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Abstract 
This study aims to evaluate the development of soil reaction values in 15 key 
localities of soil Partial Monitoring System from 1994 to 2023, and to identify 
the most important regional drivers of pH value development. Soil samples 
were collected from the depth 0 - 0.10 m yearly in the spring (5 samples from 
each locality). In the dry soil, samples were determined actively and exchanged 
soil reaction. The most significant negative changes (decreases of soil reaction) 
were determined in Haplic Stagnosols group and Cambisols group. The pH 
value in topsoil is primarily controlled by soil type and soil substrate, soil man-
agement and land use, and to a lesser extent by climatic region. 
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1. Introduction 

The optimal value of the soil reaction is one of the key aspects of the evaluation of 
ecosystem services resulting from natural capital stocks fulfilling human needs 
(Makovníková et al., 2017, 2024). This is a basic prerequisite for sustainable agri-
culture where soil fulfills all its functions and services to an optimal extent in a 
specific way of its use. Soil pH is a result of the acid-neutralizing capacity of soils 
that depends on the existence and reactivity of pH buffer systems and the input 
and production rates of acids of different strength (Bloom et al., 2005). The value 
of the soil reaction enters as an indicator in the evaluation of production services 
as well as regulating services provided by the agroecosystem (MEA, 2005). The 
soil reaction indicates the acid-base reactions in the soil because of the overall 
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balance of ions in the soil solution. Soil acidity affects the growth and activity of 
the root system of plants, affects the species composition of macro and microfauna 
in the ecosystem and conditions plant yields. Soil acidity also determines the ac-
ceptability of nutrients by plants (Leonardi, 1991), the mobility of Al, Mn and 
heavy metals (Yong et al., 1992; Makovníková et al., 2006, 2007), as well as several 
physicochemical properties of the soil (sorption capacity, cation and anion ex-
change capacity). The entire system of biochemical reactions in the soil/plant re-
lationship, regulated by enzymes, is also influenced by the pH value. Acidification, 
the negative process of soil acidification, represents one of the serious processes 
of chemical degradation, which directly and indirectly affects the chemical pro-
cesses in the soil. Soil acidity is characterized by the unsaturation of the sorption 
complex, i.e., by the majority representation of H+ and Al3+ ions and the presence 
of free H+ and Al3+ ions in the soil solution (Makovníková et al., 2006). The degree 
of ionization and dissociation of H+ ions in the soil solution determines the nature 
of soil acidity (Čurlík et al., 2003). Current acidification is the result of cation ra-
tios and potential anion trapping and is generally affected by disruption of ele-
ment cycling in the ecosystem. The ability of the agroecosystem to cope with nat-
ural and anthropogenic acidification is determined by the capacity and potential 
of the buffering function of the soil, which is conditioned by functional buffering 
systems (Demo et al., 1998). It is the buffering function of the soil that reflects the 
degree of resistance of the soil to acidification. In Slovkian soils, three buffering 
systems are dominant (the carbonate system, the buffering system of silicates and 
exchangeable cations, and the aluminum buffering system) (Yang et al., 2020). 
Within these systems, soil organic matter acts as a separate buffering agent, while 
its buffering properties are primarily determined by the quality of the humus-
forming material. When the soil is loaded with acid deposits, if the specific buff-
ering capacity of a given buffering system is exceeded, the soil is acidified and 
degraded into another buffering system. 

Acidification, the impairment of pH value, is one of the major processes of soil 
chemical degradation. This one indicates acid-base reactions in the soil as well as 
it is the result of the overall balance of ions in the soil solution. The optimal pH 
value is the key aspect in soil quality evaluation. Acidification reflects the interac-
tion of soil factors and habitat factors. Acidification is a reversible process, the 
consequences of acidification in agro ecosystems are non-refundable: 
• nutrients from the soil, and the nutrients supplied to the soil fertilizers are not 

at low pH value sufficiently fixed and rapidly washed out from the soil; 
• bivalent cations Ca2+ and Mg2+ are extruded from the sorption complex by free 

Al3+ cations, increasing the fixation of phosphorus in forms not available to the 
plants (Meriño-Gergichevich, 2010); 

• acidification increases the bioavailability of toxic heavy metals, aluminum ion 
mobility and their ability to transfers in agroecosystems. 

