

https://www.scirp.org/journal/cc

ISSN Online: 2332-5984 ISSN Print: 2332-5968

Detailed Quantum Mechanical QSAR Analysis of Certain Aminopyrimidoisoquinolinequinones with Anticancer Activity

Mukhtaar Qaaed S. Sultan^{1*}, Mohamed Osman El-Faki², Inas Osman Khojali Mohammed³

- ¹Department of Pharmacy, Faculty of Medical Sciences, Azal University for Human Development, Sana'a, Yemen
- ²Department of Basic Science, Faculty of Engineering Sciences, Omdurman Islamic University, Omdurman, Sudan

Email: *muktoxic2005@gmail.com

How to cite this paper: Sultan, M.Q.S., El-Faki, M.O. and Mohammed, I.O.K. (2023) Detailed Quantum Mechanical QSAR Analysis of Certain Aminopyrimidoisoquinolinequinones with Anticancer Activity. *Computational Chemistry*, **11**, 24-35.

https://doi.org/10.4236/cc.2023.111002

Received: November 4, 2022 Accepted: January 17, 2023 Published: January 20, 2023

Copyright © 2023 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

A detailed quantum mechanical analysis of electronic disposition of five aminopyrimidoisoquinolinequinones (APIQs) was performed after extraction of this subset of compounds from a larger data set of APIQs via a reported clustering methodology (Elfaki, et al. 2020). Both semi empirical PM3 method and DFT quantum mechanical methods were used to calculate global and local quantum mechanical descriptors (QMDs) to define the electronic environment of these molecules in attempt to rationalize their observed anticancer response variability. The biological response is the anticancer activity against human gastric adenocarcenoma (AGS) cell line. The correlation matrix between the calculated global electronic descriptors and biological activity demonstrated that the global dipole moment gives the highest correlation. The local electronic environment was analysed by The Mullikan charges (MC) and Fukui functions for N-5, C-6, C-8 in addition to the N atom of phenylamino side group at C-8. MCs furnished no useful information as each of these atoms had almost identical MC values for all the five compounds with exception of C-6 which gave varied values. Regressing MCs of C-6 against the response traces 60% of the latter variability. As C-6 is an extra annular methyl carbon adjacent to N-5 in isoquinoline residue of APIQ, we reasoned that the chemical reactivities of 4 out of the 5 APIQs might be due to a Chichibabin-type tautomerism implying a possible alkylation aspect in their mechanism of action. The corresponding Fukui functions (f, f') and f') showed a considerable consistency with the patterns of chemical reactivity exhibited by this small set of APIQs.

Keywords

APIQs, DFT, Semi Empirical PM3, Global and Local Quantum Mechanical

³Department of Chemistry and Industrial Chemistry, College of Applied and Industrial Sciences, University of Bahri, Alkadroo, Sudan

Descriptors

1. Introduction

Physicochemical properties and structural features of chemical compounds control their biological activities [1]. For example, the ability of a molecule to cross cell membranes or dissolve in fatty tissues is closely related to its lipophilicity [2]. Likewise, ability of a molecule to form stable complexes and/or react with biological molecules is directed by its electronic distribution [3]. Quantum mechanical descriptors (QMD) such as the energy of the highest occupied molecular orbital $\varepsilon_{\text{HOMO}}$, the energy of the lowest unoccupied molecular orbital $\varepsilon_{\text{LUMO}}$, electronegativity (χ), hardness (η), softness (S), electrophilicity index (ω) have been used in the elucidation of the chemical reactivity [4] [5]. QMD can be divided into two kinds; global descriptors which describe whole molecule such as electrophilic index and dipole moment and local descriptors which describe parts of molecule such as Mullikan atomic charge and Fukui function [6]. Density functional theory (DFT) beside semi empirical PM3 method has been used fairly successful in elucidation of molecular properties and chemical reactivity [7]. In the present study, we report a detailed quantum mechanical study of electronic dispositions of five aminopyrimidoisoquinolinequinones (APIQs) [8] which cluster together when a larger data set of congeneric 27 APIQs was subjected regression clustering as previously reported by our group [9]. Both semi empirical PM3 method and DFT methods were used to calculate several global and local QMDs for these compounds in attempt to rationalize and explain the variability of biological response as a consequence of electronic environment.

2. Material and Method

Software:

Gaussian 5.0.8 was used to draw/optimize of structures and for DFT calculation of Fukui functions basis set 3 - 21 G and B3LYP method [10]. Arguslab 4 and Molecular Operation Environment (MOE) 2008 softwares were used to calculate Mullikan charge and global descriptors [11]. Statistical analysis was performed using Microsoft Excel 2010 program.

