
Crystal Structure Theory and Applications, 2022, 11, 23-38 
https://www.scirp.org/journal/csta 

ISSN Online: 2169-2505 
ISSN Print: 2169-2491 

 

DOI: 10.4236/csta.2022.112002  May 31, 2022 23 Crystal Structure Theory and Applications 
 

 
 
 

Vibrational, Electronic and Structural Study of 
Sprayed ZnO Thin Film Based on the IR-Raman 
Spectra and DFT Calculations 

Bechir Ouni*, Tarek Larbi, Mosbah Amlouk 

Unité de Physique des Dispositifs a Semi-Conducteurs, Faculté des Sciences de Tunis, Tunis El Manar University, Tunis, Tunisia 

 
 
 

Abstract 
Applying the Density Function Theory (DFT) combined with LCAO basis set 
and employing the B3LYP hybrid functional, the optimized geometrical pa-
rameters, electronic properties, as well as the Infrared and Raman spectra for 
wurtzite-ZnO structure were investigated. Prior to computing, ZnO thin film 
prepared by the spray pyrolysis method is characterized by X-ray diffraction 
using Rietveld refinement. This analysis shows that ZnO has hexagonal wurt-
zite structure (P63mc) with lattice parameters, a = 3.2467 and c = 5.2151 Å in 
good agreement with our predicted optimized geometry. Atomic force mi-
croscopy (AFM), Raman spectroscopy and UV-Vis-NIR spectrophotometry 
techniques are used to explore morphological, optical and vibrational proper-

ties of the sprayed ZnO thin film. The computed band gap ( 3.35 eVDFT
gE = ) 

is in excellent agreement with that deduced from UV-Vis transmission 

( 3.3 eVOptic
gE = ). The simulated infrared and Raman spectra were also cal-

culated, and a good agreement with the measured spectra is obtained. Fi-
nally, a detailed interpretation of the infrared and Raman spectra is re-
ported. 
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1. Introduction 

Zinc oxide (ZnO) continues to garner an extensive research interest owing to 
several of its promising applications. It has been the object of the renewed re-
search for a wide range of applications such as light emitting diodes [1], laser 
diodes, gas sensor [2], thin film solar cells [3] and spintronics [4]. The interest of 
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ZnO resides especially in its wide direct band gap (3.4 eV), high n-type conduc-
tivity, high thermal conductivity and its large exciton binding (60 meV) [5]. 
Nevertheless, during the design, the control of structural defects as well as sur-
face and interfacial structures is essential for optimizing the device performance 
[6]. In addition, it is noted that the growth conditions affect the band gap which 
is a key parameter in the design of optoelectronic devices. 

Synthesis of ZnO thin films has been performed by several techniques, such as 
spray pyrolysis, sol-gel [7], pulsed laser deposition [8] RF magnetron sputtering 
[9] and Chemical Vapour Deposition [10]. The spray pyrolysis technique has 
been selected owing to its large deposition area, low cost process, and viable ap-
proach of producing good quality films. Thus, a lot of work have been carried 
out and various parameters of the deposition of ZnO films such as, substrate 
temperature, carrier gas flow rate, solution flow rate, nozzle to substrate distance 
and film thickness have been optimized [11] [12] [13] [14] [15].  

Several studies have been done on the electronic structure of ZnO in the wurt-
zite phase using ab initio calculations [16] [17] [18] [19]. Due to the various 
functionals employed, the theoretical band gap values cover a wide spectrum. 
Franklin et al. reported that physical origin of the changes in the band gap may 
be related to the trial basis set which is utilized for iterative solutions of the 
Kohn-Sham equations [20]. Also, Arrigo et al. showed that the severe underes-
timation of the band gap, which is mainly due to a wrong energy position of the 
d-bands of the Zn atoms, leads to an inadequate description of vibrational and 
dielectric properties [21]. Bernasconi et al. showed that optical response proper-
ties, computed with the Coupled-Perturbed-Hartree-Fock/Kohn-Sham method 
with hybrid functionals, can reach an accuracy comparable to experimental es-
timates for various classes of semiconductors and oxides [22]. Moreover, IR and 
Raman spectroscopy can offer valuable information on structural changes, lattice 
defects, grain size, and the concentration of impurities presents in the ZnO host 
lattice [23]-[28]. Cheng et al. have reported that the lattice dynamics in ZnO is 
very sensitive to the compositional disorder which introduces changes in the 
electronic properties and vibrational phonons [29]. Indeed, in the wurtzite structure 
of ZnO, the E2 phonon frequency can be affected by compressive stress, tensile 
stress, grain size, thickness of the film and mismatch of thermal expansion coeffi-
cients of the layer and the glass substrate [8]. Also, David et al. also reported that 
the E2 Raman active phonon is systematically affected by the particle size [30].  