Acidification is a reversible process, the consequences of acidification in the 
agroecosystem are irreversible. According to Act 220/2004, soil acidification 
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belongs to degradation processes, and every owner of agricultural land is obliged 
to implement agro-technical measures aimed at preserving the quality of the soil 
and protecting it from damage and degradation. 

This study aims to evaluate the development of soil reaction values in 15 key 
localities of Slovak soil Partial Monitoring System from 1994 to 2023, and to eval-
uate the main drivers of acidification. 

2. Material and Method 

Currently the most consistent, and up-to-date source of data on the soil in agri-
cultural land of Slovakia is the National Monitoring System of Agricultural Soils 
(CMS-P). Soil monitoring system in Slovakia consists of 2 basic subsystems: the 
basic network of monitoring sites in 5 years repetitions (agricultural and alpine 
soils together) and the key monitoring sites in repetition of every year. The key 
monitoring location is circular in shape with a radius of 10 m and a total area of 
314 m2 (Kobza et al., 2024). Each monitoring area is characterized by a pedological 
probe in the middle, soil type and subtype are determined according to the soil 
classification (WRB, 2006). The centers of the monitoring sites are geodetically 
focused and documented by X, Y coordinates, all monitoring sites are in WGS 84 
system by GPS using. Soil sampling is carried out in a probe located in the center 
of the monitoring site and, in addition, from four separate places on the surface 
of the monitoring site in the shape of the letter Z. The value of the monitored soil 
parameter at the given location is represented by the average value from these five 
separate samples. Since 1994, we have taken soil samples at 1-year intervals in the 
spring from a depth of 0 - 0.10 m at 15 key locations. Sampling protocol and la-
boratory analysis for CMS-P have been kept standard over the whole monitoring 
period. In soil samples taken in the years 1994-2023 from key locations (Table 1) 
representing the main soil types and sub-types in Slovakia an active and ex-
changeable soil reaction was determined (Kolektiv, 2011). Statistical processing 
and evaluation of the results were carried out in the STATGRAPHICS 5.0 pro-
gram. Analysis of the statistical significance of differences in soil pH value be-
tween the ČMS-P localities was carried out using Kruskal-Wallis test (non-par-
ametric test, differences between medians) and multivariate method (cluster anal-
ysis, dendrogram). 

We used a classification of agro-climatic regions provided by the Information 
Service of the National Agricultural and Food Centre/Soil Science and Conserva-
tion Research Institute. In this classification, 11 agro-climatic regions were iden-
tified according to long-term average temperatures in January, average growing-
season temperatures, daily average temperatures sums (T > 10˚C), the length of 
period with daily temperatures td > 5˚C and the climatic moisture indicator ac-
cording to Budyko calculated by Tomlain. For our purpose, the original vector 
layer with 11 categories was merged into 4 categories (moderately cold regions 
(09, 10), moderately warm regions (06, 07, 08), warm regions (03, 04, 05), and 
very warm regions (00, 01, 02)) (Figure 1).  
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Table 1. Key localities ČMS-P. 

Key locality Land use Climatic region 
Soil clasification  

(WRB, 2006) 

1 Topoľníky AL Very warm 
Haplic Fluvisol  

(Anthric, Calcaric, Siltic) 

2 Liesek GL Moderately cold 
Haplic Stagnosol  

(Siltic, Eutric) 

3 Voderady Al Very warm 
Haplic Chernozem  

(Anthric, Siltic) 

4 Dvorníky AL Very warm 
Gleyic Fluvisol  

(Siltic, Eutric, Anthric) 

5 Raková GL Moderately warm 
Haplic Cambisol  

(Skeletic, Dystric, Siltic) 

6 Malanta AL Very warm 
Cutanic Luvisol (Anthric,  

Siltic, Abruptic, Hypereutric) 