Data set:

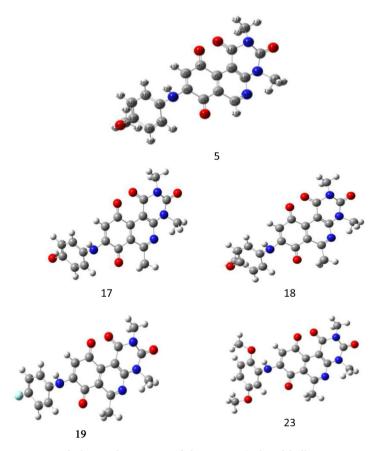

The biological activity used in the present study is the anticancer activities of compounds 5, 17, 18, 19 and 23 which are extracted from a larger data set through a reported clustering procedure [9]. We maintain the original numbering as appeared in the previous paper. The cancer cell line used is human gastric adenocarcenoma (AGS) cell line. Biological response is expressed as the inhibitory concentration of 50% of the subjects IC_{50} . The structures and biological activities of the APIQ's are shown in **Table 1**.

Figure 1 shows the optimized chemical structures of molecules.

Table 1. Structures and biological responses of APIQs.

$$CH_3$$
 O
 N
 CH_3
 N
 CH_3
 N
 CH_3

No	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	IC ₅₀ (μM)
5	Н	Н	<i>p</i> -MeO-Ph-	2.8
17	Me	Н	<i>p</i> -HO-Ph-	3.3
18	Me	Н	<i>p</i> -MeO-Ph-	5.5
19	Me	Н	<i>p</i> -F-Ph-	1
23	Me	Н	2,5-diMeO-Ph-	31.7

Figure 1. Optimized chemical structure of the APIQs (colored balls represent to: black (C), red (O), blue (N), yellow greenish (F) and white is (H)).

3. Results and Discussion

Global electronic descriptors

Table 2 contains the most significant global electronic descriptors of the five

APIQs under study. Table 3 shows the correlation matrix between these descriptors including the response.

The correlation matrix between the global electronic descriptors and biological activity, demonstrates that the global dipole moment gives the highest correlation. The QSAR equation can be written as the following:

$$IC_{50} = 0.3255 \text{ dipo} + 1.9086$$
 (1)
 $n = 5, R^2 = 0.88, s = 4.9, F = 23.8$

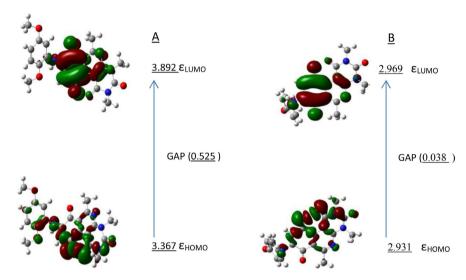
It is clear from the data in Table 3 that dipole moment explains up to 88% the variability of the response while electrophilicity index explains up to 86%. These two descriptors are collinear (property spaces overlap to the extent of 72%). The unexplained variability by them combined amount to 16%. This could be attributed to communal effect of the rest of descriptors on variability.

It should be noted that there is a high collinearity between GAP and the electrophilicity index. Molecule 23 has the highest GAP (0.525) with the highest ω (1.731254) whereas molecule 18 has the lowest GAP (0.038) with the lowest ω (0.083993). Thus GAP explains the same variability as ω . GAP is pictorially rendered in Figure 2 to get a feel of the cause of partitioning of this particular set of molecules in one and the same cluster.

Table 2. Global electronic descriptors of the five APIQs molecules.

Comp.	<i>ε</i> номо (eV)	£⊔мо (eV)	η (eV)	s (eV)	χ (eV)	GAP (eV)	dip (debye)	æ
5	3.073	3.316	0.121	4.122	-3.195	0.242	1.115	0.619086
17	2.797	2.846	0.024	20.149	-2.822	0.049	3.161	0.049628
18	2.931	2.969	0.019	25.908	-2.950	0.038	2.772	0.038597
19	2.436	2.549	0.056	8.858	-2.492	0.112	4.464	0.112882
23	3.367	3.892	0.262	1.902	-3.630	0.525	12.45	1.731254

Table 3. Correlation matrix among the global electronic descriptors and IC50.


	€номо	€ LUMO	η	S	X	GAP	dipole	ω	AGS
Е НОМО	1								
E LUMO	0.93	1							
η	0.57	0.81	1						
S	0.12	0.30	0.65	1					
X	0.97	0.98	0.72	0.22	1				
GAP	0.57	0.81	1	0.65	0.72	1			
dipo	0.27	0.44	0.66	0.22	0.37	0.66	1		
ω	0.64	0.85	0.98	0.54	0.77	0.98	0.72	1	
IC ₅₀	0.60	0.75	0.78	0.21	0.70	0.78	0.88	0.86	1

Local electronic descriptors

The local environment may be considered by looking at certain atoms around the molecule. We considered N-5, C-6 and C-8 in addition to the nitrogen atom of phenylamino side group at C-8.

