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Abstract

In this paper, we establish the structural stability for the linear differential
equations of thermo-diffusion in a semi-infinite pipe flow. Using the tech-
nology of a second-order differential inequality, we prove the continuous de-
pendence on the density p and the coefficient of thermal conductivity K.
These results show that small changes for these coefficients can’t cause tre-
mendous changes for the solutions.
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1. Introduction

The question of continuous dependence of solutions of problems in partial dif-
ferential equations on coefficients in the equations has been extensively studied
in recent years for a variety of problems. This is sometimes referred to as the
question of structural stability and numerous references may be found, for in-
stance, in the book of Ames and Straughan [1] and the monograph of Straughan
[2]. For more papers one can see [3]-[8]. In structural stability the emphasis is
on continuous dependence (convergence result) on changes in the model itself
rather than on the initial data. This means changes in coefficients in the partial
differential equations and changes in the equations and may be reflected physi-
cally by changes in constitutive parameters. What’s more, the inevitable error
that arises in both numerical computation and the physical measurement of data
can exist. It is relevant to know the magnitude of the effect of such errors on the
solution.

In the 1970s, W. Nowacki in his papers [9] [10] gave the differential equations
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of thermodiffusion in one dimensional space and many papers in the literatures
have studied this system. For example, [10] [11] [12] investigated the ini-
tial-boundary value problem for the linear system of thermodiffusion using dif-
ferent arguments. [13] proved the existence, uniqueness and regularity of the
solution to the initial-boundary value problems for the linear system of
thermodiffusion in a solid body. Z#-L? time decay estimates for the solution of
the associated linear Cauchy problem were obtained by [14]. However, in this
paper, we considered the differential equations of thermodiffusion in three di-
mensions and we study not only the continuous dependence on the coefficients
of the equations, but also the spatial decay estimates for the solution of the sys-
tem. In fact, much has been written on the subject of spatial decay bounds for
various systems of differential equations, e.g., for a review of such works on
Saint-Venant’s principle, one can refer to [15]-[23] and the papers cited therein.
Recently, there are some new results about structural stability, one could see
[24]-[28].

We shall assume that a transient flow occupies the interior of a semi-infinite
cylindrical pipe R with boundary OR. The pipe has arbitrary cross section
denoted by D and the boundary 6D and the generators of the pipe are par-
allel to the X, axis. We introduce the notations:

R, ={(%, % %) (%, %) € D,x; > 220},

D, = {(xl,xz,x3)|(xl,x2)e D,x, =1 20},
where zis a running variable along the X, axis. Clearly, Ry=R and D, =D.
Let u;, T, and C denote the displacement, temperature, and chemical po-

tential as independent fields, respectively. These fields depend on the space var-

iable (X,,X,,X;) and the time variable r and satisfy the following system of

equations:
pU; VAU, —(A+v)U, ; +7,T, +7,C, =0, in Rx{t>0}, (1.1)
T —KAT +pt;; +dC =0, in Rx{t >0}, (1.2)
nC —MAC +y,0,; +dT =0, in Rx{t>0}, (1.3)
with the initial-boundary conditions
U, =0, T=C=0 ondDx{t>0}, (1.4)
U =U;=0, T=C=0 inRx{t=0j. (1.5)

U = £ (%, %,t), T =F (X, %,t),C =G(x,X,t) on Dyx{t=0}, (1.6)

T,T,,C.C,,p=0(x") uniformlyin x,x,t asx, —>o.  (17)

Up, U ;.

In Equations (1.1)-(1.3), A is the Laplacian operator; p represents the
density; y, and y, are the coefficients of thermal and diffusion dilatation; A4
and v are the material coefficients; Kis the coefficient of thermal conductivity;
M is the coefficient of diffusion. n,c,d are the coefficients of thermodiffusion.

All the above constants are positive and satisfy
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cn—d? >0, (1.8)

which implies that (1.1)-(1.3) is a hyperbolic-parabolic system of partial differ-
ential equations. In the following several sections, we may use the below ine-
quality. Let D be a plane domain D with the boundary oD. If w=0 on
oD, then

IDWaW.adAZ ﬂij'Dwzdx, (1.9)

where 4, is the smallest eigenvalue of the problem
Ap+1¢=0 inD,
¢=0 onoD.