As far as we know, there is not yet in the literature IR and Raman spectrosco-
py using quantum mechanical calculations of the ZnO have been reported in 
detail. In the present work, first principle DFT calculations using B3LYP hybrid 
functional have been performed to investigate structural and electronic proper-
ties as well as infrared and Raman spectra of wurtzite structured ZnO. Specifi-
cally, we report a combined experimental and theoretical analysis of sprayed 
ZnO thin film. We discuss below the features of calculation method for simulat-
ing the structural parameters, electronic band structure, Infrared (IR) and Ra-
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man spectra that show a good agreement with our experimental data. 

2. Films Preparation and Characterization Techniques 

Zinc oxide thin films have been prepared on heated glass substrates at 460˚C by 
the spray pyrolysis technique. The starting solution is made up of Zinc acetate 
dihydrate (Zn(CH3COOH)2, 2H2O) (Sigma Aldrich, St. Louis, MS, USA, 99.0%) 
0.01 M dissolved in a mixture of water and propanol with fraction volumes of 
1/4 and 3/4 respectively and it was acidified with acetic acid (pH = 5) according 
to the experimental protocol described previously [10] [11]. Phase identification 
and structural analysis of the as-grown films, were carried out at room tempera-
ture by X-ray diffraction (Analytical X Pert PROMP D) with Cu-Kα radiation (λ 
= 1.54056 Å), at 40 kV, 100 mA. Data for the Rietveld refinement were collected 
in the 2θ range 30˚ - 65˚ with a step size of 0.017˚. The surface morphology was 
carried out by atomic force microscopy at taping mode (AFM, VEECO digital 
instrument 3A). The optical measurements of ZnO thin film were performed at 
room temperature using a Schimadzu UV 3100 double-beam spectrophotometer 
in the wavelength range 300 nm - 1800 nm. The micro-Raman spectra were rec-
orded at room temperature with a Horiba Jobin HR 800 system. A 632.8 nm line 
of a He-Ne laser was used for off-resonance excitation. 

3. Computational Method 

First-principles calculations based on Density Functional Theory (DFT) using 
exchange-correlation (EXC) proposed by Frisch and coauthors in 1994 were 
performed which described by the following equation:  

( ) ( )
( )

3 0.20 0.72

0.81

B LYP LDA HF LDA GGA LDA
XC X X X X X

GGA LDA LDA
C C C

E E E E E E

E E E

= + − + −

+ − +
        (1) 

Such hybrid functional employ the Becke functional allied to the Lee-Yang- 
Parr (LYP) adjustment to DFT and the Slater exchange plus Vosko, Wilk, Nusair 
(SVWN) to improve the formalism proposed by LYP. This calculation level was 
implemented in the CRYSTAL14 program package [31] [32].  

An all-electron basis set of Gaussian-type functions which represent crystal-
line orbitals as a linear combination of Bloch functions has been adopted for 
oxygen and zinc. For oxygen, a [4s3p] basis as in [33], together with an extra d 
(exponent 0.5) was employed, resulting in a [4s3p1d] basis set. For Zn, a 
[6s5p2d] basis set as in [34] was used. The geometries were optimized on the ba-
sis of the convergence of analytical gradients and nuclear displacements [35]. 
The diagonalization was performed using a grid of k points according to the 
Monkhorst-Pack method [36] and the shrinking factor was set to 8 × 8 × 8 cor-
responding to 50 independent k points in the Brillouin zone. Harmonic phonon 
frequencies at the center of the first Brillouin zone (Γ point) are obtained from 
the diagonalization of the mass-weighted Hessian matrix W of the second ener-
gy derivatives with respect to atomic displacements: 
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,
,

ai bj
ai bj

a b

H
W

M M
=                        (2) 

where atoms a and b (with atomic masses Ma and Mb) in the reference cell, 0, are 
displaced along the i−th and j−th Cartesian directions, respectively. The relative in-
tensities of vibrationnal peaks were simulated through an analytical approach. This 
formalism is based on combining gradients of mono-electronic and bi-electronic 
integrals [37] [38] with a coupled perturbed Hartree-Fock/Kohn-Sham scheme 
[39] [40] for the response of the crystalline orbitals to a static electric field. The 
convergence threshold of the energy for the selfconsistent-field (SCF) procedure 
has been set to 10−8 hartree for structural optimizations and to 10−10 hartree for 
vibration frequency calculations [41] [42]. 