Using the PM3 semi-empirical method, the value of Mullikan charge MC remain the same for all these atoms except for C-6 (**Table 4**), where a significant linear correlation was discerned ($R^2 = 0.6$) with the logarithm of the IC₅₀ as depicted in **Figure 3**.

This shows that this carbon is active in spite of its full valence through its presence in the aromatic ring system in addition to its bonding to methyl group. The reason for this is not far-fetched; The presence of a methyl group adjacent

Figure 2. Illustrated $\varepsilon_{\text{HOMO}}$, $\varepsilon_{\text{LUMO}}$ and GAP for molecules 23 (A) and 18 (B).

Table 4. Mullikan charges of N-5, C-6, C-8 and N-amino using PM3 method.

Comp.	N-5	C-6	C-8	N-amino
5	4.9998	2.1548	-4.0002	-3
17	4.9978	3.4735	-4	-3
18	4.9999	4.1069	-4.0001	-3
19	4.9979	2.1318	-4.0001	-3
23	4.9999	3.477	-4.0002	-3

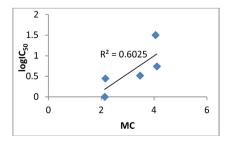


Figure 3. Correlation matrix between MC (C-6) and logIC₅₀.

to the nitrogen of the pyridine part of the chromophore may cause a Chichibabin-type tautomerism to occur in the following manner [12]:

This tautomerism imparts a chemical reactivity which traces the variability of the biological activity to the extent of 60%. Moreover, there an additional element to add to the reactivity which the generation of an enamine scaffold *in situ* [13]. This opens a whole perspective of chemical reactivity which might even suggest alkylation aspect of the mechanism of action of this particular group of APIQs.

To get a more accurate picture of the above mentioned argument, we used DFT method to calculate the following Fukui functions: forward Fukui function f, backward Fukui function f and neutral Fukui function f for nucleophilic, electrophilic and radical attacks respectively. These functions are calculated as follows [14]:

For nucleophilic attack:

$$f^{+} = q_{a}(N_{el} + 1) - qa(N_{el})$$
 (2)

For electrophilic attack:

$$f^{-} = q_a(N_{el}) - qa(N_{el} - 1)$$
(3)

For radical attack:

$$f^{0} = q_{a}(N_{el} + 1) - qa(N_{el} - 1)/2$$
(4)

In these equations q_a is the atomic charge (evaluated from Mullikan population analysis) at the jth atomic site in the neutral (N), anionic (N+1) or cationic (N-1) chemical species. We calculated Fukui function for our 5 APIQs and the results are summarized in **Table 5**.

We correlated Fukui functions for atoms N-5, C-6, C-8 and N-atom of 8-phenylamino side group each with the response. The outcomes (as R²) of these correlations are summarized in **Figure 4**.

Upon examining the value of R² summarized in **Figure 4**, the following remarks could be made:

N-5: it is apparent that this atom is prone to nucleophilic attack, *i.e.*, it is an
electron deficient atom or an electrophilic site. This is to be expected as tuatomer b generated by Chichibabin-type tautomerism (Figure 5) contains a
secondary amino group with a free lone pair of electron which could easily

Table 5. Calculated Fukui functions for N-5, C-6, C-8 and N-atom of 8-phenylamino side group.

Molecules	IC ₅₀ (μM)	C-6			C-8			N-5			N-phenyl		
		F+	F-	\mathbf{F}^{0}	F+	F-	\mathbf{F}^{0}	F+	F-	\mathbf{F}^{0}	F+	F-	F ⁰
5	2.8	0.026	0.028	0.027	0.032	0.047	0.039	0.026	0.039	0.033	0.028	0.014	0.021
17	3.3	0.015	0.019	0.017	0.032	0.046	0.039	0.026	0.037	0.031	0.028	0.014	0.021
18	5.5	0.015	0.019	0.017	0.032	0.046	0.039	0.026	0.037	0.031	0.028	0.014	0.021
19	1	0.015	0.019	0.017	0.032	0.046	0.039	0.026	0.037	0.031	0.027	0.014	0.02
23	31.7	0.014	0.019	0.016	0.026	0.046	0.036	0.024	0.034	0.030	0.025	0.012	0.018

$$\begin{array}{c} O \\ N \\ N \\ N \\ N \\ N \\ R^2(f^+) = 0.87, \ (R^2)f^=0, \ (R^2)f^0 = 0.35 \\ \hline \\ (R^2)f^+ = 0.98, \ (R^2)f^=0.98, \ (R^2)f^0 = 0.5 \\ \hline \end{array}$$

Figure 4. R^2 for the correlation between Fukui functions of N-5, C-6, C-8 and N-phenylamino atoms and IC₅₀.