This inequality has been well studied (see [29] [30]). Throughout this paper,
the usual summation convention is employed with repeated Latin subscripts
summed from 1 to 3 and repeat Greek subscript summed from 1 to 2. The

ou,

comma is used to indicate partial differentiation, Ze. U;; = ,

oX i

2 6(/) X ou.
= % and U denotes —-.
Puc = 2 ox, ! at

The paper is structured as follows: In Section 2, we derive the continuous de-

pendence on p . Section 3 is devoted to seeking the continuous dependence on
K

2. Continuous Dependence on the Parameter p
Lemma 1. The energy E (Z,t) defined in [31]

1 - A+
E(z,t)=Eijzuiuidx+%ijui1ju”dx+ ZV.[Rzuiz'idX

t t
+KJ.O_[RZTij,jdxdr]+MJ'OJ.RZCijY].dan (2.1)
+| Cr2igeT+ e |ax,

R, 2 2

satisfies the following estimates

1

E(zt)<E(0t)e ™. (2.2)

where

ﬁ+\/l+vt+ 71\ﬁ . 72\ﬁ N 1 '
o 2K 2o o)

Proof. These results are the main results of paper [31].

m, (t)= (2.3)

Theorem 1. The energy expression (z,t) satisfies the following estimates:

2

o 2:2 o 3
$(z,1)< 27 E(0.t)e O +@E(o,t)[e my’ g 2"‘1“)2} (2.4)

PP pp

Proof. To investigate continuous dependence on p , we have to seek a bound
for g.[R G.l;dx . To do this, we first differentiate (1.1), and then multiply with

DOI: 10.4236/jamp.2020.87099

1293 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2020.87099

J. C. Shi

U; , integrate over the region R, x[0,t] to obtain

0= J-(;J.R [pu} —VAU; —(2+v)u 5+ 71T +7,C, Juidanv (2.5)
which follows that

L7

0= ijz u’iuidx+vj;jDZui3uidAdn+ijzu, U, dx
+(ﬂ+V)I;J‘D1Uj’ju3dAdn+%J‘R1Ui1dx (2.6)
+ 71.[;J.szil'jidxd77 + 72_[;.[ch’il'jidxd 7,

where we have supposed that U, vanish at t=0. Similarly, we have

0=cf [ TTdxdy—K|[ [ ATTdxdn+y][ [ G Tixdy+d] | CTdxdy
_ % Ji, T K [; J,, TaTdAdy+K [; [, 1T dedn 2.7)
- }/l".;'[Dz usTdAd n- 71J.(:J.RZT:iUidXd n+d J.(:J.RZ CTdxdn,

and

0=nl[ CCdxdp-M[ [ ACCdxdn+y,[ [ G Cixdy+d] [ TCdxdy
- gJRZCZdX +M J'(;J.DZCBCdAdn +M J-(:J.ch,ic,id)(dﬂ (2.8)
=2 [oJ,, tCdAdn - 1, ][, € tdxdn+ ][ TCaxdn,

where we also have assumed that T=C =0 at t=0. Combining (6)-(8), we set

E(zt) =§ijuiuidx+%iju. o, a2

AR 2 J.Rzul?vjdx-i—KJ.;J'RzT.,iT,idXd’]

+M I;IchviC~idan +%jRZT2dx+%.[RZ [c‘l;2 +2dTC + nc'z]dx 29
=—v[i[, bt dAdy (A +v) [ [ u; judAdn - K] T,TdAdy

+3[if, GTdAdn M [}], € Candn+7, ], t.CdAdn

Following the method used in [31], we can get

= P oo vie oo A+ve to
E(Z’t):EIRZuiuidX+§J.Rzui’iuividx+TJ.RZUJ?vidXJr KIOJRZT,iT,idXdﬂ
t .. c -y 1 -y .. 20
+MJ'O_[RZC,iC,idxd77+EIRZT dx+Eij[cT +2dTC +nC? |dx
1
<E(0,t)e i)

Also, we employ the argument used in [31] to get that E(O,t) may be
bounded by known data. Since cn>d?, we note again
[ [cT?+2dTC+nC?Jdx > 0. So, we have

1

jRZuiuidxs%E(o,t)e_”W. (2.10)

Now, we study the continuous dependence on the parameter p . Let (u;,T,C)
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and (u:,T*,C*) be the solutions to (1.1)-(1.3) with same initial-boundary con-
ditions, but for different parameters p and p’, respectively. Define the differ-

ence variables as
W=u-u, =T-T, £=C-C’, z=p-p. (2.11)
Then, (W,6,%) satisfy
7l + p W — VAW, —(A+V)W, ; + 70, +7,2; =0, in Rx{t>0},  (2.12)

cO—KAO+y W, +dE =0, in Rx{t>0}, (2.13)
NE—MAZ +p,W; +d0 =0, in Rx{t>0}, (2.14)
with the initial-boundary conditions
W, =0, 6=2=0 ondaDx{t>0}, (2.15)
W, =W =0, #=%=0 inRx{t=0}. (2.16)
W, =0=%=0 on D,x{t>0}, (2.17)

Multiplying (2.12) with W, and integrating by parts, we have

O:.[(;.[R [ﬂ-ui +p*\7\'/i —VAW, — (ﬂ""_v)wj JI+7/10 +7.2 :|WdXd’7

:%J‘Rzp*wiwidx+%‘[ WIJW,de+ I W’idX

(2.18)
+ﬂj;.[R UiWidan-'_]/lJ.;J.R QiVVidan+yszIR Z,iWidan
+v_[;jD vvi,3v’vidAd77+(/1+v)J.;.[D w; W,dAd .

