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Abstract 
The regulatory role of the Micro-RNAs (miRNAs) in the messenger RNAs 
(mRNAs) gene expression is well understood by the biologists since some dec-
ades, even though the delving into specific aspects is in progress. Clustering is a 
cornerstone in bioinformatics research, offering a potent computational tool for 
analyzing diverse types of data encountered in genomics and related fields.  
MiRNA clustering plays a pivotal role in deciphering the intricate regulatory roles 
of miRNAs in biological systems. It uncovers novel biomarkers for disease diag-
nosis and prognosis and advances our understanding of gene regulatory net-
works and pathways implicated in health and disease, as well as drug discovery. 
Namely, we have implemented clustering procedure to find interrelations among 
miRNAs within clusters, and their relations to diseases. Deep clustering (DC) al-
gorithms signify a departure from traditional clustering methods towards more 
sophisticated techniques, that can uncover intricate patterns and relationships 
within gene expression data. Deep learning (DL) models have shown remarkable 
success in various domains, and their application in genomics, especially for tasks 
like clustering, holding immense promise. The deep convolutional clustering 
procedure used is different from other traditional methods, demonstrating unbi-
ased clustering results. In the paper, we implement the procedure on a Multiple 
Myeloma miRNA dataset publicly available on GEO platform, as a template of a 
cancer instance analysis, and hazard some biological issues. 
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1. Introduction 

Genes are expressed in different sizes and directions during cellular processes, and 
each gene’s expression level is crucial for proper cell functioning [1]. Measuring 
gene expression levels is a powerful tool for understanding cell structure, function, 
and biological dynamics. Gene arrays are also used to simultaneously capture 
messenger RNA (miRNA) expression levels of thousands of genes. Gene arrays 
provide snapshots of gene expression patterns in a cell, and temporal changes in 
expression levels, represented by gene expression samples, provide valuable infor-
mation about the dynamics of biological systems [2]. 

Using gene expression data for analysis presents several data privacy and secu-
rity challenges. Gene expression data can be highly sensitive, because it contains 
information about an individual’s genetic makeup. There are various ethical and 
legal frameworks governing the use of genetic data. 

MicroRNAs (miRNAs) are small, non-coding RNA (genes) molecules that are 
crucial in post-transcriptional gene regulation. They involve various biological 
processes, including development, differentiation, and disease progression. 

A critical aspect of miRNA research is identifying and clustering miRNAs based 
on their sequence similarities, which can provide insights into their evolutionary 
relationships and functional associations. 

miRNAs play specific role in gene regulatory networks, such as gene silencing 
and regulation, post-transcriptional modulation. Its involvement in complex reg-
ulatory networks can affect multiple gene expressions, and interact with transcrip-
tion factors. 

Influencing cell proliferation and survival, miRNAs can regulate cell cycle pro-
gression, apoptosis, and cellular stress responses. 

miRNAs have shown research significance. Their stable presence in body fluids 
such as blood enabled them to serve as biomarkers for diagnosing various diseases, 
such as cancer, cardiovascular, and neurodegenerative disorders. They are used as 
inhibitors to control disease progression, and hence hold potential to develop novel 
strategy for disease therapy. 

Traditional clustering methods, such as hierarchical clustering and K-means 
clustering, have been widely used. However, these methods often need help to 
capture the complex relationships and patterns within miRNA sequences, leading 
to suboptimal clustering results [3]. 

Static measurements may not capture the complete picture of cellular processes, 
so temporal structures in gene expression time series are widely studied to eluci-
date the dynamics of cellular responses to various stimuli, such as changes in tem-
perature, immune responses and other cellular systems [1]. Convolutional neural 
networks (CNNs) have achieved great success in many exploratory and predictive 
vision tasks, including image classification, object detection, and face recognition. 
Convolutional neural networks have become essential in deep learning, especially 
in complex tasks, due to their ability to learn hierarchical features from raw input 
data automatically [1]. 
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Combining convolutional neural networks (CNNs) with microRNAs clustering 
(miRNAs) involves using CNN architecture to analyze miRNA data. If the miRNA 
data includes sequences, CNNs can be used to analyze the sequences and explore 
the messages. Convolutional layers can learn patterns and features from miRNA 
sequences, capturing important information for downstream tasks [3]. By com-
bining deep clustering with guided clustering techniques, you can leverage the 
strengths of both approaches to enhance the clustering results and uncover novel 
biological insights from integrated miRNA and mRNA data. 