Figure 5. Chichibaben-type tautomerism of the methyl pyridine ring of isoquinoline scaffold of APIQs.

be protonated to enhance nucleophilic attack as already indicated in Figure 5.

- *C*-6: also exhibits similar behavior because of the presence of electrophilic N-5 atom which withdraws electron density from it. Reviewing the value of Fukui functions for the five APIQs shows that compound 5 in which there is no methyl group at C-6 has the highest f⁺ value indicative that this position is open to nucleophilic attack to a degree of forming a full-fledge covalent bond, moreover, it is well-known that isoquinoline nucleus undergoes nucleophilic aromatic substitution at position 1 in pyridine ring which correspond to C-6 in isoquinoline [15]. While the other four compounds, owing to the covalent bond to the methyl group, might enter into an electrostatic interaction with electron rich center in the receptor. Thus we can say that the enamine in tautomer b (Figure 5) is complimentary with an electrophilic pocket in the receptor.
- C-8: Upon concentrating on C-8 and we notice the R² values for f⁴ and f⁴ = 0.98 and 0.9 respectively. This is easily justifiable by noting that this atom is a part of α,β-unsaturated carbonyl system and may constitute a Michael acceptor [16], Figure 6, which represents an electron deficient site. The same electron deficient site is attractive for free radicals which give justification of the high value of f⁴.
- *N-phenyl group*: As for the N atom of 8-phenylamino group the R² value of f⁻ and f⁺ of 0.9 and 0.67 respectively may indicate a protonation equilibrium as such (**Figure 7**):

Figure 6. Michel acceptor at C-8 atom.

Figure 7. Equilibrium between protonated and electron lone pair of N-phenyl.

4. Conclusion

The variability in chemical reactivity for present set of APIQ (five molecules) has been studied using global and local descriptors. Dipole moment, as a global descriptor, demonstrated a high correlation with the biological activity. The Mullikan charge for C-6, as a local descriptor, showed that this carbon atom is active in spite of its full valence through its presence in an aromatic ring system in addition to its bonding to a methyl group as presence of methyl group adjacent to the nitrogen of the pyridine part of the chromophore may cause a Chichibabin-type rearrangement. The correlation between IC₅₀ and Fukui functions for atoms N-5, C-6, C-8 and N-atom of 8-phenylamino side group is consistent with variation in chemical behavior for each atom.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- [1] Pathan, S., Ali, S.M. and Shrivastava, M. (2016) Quantitative Structure Activity Relationship and Drug Design: A Review. *International Journal of Research in BioSciences*, **5**, 1-5.
- [2] Constantinescu, T., Lungu, C.N. and Lung, I. (2019) Lipophilicity as a Central Component of Drug-Like Properties of Chalchones and Flavonoid Derivatives. *Molecules*, **24**, Article No. 1505. https://doi.org/10.3390/molecules24081505
- [3] Xia, L. and Wang, Q. (2018) QSAR Classification Modeling for Bioactivity of Molecular Structure via SPL-Logsum.
- [4] Singh, P.P., Sharma, S.B. and Singh, K. (2010) Quantum Chemical and Energy Descriptors Based QSAR Study of Triazine Derivatives. *Journal of Chemical and Pharmaceutical Research*, **2**, 193-205.
- [5] Bendjeddou1, A., Abbaz, T., Maache, S., Rehamnia, R., Gouasmia, A.K. and Villemin, D. (2016) Quantum Chemical Descriptors of Some P-Aminophenyl Tetrathiafulvalenes through Density Functional Theory (DFT). *Rasayan Journal of Chemistry*, 9, 18-26.