4. Results and Discussion 
4.1. Microstructural and Rietveld Analysis 

The structure refinement was carried out by the Rietveld analysis of the X-ray 
powder diffraction data with the FULLPROF software [43]. Figure 1 illustrates 
the calculated diffraction profiles and XRD patterns of as-synthesized ZnO thin 
film. The recognized diffraction peaks are consistent with those of a wurtzite 
structure [11] [12]. It is seen that the intensity of (002) peaks was most higher 
than all others peaks indicating that the latter is preferentially c-axis oriented. 
The reliability of the calculated pattern during refinement was checked by the 
profile residual RP, the weighted profile residual Rwp and the goodness of fit χ2. 
Refinement may be accepted for the weighted profile residual Rwp < 10 and 
goodness of fit χ2 < 2 [44]. On the basis of refined crystallographic data, the lat-
tice constants, structural parameters, atomic positions and other fitting parame-
ters of the sample are computed and given in Table 1. The primitive unit cell of 
the wurtzite structure comprising O-Zn-O bonds and contained two oxygen 
atoms and two zinc atoms is shown in Figure 2. Moreover, the arrangement of 
the oxygen atoms is similar to that of the zinc atoms, in which each atom is lo-
cated at the center of a tetrahedron. On the other hand, it is found that the ob-
tained value of d-spacing (2.5796 Å) for ZnO film was lower than that of the 
d-spacing for ZnO powder, suggesting that the film grains are compressed [45]. 
In addition, a study of the surface morphology of ZnO thin film was carried out 
by AFM (Figure 3). The surface of ZnO thin film appears smooth and contains 
smaller clusters with columnar shape and the root mean square (rms) was found 
to be 31.59 nm. Charpentier et al. reported that the column growth during the 
deposition of ZnO on glass substrate can be explained by the coalescence of the 
islands which leads to the formation of polycrystalline films by columnar growth 
of grains perpendicularly to the substrate plane [46]. These strongly oriented 
grains and broadening in experimental peaks from X-ray diffraction may be due 
to strain along the c-axis and the crystallite size. Assuming homogeneous strains, 
the crystallite size D and strain ε can be respectively estimated from the follow-
ing equation: 
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0.9
cos

4 tan

D λ
β θ
βε
θ

 =

 =

                          (3) 

where β is the peak’s FWHM and θ is the Bragg angle. 
 

 
Figure 1. Rietveld plot of XRD data for ZnO thin film at room temperature. The red 
circles are the observed profile; the solid line is the calculated one. Tick marks below 
the profile indicate the position of allowed Bragg reflections. 

 
Table 1. Refined structure parameters for ZnO thin film. 

Space groupe P 63 mc 

Unit cell parameters  

a(Å) 

c(Å) 

V(Å3) 

c/a 

3.2467 

5.2151 

47.61 

1.6063 

Bond-length  

dZn-O (Å) 2.6021 

Discrepancy Factor  

Rwp (%) 

Rp (%) 

RF (%) 

χ2 

2.65 

2.78 

3.89 

1.07 

Site Wyckoff Position x y z Biso (Å2) Occ  

Zn 

O 

2b 

2b 

1/3 

1/3 

2/3 

2/3 

0 

0.38224 

0.06500 

0.07300 

0.5 

0.5 
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Figure 2. Crystal structure of ZnO thin film. 
 

 
Figure 3. AFM micrograph image of ZnO thin film 

 
The estimated value of crystallite size (D) and strain (ε) are respectively of the 

order of 37.41 nm and 6.5610−4. These values are close to that previously re-
ported [11] [12]. 

4.2. Structure and Optimization 

The optimized geometry of ZnO bulk is obtained with DFT, employing hybrid 
functional B3LYP as implemented in the software CRYSTAL14. The structure of 
pure wurtzite-ZnO unit cell is fully optimized. The computed structural para-
meters and those refined from our experimental data through Rietveld analysis 
are presented in Table 2. We note that the deviation from the experimental val-
ue is only about 1%, meaning that our calculation is reasonable. Also, the values 
are in good agreement with other reported theoretical values in the literature 
[47]. 
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Table 2. Comparison of lattice constants of ZnO thin film by Rietveld analysis obtained 
from XRD with geometrical optimization. 