The main problem with ML algorithms, is that although they have proven their 
efficiency with low dimensional data, their accuracy and efficiency have degraded 
when applied on high dimensional and huge number of datasets. Besides they suf-
fer from high computational complexity issue, for which trials for being overcome 
were not guaranteed, either by dimensionality reduction (DR), or using Kenel meth-
ods for instance. Therefore, to obtain better clustering results, it is worth to apply 
a DR method on high-dimensional datasets that allow features conservation. DL 
on the other hand is more effective in representation learning (RL) and feature 
extraction from image [4]. 

We propose an enhancement approach for clustering miRNAs using a Convo-
lutional Deep Neural Network (CDNN) to address this limitation. Deep learning 
techniques, particularly convolutional neural networks (CNNs), have shown great 
promise in capturing intricate patterns in biological sequences, making them suit-
able for miRNA clustering. By leveraging the hierarchical and compositional na-
ture of miRNA sequences, we design a CDNN architecture that can effectively 
learn the representations of miRNAs and their relationships. 

The proposed CDNN architecture consists of multiple convolutional layers fol-
lowed by max-pooling layers to extract features from miRNA sequences. These 
features are then fed into fully connected layers to perform clustering based on 
learned representations. To train the CDNN, we utilize a large dataset of anno-
tated miRNA sequences, leveraging supervised and unsupervised learning strate-
gies to enhance the network’s ability to capture meaningful patterns and relation-
ships. The training process involves minimizing a clustering loss function that en-
courages miRNAs with similar sequences to be grouped together, while pushing 
dissimilar miRNAs apart in the feature space. 

To evaluate the effectiveness of our proposed approach, we conducted experi-
ments using real miRNA datasets obtained from public repositories. We com-
pared the clustering performance of the CDNN-based approach with traditional 
methods, such as hierarchical clustering and K-means clustering, using standard 
evaluation metrics, including Adjusted Rand Index (ARI) and Normalized Mutual 
Information (NMI). Our results demonstrate that the CDNN-based approach 
achieves superior clustering accuracy and robustness, outperforming traditional 
methods across different miRNA datasets. Furthermore, the CDNN exhibits a 
high degree of tolerance to noise and variability in miRNA sequences, making it 
a promising tool for handling real-world data. 
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2. Related Work 
2.1. miRNA Clustering Using Machine Learning Techniques 

MicroRNAs (miRNAs) play a pivotal role in cellular processes directly correlating 
to the genesis and progression of various diseases, including cancer [5]. The po-
tential for miRNAs as therapeutic targets and disease biomarkers has triggered the 
growth of research into miRNA clustering, facilitating the discovery of miRNA 
families and their biogenesis. Concomitant (concurrent) with this has been the 
rise of advanced computational techniques, such as Convolutional Deep Neural 
Networks (CDNNs), which promise tremendous potential for clustering miRNAs 
[6]. 

miRNA clustering involves grouping them based on their sequences, expression 
patterns, or genes (mRNAs) they target. It provides insights into their regulatory 
mechanisms, biological functions, potential diseases and biomarkers therapeutic 
applications. 

Effective computational tools are required for in-depth miRNA analysis, which 
led to the formation of diverse clustering approaches. Traditional methods like 
hierarchical clustering, k-means, and DBSCAN, among others, have been em-
ployed. However, they have limitations, such as incapacity to handle large datasets 
and misclassifications [7]. 

These clustering techniques only use sequence characteristics to cluster miR-
NAs and ignore functional properties. It is essential to cluster miRNA and its re-
lated functions in terms of both functional and sequence properties. 

2.2. Deep Clustering 

Deep learning is a subset of machine learning and artificial intelligence known for 
its ability to learn unlabelled and unstructured data [8]. This marvel of technology 
holds a profound capacity for clustering expansive genomic data, further redefin-
ing the bioinformatics ecosystem. 

Different approaches have been used in Deep Clustering in the literature. These 
are the pipeline-model approach that first: 1) learn data representation using dif-
ferent deep neural network (DNN) architectures, and 2) next apply a machine 
learning (ML)-based clustering algorithms [4]. Deep Embedding Clustering (DEC), 
and Deep Clustering Network (DCN) are examples of approaches that uses mul-
tilayer perceptrons (MLP) architecture, and k-means clustering [9] [10]. Cluster-
ing Using CNN (CCNN) [11] and clustering using pairwise constraints clustering 
CNN (NNCPC), are examples of approaches that use CNN architecture [12], and 
k-means clustering. 