- [6] Horvath, D., Marcou, G. and Varnek, A. (2019) Molecular Descriptors. https://www.BigChem.eu
- [7] Sahu, V., Sharma, P. and Kumar, A. (2014) Impact of Global and Local Reactivity Descriptors on the Hetero-Diels-Alder Reaction of Enaminothione with Various Electrophiles. *Journal of the Chilean Chemical Society*, 59, 2327-2334. https://doi.org/10.4067/S0717-97072014000100019
- [8] Vásquez, D., Rodríguez, J.A., Theoduloz, C., Calderon, P.B. and Valderrama, J.A. (2010) Studies on Quinones. Part 46. Synthesis and *in Vitro* Antitumor Evaluation of Aminopyrimidoisoquinolinequinonesq. *European Journal of Medicinal Chemistry*, 45, 5234-5242. https://doi.org/10.1016/j.ejmech.2010.08.040
- [9] Elfaki, M.O., Sultan, M.Q.S. and Mohammed, A.I.O.K. (2020) Mechanistic Study of Anticancer Activity of Some Known Aminopyrimido-Isoquinoline-Quinones via QSAR Classification Methodology. *Computational Chemistry*, 8, 1-13. https://doi.org/10.4236/cc.2020.81001
- [10] Santos, C.B.R.d., Lobato, C.C., Vieira, J.B., et al. (2013) Evaluation of Quantum Chemical Methods and Basis Sets Applied in the Molecular Modeling of Artemisinin. Computational Molecular Bioscience, 3, 66-79. https://doi.org/10.4236/cmb.2013.33009
- [11] Mahmoud, N.F., Mahmoud, W.H. and Mohammed, G.G. (2020) Synthesis, Spectra, MOE and Cytotoxic Studies of Nano Ru(III), Pr(III) and Gd(III) Metal Complexes with New Schiff Base Ligand Based on Dibenzoyl Methane and Anthranilic Acid. *Applied Organometallic Chemistry*, **34**, e5801. https://doi.org/10.1002/aoc.5801
- [12] Ravat, P. and Baumgarten, M. (2015) Tschitschibabin Type Biradicals: Benzenoid or Quinoid. *Physical Chemistry Chemical Physics*, 17, 983-991. https://doi.org/10.1039/C4CP03522D
- [13] Yuan, M., Chen, X. and Lin, S. (2018) Synthesis the Functionalized Enamine. *Progress in Chemistry*, **30**, 1082-1096.
- [14] Joshi, D.B. (2016) Chemical Reactivity, Dipole Moment and First Hyperpolarizability of Aristolochic Acid I. *Journal of Institute of Science and Technology*, **21**, 1-9. https://doi.org/10.3126/jist.v21i1.16030
- [15] Lee, Y.Y. and Liu, S.T. (2022) Preparation of Substituted Pyridines via Coupling of β-Enamine Carbonyls with Rongalite-Application for Synthesis of Terpyridines. *Reactions*, **3**, 415-422. https://doi.org/10.3390/reactions3030029
- [16] Manna, C. and Pathak, T. (2017) Michael Acceptor, Masked Aldehyde and Leaving Group in a Single Intermediate: Unorthodox Approach to Enantiopure Saturated Aza-Heterocycles from a Multifunctional Glyco-Substrate. *ChemistrySelect*, 2, 4021-4027. https://doi.org/10.1002/slct.201700332