7 Nacina Ves AL Warm 
Haplic Fluvisol  

(Anthric, Eutric, Siltic) 

8 Istebné AL Moderately warm 
Stagnic Cambisol  

(Siltic, Eutric) 

9 Žiar n/H GL Warm 
Luvic Stagnosol  

(Siltic, Albic, Anthric) 

10 Krompachy GL Moderately warm 
Stagnic Cambisol  

(Siltic, Eutric, Skeletic) 

11 Koš AL Warm 
Haplic Planosol  

(Albic, Eutric, Siltic, Anthric) 

12 Moravský Ján AL Very warm 
Regosols  
(Dystric) 

13 Jelšava AL moderately warm 
Luvic Stagnosol  

(Siltic, Eutric, Albic) 

14 Sihla GL Moderately cold 
Haplic Cambisol  

(Skeletic, Dystric, Siltic) 

15 Spišská Belá AL Moderately warm 
Mollic Fluvisol  

(Anthric, Eutric, Siltic) 

Explanations: AL—arable land, GL—grassland. 
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Figure 1. Categories of climatic regions in the Slovak Republic with model localities. 

Data Sources 

Soil monitoring network in Slovakia is constructed using ecological principle, 
considering all main soil groups and subgroups, climatic regions as well as various 
agricultural land use. All used methods (chemical and physical indicators) are de-
scribed in more details in publication (Kobza et al., 2024). 

Measured data were statistically processed by the program Statgraphics Centu-
rion XVI. To compare files in the process of stratification, we used non-paramet-
ric tests of agreement because the assumption of the normality of files was not met 
(differences between medians; Kruskal-Wallis Test). To compare model regions, 
we used multivariate methods (cluster analysis, dendrogram). 

3. Results and Discussion 

The pH of agricultural soil in Europe depends mainly on the bioclimatic condi-
tions that determine the agroecological zones. According to the standard agro-
ecological zoning, Slovakia belongs to the Temperate sub-continental region 
(Fischer et al., 2002). The degradation process of acidification and its direct or 
indirect impact on the fulfillment of ecosystem services are presented in Table 2 
(Dominati et al., 2010, 2014; Orwin & Wardle, 2004). 

 
Table 2. Direct and indirect impact of acidification on agroecosystem services. 

Degradation  
process 

Influence 
Ecosystem services 

provisioning Regulating Cultural 

Acidification 
direct x x  

indirect   x 
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Changes in soil reaction values led to an unfavorable trend resulting in a de-
crease in soil reaction values at up to 10 locations (comparison of year 1994 and 
year 2023 in Figure 2). The most significant negative changes (decrease in soil 
reaction values reactions by 1.49 units) were determined in the Moravsky Jan site 
(Regosol) and in the group of Cambisols (the Rakova by 0.85 units and the 
Krompachy by 0.53 units). Regozems are, in terms of buffering capacity, a variable 
soil type, depending on the parent substrate. Regosols on non-carbonateous eolic 
sediments have a lower resistance to acidification and lower soil reaction value. In 
Cambisols developed on flysch (Rakova), the dominant activity is the buffering 
system of silicates and exchangeable cations, in Cambisols developed on acidic 
substrates (Krompachy), the dominant activity is the buffering system of silicates, 
exchangeable cations and aluminum. These soils belong to more labile ecosys-
tems, with a tendency to acidification. Changes in the value of soil reaction on 
arable soils were in the interval from −0.74 (Jelsava) to 0.51 (Nacina Ves), and on 
grassland in wider interval from −1.49 (Moravsky Jan) to 0.30 (Sihla). Changes in 
soil reaction values during monitoring are conditioned by the capacity and poten-
tial of the buffering system of the monitored soils, represented by the system of 
carbonates, silicates, exchangeable cations and aluminum. When the value of the 
active soil reaction is lower than 6.5, the bioavailability of risk elements increases, 
resulting in exceeding the limit values for individual inorganic pollutants in the 
soil system (Makovníková et al., 2007). 

 

 
Figure 2. Development of pH value within key localities.  