Unit cell parameters (this work) Rietveld-analysis geometrical optimization 

a(Å) 

c(Å) 

V(Å3) 

c/a 

3.2467 

5.2151 

47.61 

1.6063 

3.28223712 

5.27346980 

49.20 

1.6066 

Site Wyckoff Position x y z x y z 

Zn 
O 

2b 
2b 

1/3 
1/3 

2/3 
2/3 

0 0.33 
0.38224 

−0.33 
0.33 

0.0653 
−0.33 

 
0.31538 

4.3. Electronic Structure and Optical Properties 

Figure 4 shows the transmittance and reflectance spectra of the ZnO film, which 
revealed an optical transmittance of above 75% in the visible range. In the range, 
where the absorption is high, the absorption coefficient a may be derived using 
the following equation [48]: 

( )2

e

11 ln

dR T

R
d T

α

α

− + =

 −

=


                      (4) 

where d is the layer thickness. 
The band gap of ZnO thin film was calculated using the Tauc model by 

extrapolating the linear portion of the plot ( )2hα ν  versus incident photon 
energy ( hν ). The extrapolation of the intersection of the line with the ( hν )-axis 
at 3.3 eV gives the value of the optical band gap (Figure 5). It is found that the 
optical absorption coefficient ( hα ν ) near the absorption edge varies exponen-
tially with incident photon energy, which is a measure of the width of the band 
tails of the localized states [49] [50]. The Urbach energy which indicates the 
width of the band tails of the localized states has been calculated from the slope 
of local straight line portions in the plot of ( )ln α  versus ( hν ) (inset Figure 5). 
The Urbach energy EU value is of the order of 67.39 meV. These tails in the for-
bidden band affect the band gap value and govern the conduction mechanism. 
The obtained values of Urbach energy and band gap energy have been close to 
the values of our previous works in the literature [11] [12]. In addition, the opti-
cal properties are related to the band structure and density of states. The band 
structures of ZnO are shown in Figure 6. As shown in Figure 6, the bottom of 
conduction band and the top of valence band are located at the Γ point in the 
Brillouin zone, indicating that the ZnO is a direct band gap semiconductor. The 
calculated band gap is 3.35 eV, which is close to the optical band gap estimated 
from the ultraviolet-visible transmittance and reflectance spectra of the ZnO 
films (3.3 eV). It seems that the B3LYP functional provides a reliable band gap 
for ZnO. Other theoretical calculations cover a wide spectrum varying from 0.23 
eV to 4.23 eV, mostly disagree with experimental measurements [51] [52]. These  
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Figure 4. Transmission (T) and reflection (R) spectra of ZnO 
thin film. 

 

 

Figure 5. Plot of ( )2hα ν  versus ( hν ) of ZnO thin film. 

 

 
Figure 6. Density of states of ZnO materials obtained 
through of DFT/B3LYP calculation level. 
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strong difference in calculation mainly due to the choice of the basis set describ-
ing the ground state [20]. It is found that the basis set which include the d orbit-
als is expected to be an optimal basis set. Defects induced by structural disorder 
may lead to the appearance of localized states in the band gap, called band tails 
which can affect the Fermi level and this latter may lead to further discrepancies 
between observed and computed band gaps [5] [53]. It should be noted that the 
discrepancy between the computed and observed band gaps is of the same order 
of magnitude as the Urbach energy. The simulated Density of states (DOS) of 
wurtzite ZnO is shown in Figure 7 for the energy range −10 eV to +10 eV. The 
DOS reveals that the valence band is mainly formed by Zn 3d states and O 2p 
states, whereas the conduction band is essentially occupied by Zn 4s states. A 
similar density of states has been obtained by Chuanhui et al., while the gap is 
smaller [51]. Moreover, Zhi et al. reported that the strong interaction between O 
2p and Zn 3d bands my lead to the observed difference between calculated band 
gap and the experimental one [16]. The band gap provides information on the 
electronic structure of the compound for the possible application in optoelec-
tronic devices. IR and Raman spectroscopy are useful for the interpretation of 
the structure and bonding strength, and can provide a detailed understanding. 
Serrano et al. indicated that the discrepancy between the calculated and meas-
ured phonon modes is primarily related to the underestimated band gap [54]. 