Supplementary Material

calculation of electronic global descriptors

```
comp
                                       L
                                                                                S
                                                                                                   Χ
                                                                                                                       Ι
                                                                                                                                                                                                                             dipo
                                                            n
                                                                                                                                         Α
                                                                                                                                                                μ
               5\ 3.\ 073826\ 3.\ 316397\ 0.\ 121286\ 8.\ 245009\ -3.\ 19511\ -3.\ 07383\ \ -3.\ 3164\ 3.\ 195112\ -26.\ 3437\ 0.\ 242571
                                                                                                                                                                                                                                  1, 1156
             17\ \ 2.\ 797199\ \ 2.\ 846827\ \ 0.\ 024814\ \ 40.\ 29983\ \ -2.\ 82201\ \ \ \ -2.\ 7972\ \ -2.\ 84683\ \ 2.\ 822013\ \ \ \ -113.\ 727\ \ 0.\ 049628
                                                                                                                                                                                                                                  3.1619
             18 \quad 2.93106 \quad 2.969657 \quad 0.019299 \quad 51.8175 \quad -2.95036 \quad -2.93106 \quad -2.96966 \quad 2.950359 \quad -152.88 \quad 0.038597 \quad 
                                                                                                                                                                                                                                  2.7723
             19\ 2,\ 436342\ 2,\ 549224\ 0,\ 056441\ 17,\ 71762\ -2,\ 49278\ -2,\ 43634\ -2,\ 54922\ 2,\ 492783\ -44,\ 1662\ 0,\ 112882
                                                                                                                                                                                                                                   4, 464
             23 3. 367261 3. 892795 0. 262767 3. 805653 -3. 63003 -3. 36726 -3. 8928 3. 630028 -13. 8146 0. 525534
                                                                                                                                                                                                                              12.4501
                                                                                                  calculation of fugui functions
                                                                     C-6
                                                 comp
                                                                     mol.0
                                                                                         mol. +1 	 mol. -1 	 f+
                                                                                                                                                     f-
                                                                  5 0. 166277 0. 192568 0. 137904 0. 026291 0. 028373 0. 027332
                                                               17 0. 367922 0. 383025 0. 348301 0. 015103 0. 019621 0. 017362
                                                                18 0. 367994 0. 383052 -0. 0267 0. 015058 0. 394691 0. 204875
                                                               19 0. 368371 0. 38363 0. 34871 0. 015259 0. 019661 0. 01746
                                                               23\  \, 0.\  \, 367285\  \, 0.\  \, 381132\  \, 0.\  \, 347861\  \, 0.\  \, 013847\  \, 0.\  \, 019424\  \, -0.\  \, 17401
                                                                     C = 33
                                                                     mol. 0
                                                                                         mol. +1 	 mol. -1 	 f+
                                                 comp
                                                                                                                                                   f-
                                                                  5 0. 254879 0. 272333 0. 238764 0. 017454 0. 016115 0. 016785
                                                                17 0. 235202 0. 250254 0. 220677 0. 015052 0. 014525 0. 014789
                                                                18 0. 254883 0. 271276 0. 000493 0. 016393 0. 25439 0. 135392
                                                                19 0. 297029 0. 31437 0. 279042 0. 017341 0. 017987 0. 017664
                                                               23 0. 280688 0. 017883 0. 268233 -0. 26281 0. 012455 -0. 12518
                                                               23 0. 293693 0. 054672 0. 288383 -0. 23902 0. 00531 -0. 11686
                                                                     negativity-atom
                                                 comp
                                                                     mol.0
                                                                                         mo1. +1
                                                                                                            mol.-1 f+
                                                                  5 -0.52074 -0.50593 -0.53305 0.014809 0.012305 0.013557
                                                                17 -0. 59283 -0. 57514 -0. 60864 0. 017685 0. 015811 0. 016748
                                                                18 - 0.52075 - 0.50681 \ 0.000053 \ 0.013933 - 0.5208 - 0.25343
                                                                19 -0. 28632 -0. 26553 -0. 30558 0. 02079 0. 019267 0. 020029
                                                               23 -0.54197 0.034341 -0.52836 0.576308 -0.01361 0.281349
                                                               23 -0.52262 0.034557 -0.52709 0.557178 0.004468 0.280823
                                                                     O-orient. For NH2-posi.28
                                                                                     mo1. +1 mo1. -1
                                                 comp
                                                                     mol.0
                                                                                                                               f+
                                                                  5 \quad -0.1767 \quad 0.059448 \quad -0.17154 \quad 0.236149 \quad -0.00516 \quad -0.05605
                                                                17 - 0.17696 \ 0.055945 - 0.17216 \ 0.232903 - 0.0048 - 0.05811
                                                                18 - 0.17675 - 0.17344 - 0.00024 0.003311 - 0.17652 - 0.08684
                                                                19 \quad -0.1715 \quad -0.1682 \quad -0.16697 \quad 0.003299 \quad -0.00453 \quad -0.16759
                                                               23 -0. 20432 0. 001395 0. 037626 0. 205712 -0. 24194 0. 019511
                                                                     0-orient. For NH2-posi.30-31
                                                                     mol.0
                                                                                      mol.+1 mol.-1 f+
                                                                                                                                                     f-
                                                 comp
                                                                  5 \quad -0. \ 1969 \ \ 0. \ 003768 \ \ -0. \ 19882 \ \ 0. \ 200671 \ \ -0. \ 20067 \ \ -0. \ 09753
                                                               17 -0. 19734 0. 001971 -0. 19942 0. 199314 -0. 19931 -0. 09873
                                                               18 -0. 19686 -0. 19168 0. 001898 0. 005184 -0. 00518 -0. 09489
                                                               19 -0. 192 -0. 18689 -0. 19447 0. 005111 -0. 00511 -0. 19068
                                                               23 -0. 20432 0. 001395 0. 037626 0. 205712 -0. 20571 0. 019511
                                                                     quinone atom(0-23)
                                                                                         mol. +1 mol. -1
                                                  comp
                                                                  5 - 0.39614 - 0.31907 - 0.50287 0.077069 0.106731 - 0.41097
                                                                17 -0.39546 -0.31933 -0.5012 0.076138 0.105739 -0.41026
                                                                18 -0.39538 0.466833 -0.50098 0.862211 0.105606 -0.01708
                                                               19 -0.39442 -0.3181 -0.50037 0.076319 0.10595 -0.40924
```