 
Chernozem (Voderady), Mollic Fluvisol (Spis. Bela) can be classified as soil 

types resistant to acidification. The carbonate buffer system should stabilize soil 
pH (H2O) between 6.2 and 8.6. The buffering system of carbonates manifests itself 
by dampening acidification tendencies, the value of the soil reaction during the 
monitored period in the case of these soils oscillates in the interval determined by 
the measurement error (Figure 3). 
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Figure 3. Development of pH value at key localities Voderady, Spisska Bela, Malanta. 

 
Soil type, land use and climatic region belong to the important drivers leading 

to differences in acidification trends. Soil type and soil substrate affect the value 
of the soil reaction, as well as the buffering mechanisms in the soil. 

The Chernozem (Voderady), Mollic Fluvisol (Spisska Bela) and Cutanic Luvisol 
(Malanta) localities with a pH value in the slightly alkaline area (Figure 4), located in 
different climate regions, showed statistically significant differences in pH values dur-
ing the monitored period (Table 3). The soil reaction values at these sites with similar 
pedogenesis are in the neutral to weakly alkaline range. The locations are used as ara-
ble land, but they are located in different climatic regions. According to several authors 
(Jaradat & Boody, 2011; Montoya & Raffaelli, 2010; Birkhofer & Wolters, 2011; Diehl 
et al., 2013), climate has a significant impact, affects the management possibilities and 
land use and thus the acidification process (Makovníková et al., 2024).  

 

 
Figure 4. Box and Whisket plot (years 1994-2023) of pH value at key localities Voderady, 
Spisska Bela and Malanta.  
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Table 3. Statistical significance of differences between means of the pH value at key local-
ities (Multiple range Test) between individual soil types. 

Measure 
Stratification  

level 
Kruskal-Wallis 

Test 
Test statistic P-value 

Comparison  
of pH value 

development 

Chernozems and 1 32.5903 8.37739E−8 

Fluvisols 1 30.6255 2.23744E−7 

Pseudogleje 1 48.6446 1.55266E−10 

Cambisols 1 50.9611 4.98633E−11 

1: statistically significant difference amongst the medians at the 95.0% confidence level. 

 
We noticed a slight trend towards acidification at the Dvorníky site (Fluvisol 

on non-carbonate fluvial sediments), however, this trend has significant negative 
consequences, as the site belongs to contaminated sites with combined geo-chem-
ical and anthropogenic contamination (Figure 5). The decrease in the soil pH can 
significantly increase the mobility and bioavailability of heavy metals (Bolan et al., 
2003). 

 

 
Figure 5. Development of pH value at key localities—Fluvisols. 

 
The monitored Fluvisols are used as arable soils, the value of the soil reaction 

ranges from neutral to weakly acidic; the main difference is their location in dif-
ferent climatic regions. Fluvisols located in different climate regions, show statis-
tically significant differences in pH values during the monitored period (Figure 6, 
Table 3). 

The buffering systems of Stagnosols (silicates and exchangeable cations) indi-
cate that these soils belong to more labile ecosystems, with a stronger tendency to 
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acidification (Bedrna, 2003). This trend is also confirmed at key localities repre-
senting pseudogleys, where we noted deviations towards acidification at all mon-
itored localities when comparing the years 1994 and 2022 (Figure 7). In 2023, we 
noted a slight increase in the soil reaction value. 

 

 
Figure 6. Box and Whisket plot (years 1994-2023) of pH value—Fluvisols. 

 

 
Figure 7. Development of pH value at key locality—Stagnosols. 

 
Figure 8 shows the influence of land use. Development of soil pH reaction on 

the localities which are used as arable land (Jelsava and Kos) is different from the 
sites used as grassland (Liesek and Ziar n/Hronom). Stagnosols located in differ-
ent climatic regions showed significant differences in pH values during the mon-
itored period (statistically significant differences were between Jelsava and Kos, as 
well as between Liesek and Ziar n/hronom; see Table 3). The pH values of agri-
cultural soils at the European scale follow climatic gradients (Fabian et al., 2014). 
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Figure 8. Box and Whisket plot (years 1994-2023) of pH value—Stagnosols. 