4.4. Phonon Properties 

According to the group theory, wurtzite structured ZnO belongs to the space 
group P63mc with unit of four atoms in the unit cell. At the Γ-point of the Bril-
louin zone, group theory predicts the following irreducible representations of 
the lattice optical phonons: 

1 1 1 21 2 1 2Opt A B E EΓ = + + +                   (5) 
 

 
Figure 7. The band structure of ZnO materials obtained 
through of DFT/B3LYP calculation level. 
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where B1 modes are IR and Raman inactive and the two non-polar E2 modes are 
only Raman active. In addition, the polar A1 and E1 modes are IR and Raman ac-
tive, and therefore they split into longitudinal and transverse optical phonons 
(LO and TO). 

The experimental Raman spectra with the corresponding theoretically simu-
lated one are shown in Figure 8. All the calculated frequencies and their assign-
ments are presented in Table 3. The experimental Raman spectrum of the ZnO 
thin film recorded at room temperature exhibits two prominent peaks at 110 and 
450 cm−1 assigned to E2 (high) and E2 (low) Raman active mode in the wurtzite 
crystal structure [55]. A similar result has been observed in ZnO bulk and thin 
film [56]. The two non-polar E2 (high) and E2 (low) modes are associated with 
the vibration of oxygen (O) atoms and zinc (Zn) sublattice, respectively [57]. 
Thus, the E2 low mode corresponds to the vibration of the heavy zinc sublattice, 
while the E2 (high) mode is associated with the vibration of the lighter oxygen 
sublattice. In addition, the strong E2 (high) mode is an indication on the good 
crystallinity [58]. The DFT predicted Raman spectrum of ZnO exhibits three 
main intense bands located at 100 cm−1, 380 cm−1 and 425 cm−1 assigned to E2 
(high), A1 and E2 (low) modes, respectively. The very weak band at 403 cm−1 is 
assigned to E1 mode. From these data, we remark that the agreement with our 
experimental results is quite satisfactory for E2 high mode, whereas the experi-
mental frequency of the E2 Low mode is slightly lower than the simulated one. 
This discrepancy may be caused by structural defects. In fact, Wrzesinski et al. 
reported that tensile stress in the wurtzite-structure affects the E2 phonon wave-
number [59]. Furthermore, the compressive strain in the films that caused the 
Raman peaks shift was consistent with that obtained from the XRD result [57]. 
The calculated IR active optical phonon modes of wurtzite ZnO shows two peaks 
at wavelengths in the range from 0 to 900 cm−1 (Figure 9). The most characteris-
tic bands are at 380 and 403 cm−1. These peaks are attributed to TO phonons of 
A1 and E1 modes [60]. The most intense peak at 403 cm−1 is assigned to Zn-O 
stretching vibrations [61]. Moreover, E1(TO) and A1(TO) modes reflect the 
strength of the polar lattice bonds [62].   

 

 
Figure 8. Theoretical and experimental Raman 
spectrum of ZnO thin film.  
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Figure 9. Theoretical IR spectrum of ZnO materials ob-
tained through of DFT/B3LYP calculation level. 

 
Table 3. Detailed assignments of theoretically computed IR and Raman vibrations of 
ZnO. 

(cm−1) Sym. IR IR intensity Raman Raman intensity 

100.3970 E2 I A 156.94 

379.5879 A1 A 665.80 A 236.60 

402.5345 E1 A 1267.93 A 32.08 

425.8058 E2 I A 1000.00 

5. Conclusion 

In summary, this work deals with the X-ray diffraction, UV-Vis spectrophoto-
metry, IR and Raman spectral investigations of sprayed ZnO thin film supported 
by first principle ab initio DFT calculations using hybrid (B3LYP) as exchange 
and correlation functional. Band structure and DOS of bulk wurtzite ZnO have 
been calculated. ZnO thin film has hexagonal wurtzite structure with a smooth 
surface and a growth in a preferred orientation along the direction (002). The 
optimized structural parameters of wurtzite structure of ZnO were found to be 
close to the experimental data. Our calculated band gap of 3.35 eV is in excellent 
agreement with the measured value of 3.3 eV. The simulated Raman spectra of 
ZnO were also similar to experimental data. The above results show the ability of 
the DFT to accurately describe and predict the electronic and vibrational prop-
erties of semiconductors. 
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