Another approach is Single-Model approach that perform end-to end cluster-
ing without being preceded with representation learning step [13]. 

Deep Neural Networks, specifically the convolutional variant (CNN), have been 
increasingly used for miRNAs clustering due to their inherent capability to extract 
hierarchical features from input data automatically. CNN’s unique architecture of 
convolutional and pooling layers works excellently in sifting through the 
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overwhelming dimensionality and complexity of miRNAs sequences [14]. 
Xie et al. has introduced Deep Embedded Clustering (DEC) algorithm to learn 

feature representation and assign cluster [9]. Gui et al. have introduced deep clus-
tering framework that uses convolutional auto encoders for image clustering and 
learning representations [15]. Yang et al., have also proposed a method that im-
prove K-means performance being integrated by deep learning [16]. 

Deep clustering algorithms integrate feature learning and clustering into a uni-
fied framework, promising higher accuracy and robustness [9]. Autoencoder-
based clustering algorithm, an iteration of deep learning, offers a two-fold opera-
tion: encoding, which compresses the input into a lower-dimensional space and 
decoding, which reconstructs the original input data [17]. This methodology fa-
cilitates the identification of subtle patterns and inherent structures within ge-
nomic data. 

Several publications have highlighted the methodological and computational 
benefits of CNNs for clustering miRNAs. In a work by [18], they successfully ap-
plied a convolutional neural network for clustering miRNA sequences and unrav-
elling their latent taxonomy, which significantly impacted research related to the 
diagnosis and therapy of diseases [7]. Similarly, a study by [19] exhibited the effi-
cacy of their novel deep learning model, DeepMirTar, to perform a binary classi-
fication for accurately predicting miRNA-target interactions. Their model outper-
formed traditional machine learning methods, such as SVM and Random Forest. 
The Convolutional Deep Neural Network (CNN) offers a potential solution to 
curbing the limitations of conventional miRNA clustering methods. CNNs have 
revolutionized numerous machine learning applications due to their ability to 
process large dimensional data efficiently, making them suitable for high dimen-
sional miRNA data [20]. Their use of multiple layers for feature learning and ab-
stract representation enhances precision and reduces misclassifications. 

CDNNs are a category of Neural Networks that have shown remarkable poten-
tial in bioinformatics, specifically in sequence analysis [8]. CDNNs can automat-
ically and adaptively learn spatial hierarchies of features from raw input data, 
providing a potent asset in the clustering of miRNAs.  

The primary advantage of CDNNs and their suitability in classifying miRNAs 
is their capacity to learn abstraction from data, a skill particularly useful when 
dealing with complex biological data, including miRNAs. Translating raw se-
quence data into more abstract, high-level features, CDNNs greatly enhance the 
clustering process by reducing data dimensionality and capturing discriminative 
features [19]. Initial research into the use of CDNNs for miRNA clustering points 
towards positive trends. A study by [6] employed CDNNs to perform unsuper-
vised learning of miRNA sequences, demonstrating promising results in bi-
omarker detection, which serves to reinforce the potential of CDNNs for superior 
clustering of miRNA sequences and motivates further detailed exploration of this 
approach. 

The convolutional deep neural network presents an innovative and enhanced 
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approach to miRNA clustering. It addresses the limitations of conventional meth-
ods, effectively dealing with both functional and sequence properties of miRNAs. 
Hence, it provides comprehensive bioinformatics solutions that can contribute to 
the understanding and treatment of genetic diseases.  

DeepTrust Clustering (DPCl) is a method that transforms gene expression time 
series into images and applies deep clustering techniques to group genes effectively. 
By converting time series data into images, DPCl leverages advancements in deep 
learning for image processing, enhancing pattern recognition and learning. This ap-
proach improves data representation and clustering performance by transforming 
data into a higher-dimensional space through image conversion [2]. 

An experiment investigated whether DNN architecture can serve a comparable 
function. The Pan-Cancer Analysis Project, collected data from thousands of pa-
tients with primary tumors that occurred in various body sites and covered 12 
tumor types, provided the random subset of the dataset used. The experiment 
showed five types of cancer patients with reasonably high distinctive patterns. Pa-
tients with BRCA, COAD, and LUAD are particularly distinctly clustered, whereas 
patients with PRAD and KIRC are somewhat mixed and not well separated. When 
utilizing Convolutional Autoencoder (CAE)-based Latent Features (LFs), the Ag-
glomerative Clustering (AC) final output is marginally superior to when using one 
alone. According to the optimal base clustering algorithm (in this case, the AC 
algorithm). The cause is that Long Short-Term Memory (LSTM)-Autoencoders 
(AEs) learned Latent Features (LF) are of higher quality than raw GE data, which 
ultimately improves the Gene Expression (GE) profiles' separability a little bit. 
Only some of these patterns are easily discernible in the raw GE profiles, as the t-
SNE plot illustrates [4]. 