 
We observe a development towards acidification at the Istebné location until 

2018 (Figure 9), which was used primarily for the cultivation of clover grass mix-
tures. Since 2019, it has been used as arable land. Cambisols are developed on 
heterogeneous substrates, which subsequently also determines their different re-
sistance to acidification. In Cambisols developed on flysch, the dominant activity 
is the buffering system of silicates and exchangeable cations, in Cambisols devel-
oped on acidic substrates, the dominant activity is the buffering system of silicates, 
exchangeable cations and aluminum. Acid buffering system cannot maintain the 
soil pH within the prescribed ranges in most circumstances (Zhu et al., 2018). The 
sinstability of the buffering system is manifested by significant fluctuations in soil 
reaction values at the Krompachy location (grassland). A balanced course of soil 
reaction values that oscillates around the equilibrium value can be observed in the 
case of the Sihla location (grassland), where the equilibrium value of the soil reac-
tion already falls into a strongly acidic area and no further acidification occurs. 
On a European scale, Müller et al. (2022) observed a lower pH of the topsoil for 
grasslands, which is related to a higher content of acidifying humic acids. Liming 
of acidic soils is one of the effective soil management strategies to achieve and 
maintain soil pH within specified ranges and the main substrate used in EU coun-
tries is calcium carbonate (Leblanc et al., 2016; Müller et al., 2022). 

Cambisols (Figure 10), the most widespread soil type in Slovakia, are developed 
on different types of substrates, which primarily determines their different buff-
ering capacity and thus their susceptibility to acidification (Demo et al., 1998). 
The state and development of the buffering function in relation to acidification is 
indicated by the value of the soil reaction and the active buffering system in the 
context of the acidification load. Figure 10 also shows the impact of land use. The 
development of the soil reaction at the Istebné locality (a locality developed on a 
flysch substrate with dominant buffering systems of silicates and exchangeable 
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cations), which is used as arable land, is different from the sites of Cambisols (de-
veloped on acidic substrates) that are used as grasslands (the Raková, Sihla, 
Krompachy). Since the P-value (Kruskal-Wallis test) is less than 0.05, there is a 
statistically significant difference amongst the medians at the 95.0% confidence 
level.  

 

 
Figure 9. Development of pH value at key locality—Cambisols. 

 

 
Figure 10. Box and Whisket plot (years 1994-2023) of pH value at key localities—Cambisols. 

 
Dendrogram (Figure 11) compares the similarity between the development of 

the pH value of localities representing the main soil types found in different cli-
matic regions. The comparison of model locations showed the most significant 
differences in soil pH value development between soil types, followed by land use 
(arable land, grassland); climatic areas have a smaller influence. 
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Figure 11. Cluster analysis: dendrogram. 

4. Conclusion 

The goal of efficient use of natural resources is to ensure that the use of natural 
resources and the related impact on the environment, i.e. on the quality of the soil, 
does not exceed the carrying capacity. Changes in soil reaction values (compari-
son of 1994 and 2023) at 15 key locations showed an unfavorable trend, resulting 
in a decrease in soil reaction values at up to 13 locations. The most significant 
negative changes (reduction of soil reaction values) are in the pseudogley group 
and in the cambizem group. When limiting agrotechnical measures aimed at op-
timizing soil reaction values, in the case of cambizems and pseudogleys used as 
arable soils, we can assume a slow decrease in soil reaction on naturally more 
acidic substrates. Similar tendencies were also noted in the case of soils developed 
on non-carbonate substrates. Acidification trends in soils with a soil reaction 
value in the weakly acidic region can prospectively be reflected in the deterioration 
of the hygienic state of the environment in the increased penetration of various 
pollutants, especially inorganic pollutants and aluminum, into the food chain. The 
comparison of model locations showed the most significant differences in soil pH 
value development between soil types, followed by land use (arable land, grass-
land). Climatic areas have a smaller influence. 
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