23 -0.39788 -0.32772 -0.50316 0.070161 0.105279 -0.41544

```
quinone atom (C-1)
         mol.0
                   mol. +1
                            mo1. -1
                                                f-
                                                         f0
comp
                                      f+
       5 0.39997 0.432956 0.359576 0.032986 0.040394 0.07338
      17 0.399069 0.432154 0.35974 0.033085 0.039329 0.072414
      18 0.399166 -0.08121 0.35989 -0.48037 0.039276 -0.4411
      19 0.39966 0.433084 0.360411 0.033424 0.039249 0.072673
      23 0. 396245 0. 427937 0. 356156 0. 031692 0. 040089 0. 071781
         N-12
                                               f-
         mol.0
                   mol. +1
                            mo1. -1
                                      f+
                                                         f0
comp
       5 -0.55753 -0.53081 -0.59691 0.02672 0.039372 0.033046
      17 -0.60537 -0.57952 -0.64249 0.025846 0.037119 0.031483
      18 -0.60543 -0.57964 -0.64245 0.025785 0.037027 0.031406
      19 -0.60513 -0.57905 -0.64212 0.026078 0.036989 0.031534
      23 -0.60683 -0.58275 -0.64431 0.024074 0.037486 0.03078
         C - 8
         mol 0
comp
                   mol+1
                            mol-1
                                      f+
       5 0. 162464 0. 194268 0. 115143 0. 031804 0. 047321 0. 039563
      17 0. 170314 0. 202084 0. 124458 0. 03177 0. 045856 0. 038813
      18 0. 170324 0. 202239 0. 124203 0. 031915 0. 046121 0. 039018
      19 0. 170132 0. 202781 0. 123997 0. 032649 0. 046135 0. 039392
      23 0. 160496 0. 187238 0. 11468 0. 026742 0. 045816 0. 036279
         N-phenylamino group
                   mo1+1
                                      f+
                                                f-
         mol 0
                            mol-1
                                                         f0
comp
       5 -0.65282 -0.62394 -0.66705 0.028881 0.01423 0.021556
      17 - 0.65354 - 0.62584 - 0.66774 0.027698 0.014204 0.020951
      18 - 0.65368 - 0.62599 - 0.66773 0.027692 0.014051 0.020872
      19 -0.65329 -0.62634 -0.6673 0.026947 0.014011 0.020479
      23 -0.64996 -0.62461 -0.66224 0.025355 0.012278 0.018817
         C-30 C phenyl ring attached to amino
comp
                   mol+1
                            mol-1
                                      f+
                                                f-
       5 0. 164578 0. 151272 0. 186279 -0. 01331 -0. 0217 -0. 0175
      17 0. 164201 0. 150358 0. 185434 -0. 01384 -0. 02123 -0. 01754
      18 0. 164776 0. 15062 0. 186281 -0. 01416 -0. 02151 -0. 01783
      19 0. 162211 0. 147815 0. 183133 -0. 0144 -0. 02092 -0. 01766
      23 0.116466 0.110302 0.138089 -0.00616 -0.02162 -0.01389
         C-5 adjacent tocarbony group
         mol 0
                   mo1+1
                            mol-1
                                      f+
                                                f-
comp
       5 -0. 19195 -0. 17746 -0. 23196 0. 014494 0. 040008 0. 027251
      17 -0. 19107 -0. 17709 -0. 23178 0. 013979 0. 040713 0. 027346
      18 -0. 19096 -0. 17703 -0. 23171 0. 013929 0. 040758 0. 027344
      19 -0.19016 -0.17611 -0.23139 0.014056 0.041232 0.027644
      23 -0. 19019 -0. 17648 -0. 23266 0. 013708 0. 042465 0. 028087
         C-side chain
         mol 0
comp
                   mo1+1
                            mol-1
                                      f+
                                                f-
                                                         f0
                          0
                                    0
                                              0
       5
      17 - 0.59799 - 0.59927 - 0.59363 - 0.00128 - 0.00436 - 0.00282
      18 - 0.59806 - 0.59932 - 0.59371 - 0.00127 - 0.00435 - 0.00281
      19 - 0.59811 - 0.59938 - 0.59374 - 0.00127 - 0.00437 - 0.00282
      23 - 0.59784 - 0.59909 - 0.59356 - 0.00124 - 0.00428 - 0.00276
```