Deep convolutional clustering algorithms combine Convolutional Neural Net-
works (CNNs) with clustering techniques to extract and leverage spatial hierar-
chies in data, which is particularly useful for image data but can also be adopted 
for other types of structured data, including biological data such as miRNA ex-
pression profiles [9] [15]. 

DPCl is a framework uses architecture that transform time series data to image 
for data representation, and then apply deep convolutional clustering algorithm 
that uses convolutional neural networks (CNNs), and next apply k-means cluster-
ing. The conversion of expression data to image to enrich data representation. The 
method has shown an outperformance compared to traditional machine learning 
clustering algorithms. 

3. Methods 
3.1. DPCl 

DPCl involves converting gene expression and time series into images and apply-
ing deep clustering techniques to create reliable gene clusters. This study implies 
DPCl algorithm, as illustrated in Figure 1, on a miRNA expression dataset with 
multiple samples. 
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Figure 1. DPCl algorithm architecture. 

3.2. The Dataset 

We concentrated on the Multiple Myeloma information on GEO page GSE16558. 
We focused on GPL8965, which contains miRNA expression profiles that corre-
spond to various stages of myeloma pathology. The total number of miRNA ex-
pression profiles targeted in this study were 296. 

3.3. Image-Transformation Using Recurrence Plot 

We make use of recurrence plots for encoding miRNA expression dataset that 
contains multiple samples for each miRNA as images. The recurrence plot (RP) is 
a graphical tool for displaying the temporal properties of dynamical systems. To 
be more exact, an RP is a phase space representation of the trajectories of dynam-
ical systems [21] [22]. 

An RP is a binary N × N image defined as: 

 ( ) ( )
,

1 0

0 otherwise
i j

i j

x x
R

 − − ≥ =  
  

 


 (1) 

where ,i jR  is the pixel value of the ith row and jth column,   is the radius of 
the  -tube defining the largest acceptable distance between trajectories to be 
considered as recurrent and ( )ix  is the ith element in input data 

 ( ) ( ),i j i jR x x= −
   (2) 

Equation 1 becomes Equation 2 if thresholding operation is omitted. The new 
image is known as a global recurrence plot since it is unthresholded and conse-
quently non-binary. We restrict ourselves to global recurrence plots Equation 2. 
The dynamic behavior traits are reflected in patterns on RP. 

One of the common problems with agglomerative clustering is determining the 
number k of clusters. We chose to use the elbow approach [22] and found that 
eight miRNA clusters (k) were needed to favor a meaningful result. 

The convolutional autoencoder used in the DPCl algorithm’s parameters was 
set as follows: 1) network structure that contains three connected convolutional 
layers with (32, 64, 128) filters, 2) (5, 5, 3) kernel size and 3) same stride length (2) 
for all convolutional layers. The dimensions of the embedded space are equal to 
8, which is the number of miRNAs clusters. The decoder part of the network is 
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symmetric to the encoder part. In the decoder part, we used convolutional trans-
pose layers with stride. We used the ReLU [23] activation function on all convo-
lutional layers to add non-linearity to our model and avoid the vanishing gradient 
problem. We trained the model for 300 epochs using ADAM optimizer [24]. 

3.4. Clustering Recurrence Plots 

Several DNN architectures are used in deep clustering. Also, since augmenting a 
vanilla autoencoder with convolutional units takes the spatial structures into ac-
count, it is straightforward and improves visual imagery performance [23] [25]. 
Using the autoencoder’s activations on its bottleneck layer, embeddings, as the 
inputs is a simple strategy for convolutional autoencoder-based clustering, which 
can be achieved in two steps: i) loading of cluster centroids, ii) iterative clustering 
through modification of centroids. The loading is created by mapping n gene ex-
pression recurrence plots into a lower-dimensional latent space Z, which is done 
by training a convolutional autoencoder. Each recurrence plot is passed through 
the autoencoder, and standard k-means is performed in the embedding space Z 
after the training is finished. These operations result with K initial centroids μj 
where 1, ,j K= … . After the auto encoder is trained, the decoder part is detached 
from the network, we are only interested in the generation of better embeddings 
from the encoder part. 

