropical and subtropical regions in or-
der to ensure the accurate identification of soil types. Nevertheless, for the future 
studies, it is recommended to using the BaCl2-MgSO4 forced-exchange method for 
CEC determination of the highly-weathered acid soils in the tropical and sub-
tropical regions. 

5. Conclusion 

Our study quantitatively proved that for the highly-weathered acid soils in the 
tropical and subtropical regions of south China, CEC determined by the NH4OAc 
(pH = 7.0) exchange method was significantly higher than that determined by 
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the BaCl2-MgSO4 forced-exchange method. CEC of the former method was 
mainly affected by free Fe2O3 and pH, followed by silt and sand contents, while 
CEC of the latter method was mainly affected by pH, followed by silt and clay 
contents. CEC differences between the two methods were mainly influenced by 
free Fe2O3, followed by sand content and pH. For the studies on soil taxonomy, 
the BaCl2-MgSO4 forced-exchange method is recommended for CEC determina-
tion of the highly-weathered acid soils in the tropical and subtropical regions. 
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