calculation of Mulican charg for different atoms in different positions

	110 -	0 1000	440 -	0.005555	440 -	0.005000	440.5	0.00000	440 -	0.0050
	11C 0	0. 166277	11C 0	0.367922	11C 0	0. 367994	11C 0	0. 368371	11C 0	0. 367285
	33C 0	0. 254879	32C 0	0. 235202	32C 0	0. 254883	32C 0	0. 297029	27C 0	0. 280688
	400 0	-0. 52074	390 0	-0. 59283	390 0	-0. 52075	44F 0	-0. 28632	30C 0	0. 293693
	11C+1	0. 192568	11C +1	0. 383025	11C +1	0. 383052	11C +1	0.38363	430 0	-0. 54197
	33C+1	0. 272333	32C +1	0. 250254	32C +1	0. 271276	32C +1	0.31437	440 0	-0. 52262
	400+1	-0.50593	390 +1	-0. 57514	390 +1	-0. 50681	44F +1	-0. 26553	11C +1	-0.00017
	11C-1 33C-1	0. 137904 0. 238764	11C -1 32C -1	0. 348301 0. 220677	11C -1 32C -1	-0. 0267 0. 000493	11C -1	0. 34871 0. 279042	27C +1 30C +1	0. 017883 0. 054672
	400-1	-0. 53305	390 -1	-0. 60864	390 -1	0. 000493	32C -1 44F -1	-0.30558	430 +1	0. 034341
	400 1	0. 55505	550 I	0.00004	330 1	0. 000033	441 1	0. 30336	440 +1	0. 034547
	orientat	ion 5	orientat	ion 17	orientat	ion 18	orientat	ion 19	11C -1	0. 347861
	28C 0	-0. 20312	27C 0	-0. 20197	27C 0	-0. 20314	27C 0	-0. 22323	27C -1	0. 268233
	29C 0	-0. 1767	28C0	-0. 17696	28C0	-0. 17675	28C0	-0. 1715	30C -1	0. 288383
	31C 0	-0. 1969	30C 0	-0. 19734	30C 0	-0. 19686	30C 0	-0. 192	430 -1	-0. 52836
	32C 0	-0. 19296	31C 0	-0. 1915	31C 0	-0. 19287	31C 0	-0.22246	440 -1	-0. 52709
						******		***		
	28C +1	0. 03958	27C +1	0. 038844	27C +1	-0. 19423	27C +1	-0. 21367		
	29C +1	0. 059448	28C+1	0. 055945	28C+1	-0. 17344	28C+1	-0. 1682		
	31C +1	0. 003768	30C+1	0.001971	30C+1	-0. 19168	30C +1	-0.18689		
	32C +1	0. 049822	31C +1	0.050071	31C +1	-0. 18418	31C +1	-0. 21321		
	28C -1	-0. 21288	27C -1	-0. 21199	27C -1	0. 000133	27C -1	-0. 23375	orientat	ion 23
	29C -1	-0. 17154	28C-1	-0. 17216	28C-1	-0.00024	28C-1	-0. 16697	28C 0	-0. 20432
	31C -1	-0. 19882	30C-1	-0. 19942	30C-1	0. 001898	30C -1	-0. 19447	31C 0	-0. 21248
	32C -1	-0. 20019	31C -1	-0. 1992	31C -1	-0.00011	31C -1	-0.23051	32C 0	-0. 21884
	020 1	0.20010	010 1	0.1002	010 1	0.00011	010 1	0.20001	020 0	0.21001
									28C +1	0.001395
									31C +1	-0.01438
	quinone-		quinone-		quinone-		quinone-		32C +1	0.025557
0-24-0	-0.39614		-0.39546		0-23-0	-0. 39538	0 - 23 - 0	-0. 39442		
0-25-0	-0.449	0-24-0	-0. 4561		0-24-0	-0. 45614	0-24-0	-0.45704	28C -1	0. 037626
C-1 0	0.41737	C-1 0	0. 423672		$C-1 \ 0$	0. 423777	C-1 0	0. 424086	31C -1	-0.03154
C-4 0	0.39997	C-4 0	0. 399069		C-4 0	0. 399166	C-4 0	0. 39966	32C -1	-0. 04746
0-24-+1	-0.31907	0-23+1	-0.31933		0-23+1	0. 466833	0-23+1	-0.3181	0.0	
0-25-+1	-0.39559		-0. 4056		0-24+1	-0. 01739	0-24+1	-0. 40576		quinone-atom
C-1 +1	0. 431707	C-1 +1	0. 437066		C-1 +1	0. 011417	C-1 +1	0. 43755	0-23-0	-0. 39788
C-4 +1	0. 432956		0. 432154		C-4 +1	-0. 08121	C-4 + 1	0. 433084	0-24-0	-0. 45776
0-241 0-251	-0.50287	0-23-1 $0-24-1$	-0. 5012 -0. 56145		0-23-1 $0-24-1$	-0. 50098	0-23-1 0-24-1	-0. 50037 -0. 5624	C-1 0 C-4 0	0. 423431
	-0.55897				C-1 -1	-0. 56152 0. 373717	0-24-1 C-1-1			0.396245
C-1 -1 C-4 -1	0. 365548 0. 359576	C-1 -1 C-4 -1	0. 37358 0. 35974		C-1 - 1 C-4 - 1	0. 35989	C-1 - 1 C-4 - 1	0. 373952 0. 360411	0-23+1 0-24+1	-0. 32772 -0. 41333
C-4 -1	0. 559570	C-4 -1	0. 55974		C-4 -1	0. 33969	C-4 -1	0.300411	0-24+1 C-1+1	0. 435507
									C-1 + 1 C-4 + 1	0. 435507
N-isoqui	noline								0-23-1	-0. 50316
N-12-0	-0.55753	N-12-0	-0.60537		N-12-0	-0.60543	N-12-0	-0.60513	0-23-1 0-24-1	-0. 56279
N-12+1	-0.53081	N-12+1	-0. 57952		N-12+1	-0.57964	N-12+1	-0. 57905	C-1 -1	0.374086
N-12-1	-0. 59691	N-12-1	-0. 64249		N-12-1	-0. 64245	N-12-1	-0. 64212	C-4-1	0.356156
	3.35001	12 1	0.01210		12 1	0.01210	1	0.01212	J . 1	
									N-12-0	-0.60683
									N-12+1	-0.58275
									N-12-1	-0. 64431