4. Results and Discussion 

We used data from a study that implemented a holistic procedure to evaluate our 
deep clustering results to discover miRNA-mRNA modules [3]. This study uti-
lized both miRNA and mRNA expression datasets and miRNA target prediction 
databases based on sequence data or experimentally validated and data bases that 
use both sequence and expression the highest score is 0.82008266 when applied. 
In contrast, our deep clustering technique involved only the miRNA expression 
dataset. 

Table 1 represents the results after applying DPCl, and if compared with the 
results obtained from the holistic procedure which showed that 40% of the miR-
NAs were assigned to cluster 7 as in Table 2. Our method distributed these miR-
NAs among all 8 clusters, demonstrating unbiased clustering results as shown in 
Figure 2, unlikely the biased distribution shown in Figure 3. 
 
Table 1. miRNA clusters generated by DPCl. 

cls_name DPCl0 DPCl1 DPCl2 DPCl3 DPCl4 DPCl5 DPCl6 DPCl7 

cls_size 36 60 30 44 28 31 17 50 
 
Table 2. miRNA clusters generated by generic clustering method. 

cls_name HP-Clt0 HP-Clt1 HP-Clt2 HP-Clt3 HP-Clt4 HP-Clt5 HP-Clt6 HP-Clt7 

cls_size 4 32 23 5 58 20 23 130 
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(a) using pie chart                      (b) using pie chart 

Figure 2. Distribution of clusters using DPCl. Which demonstrate the unbiased clustering 
of these miRNAs among all 8 clusters, as shown in a and b charts. 
 

 
(a) using landscape                      (b) using pie chart 

Figure 3. Distribution of HP Clusters, which demonstrate the biased clustering of these 
miRNAs among all 8 clusters, as shown in a and b charts. 
 

Table 3 describes how the HP-clusters resembled in rows are redistributed us-
ing DC resembled as columns. It is evident that the miRNAs in DPCl1 are mostly 
from HP-Clt2, HP-Clt3 and HP-Clt5 respectively. 
 

Table 3. Redistribution of the HP-clusters into the DP-clusters. 

HP/DPCl DPCl0 DPCl1 DPCl2 DPCl3 DPCl4 DPCl5 DPCl6 DPCl7 Total 

HP-Clt0 0 0 0 2 1 0 0 2 5 

HP-Clt1 3 1 2 10 7 2 4 3 32 

HP-Clt2 0 22 0 0 0 0 0 1 23 

HP-Clt3 0 5 0 0 0 0 0 0 5 

HP-Clt4 6 5 9 9 4 10 2 13 58 

HP-Clt5 0 20 0 0 0 0 0 0 20 

HP-Clt6 1 0 3 4 1 2 1 11 23 

HP-Clt7 26 7 16 19 15 17 10 20 130 

Total 36 60 30 44 28 31 17 50  
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This table shows how Holistic Procedure (HP) clusters have been redistributed 
among DPCl clusters (DC). HP-Clst7 is the largest cluster and has been distrib-
uted among ALL DC clusters. 

Since the miRNAs in HP-Clt2 which were 23, they were almost on the HP-Clt1 
except only one, but when looking at HP-Clt3 and HP-Clt5 we can find that they 
were all included in DPCl1. The cluster number of course does not mean anything 
particularly, but it is clear that the miRNAs in these clusters are closely related to 
each other. The miRNAs are identified in Tables 4-6 respectively. 
 
Table 4. HP-Clt2. 

HP-Clt2 

hsa-miR-122-5p, hsamiR-124-3p, hsa-miR-214-3p, hsa-miR-24-3p, hsa-miR-30a-3p,  
hsa-miR-323b-5p, hsa-miR-325, hsa-miR-371a-3p, hsa-miR-373-3p, hsa-miR-502-5p,  
hsa-miR-510-5p, hsa-miR-516b-5p, hsa-miR-518a-3p, hsa-miR-520c-3p,  
hsa-miR-526b-5p, hsa-miR-532-5p, hsa-miR-542-5p, hsa-miR-548a-3p 
hsa-miR-551b-3p, hsa-miR-575, hsa-miR-596, hsa-miR-622 

 
Table 5. HP-Clt3. 

HP-Clt3 

hsa-miR-548d-3p, hsa-miR-553, hsa-miR-580-3p, hsa-miR-653-5p, hsa-miR-656-3p 

 
Table 6. HP-Clt5. 

HP-Clt5 

hsa-miR-206, hsa-miR-299-5p, hsa-miR-337-3p, hsa-miR-379-5p, hsa-miR-381-3p,  
hsa-miR-424-5p, hsa-miR-514a-3p, hsa-miR-515-5p, hsa-miR-517a-3p, hsa-miR-518b, 
hsa-miR-544a, hsa-miR-562, hsa-miR-563, hsa-miR-597-5p, hsa-miR-600, hsa-miR-
617, hsa-miR-660-5p, hsa-miR-95-3p, hsa-miR-98-5p, hsa-miR-99a-5p 

 

Considering HP-Clt7 and focusing on two miRNA disease studies:1) A study 
conducted in August 2020 by Caixia Li et al. on human patients with COVID-19 
elucidated differentially expressed miRNAs [26]. 2) Karina et al. focused on a 
group of miRNAs called mir-17-92 and their relationship with the E2F-RB path-
way, which contributes to various types of cancers such as lung, breast, bladder, 
and brain [27]. They also demonstrated the relationship of these miRNAs with 
colorectal cancer [28]. Please refer to Table 7 to differentiate between the miRNAs 
in these two studies. Table 8 shows that miRNAs hsa-miR-16 and hsa-miR-146b 
fell into the same cluster. Jose’ Marı’a Galva’n-Roma’ et al. showed that both of 
these miRNAs could be used as biomarkers for CAP prognosis [29] and were also 
differentially expressed in the COVID-19 study mentioned above. 

DPCl has discovered how possible interrelations among members inside one 
cluster could be found. 

Additionally, Cristina Morsiani showed that miR-92a-3p and miR-18a-5p, which 
fell into the same cluster (specify), are potential biomarkers for blood circulation 
in liver transplant recipients. These miRNAs were upregulated in recipients with 
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certain complications, as shown in [30]. 
The DPCl regathered these miRNAs in the same cluster, although they were in 

different clusters using HP. This show shows how DPCl could discover potential 
biomarkers for diseases. 
 
Table 7. COVID miRNAs. 

HP-Clst miRNAs DC-Clst 

4 hsa-miR-17-5p 2 

4 hsa-miR-18a-5p 3 

6 hsa-miR-618 7 

7 hsa-miR-30c-5p 2 

7 hsa-miR-627-5p 3 

7 hsa-miR-183-5p 4 

7 hsa-miR-146b-5p 5 

7 hsa-miR-16-5p 5 

7 hsa-miR-21-5p 6 
 
Table 8. miR-17-92 Cluster. 

HP-Clst miRNAs DC-Clst 

1 hsa-miR-92a-3p 3 

4 hsa-miR-17-3p 7 

7 hsa-miR-19a-3p 0 

7 hsa-miR-19b-3p 3 

7 hsa-miR-20a-5p 6 

4 hsa-miR-17-5p 2 

4 hsa-miR-18a-5p 3 

 

On the other hand, although DPCl has the ability to discover interrelations 
among cluster members, it failed in getting into more depth to express these rela-
tions. For instance, miRNAs hsa-miR-16 and hsa-miR-183 fell into different clus-
ters [31] using HP, but have been redistributed into different clusters using DPCl. 
Dan Cao in [31] identify that miRNAs associated with active tuberculosis (ATB) 
demonstrated that among the differentially expressed miRNAs, hsa-miR-16 was 
significantly decreased while hsa-miR-183 was significantly increased. From this 
study we find that both of them were potential biomarkers, but have different level 
of expression which has been expressed by DPCl just distributing them into dif-
ferent clusters. 

5. Conclusion 

To conclude our paper, we aimed to get much deeper in clustering results that use 
machine learning, by adopting a deep learning strategy to dig inside the interrelation 
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among miRNA elements inside the same clusters. The strategy uses deep cluster-
ing technique that transforms expression data to images by applying CNN. There-
fore, we have exploited DPCl algorithm originally proposed for time series data, 
and applied it on miRNA expression samples data. 

This work has been carried out to focus on miRNA clustering from a data ana-
lytics perspective. Therefore, since the data has been derived from a biological da-
tabase, it is worth to incorporate biological perspective to enhance the effective-
ness of the procedure. Besides, results have shown how interrelations among miR-
NAs in one cluster could open research questions in investigating disease etiolo-
gist. 
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