Similarly, we have

o= [c6-KAO+yw,; +d3 [odxdn
:ngﬁded“KfofRﬂi‘?idXdﬂ—71I;JRZ«9,iWidxdf7 (2.19)
+d[f, 2odddn+K[[[, 0,00Adn -y [ [ w.odAdy,

and

o= [nz MAS + y,w,; +d6 | Zdx
=2 J oy + M [, 2.3 dxdn -y, [}, = vxdn (220)
+d[ ], Edxdn+ M [[ £ 2dAdn -, [ [ w.SdAdn.
We define a new function

L

qo(z,t):%_[R p*wivvidx+gj' W, W, dx+ﬂ+vj'

L WidHK [ [ 9,6,0xdn
+ Mj;ijz,iz,idxdm%ij [c6” +2d 65 +n3x? |dxdyy

= zf [ dvaxdy—v[ [ wdAdn—(2+v)[[ w, wedAdy  221)
~K[.[,, 0:00Adn + 7, [ viodAdy

-M [ o ZaZdAdn+7, ] ., W,ZdAd.
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Thus, we have

op(z,t) 1. . v A+v
_T:EIDZ'DWiWidA+EJDZWi'jV\/i'jdA-'_TJDZWiZ'idA

+K[[ 0,0,dadn+M [ %5 dAdy (2.22)
+%IDZ [ c60 +2d0z +nz? |dAdn.

Similar to [31], we have

(p(z,t)snJ;jRZinidxdn+nH(t)[—@], (2.23)

where m,(t) have been defined in (2.3), but p in m(t) may be replaced by
P here. By Holder and the AG mean inequalities, from (2.23) we have

p(z,t)< ﬂ(f;ij U'il'jidxdiy)i (I;J'sz'viv'vidxd ;7); +m (t)(— 5(0;22.'()

ce(20)

oz

j (2.24)

T

< pz*t LZJR ;i dxd 7y +%ijwiwidx+ m, (t){_

Now, we let
¢~)(Z’t) = %IRZP*VViVVidX+%J.R2Wi,jwi,jdx+/1—;-v'[&vviz,idx
+ KI;IR 6,0,dxdn +M IJR =2 dxdy (2.25)
+%ij [c6° +2d05 + nz? |dxd,.

From (2.24) and (2.10), we have

s 7t op(z,1)
P(z.t)< > IOIRZUiUidXdU+2”H(t)(— el (2.26)
which follows that
1, 242 T R
@(zt)<@(0,t)e 2m(t) +LE(O,t)[1—e m(t) Je 2m (1) (2.27)
P

In order to make inequality (2.26) explicit, we need bound for @(0,t). So, we

write (2.21) at z=0 and use the initial-boundary conditions to obtain

1 . v A+v
¢(O't)=EJR0pWiWidX+EJ.R0Wi,jWi,jdX+ 5

+K[ [ 8.0,0xdn+M [ T3 dxdy

I Ry Wizvidx

+%JR0 [092 +2d65 + nzz]dxdn (2.28)

=7r_[;_[ROUiv'vidxdn

) .
t - -
< 7; '[;'[Rouiuidxdn+%j%vviwidx,

which results in
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- 7t ot 27% -~
< . <=
#(0,t) < = JoJg, tithdxdzy < e E(0), (2.29)
where we have used (2.10). Combining (2.27) and (2.29), we have
2 ., 242 ., 3,
s(zt)<Z E(0t)e ™0 LT E(0 )| e ™0 ¢ 0 | (230)
PP pp

Inequality (2.30) shows that the amplitude terms in (2.25) become small as
p — p and the continuous dependence on p is obtained.
3. Continuous Dependence on the Parameter K

Theorem 2. The energy expression ®(z,t,) satisfies the following estimates:
If hy—k —k, =0, we have

®(z,t,) < pPme 0 1 p2me o, (3.1)

If hy—k —k, #0, wehave

_ m (hoe £°m B
Dz, <p*m-——2le (fo kl)Z+—ae kzz. 3.2
( ti) ﬂ |: ! ho_kl_kz:| hO_kl_kZ ( )

Proof. In this section we compare the solutions of the following two problems
pU; —vAU, —(2+v)U, ; +7,T, +7,C, =0, in Rx{t>0},
cT - KAT +pU;; +dC =0, in Rx{t>0}, (3.3)
nC —MAC +p,l;; +dT =0, in Rx{t>0},

with the initial-boundary conditions

u=0 T=C=0 on oD x {t >0},
u=1=0 T=C=0 inRx{t=0}, (3.4
U= £ (X %), T =F (X, %,t),C=G(x,X,t) on D, x{t=>0},
and
pU; —vAU = (A+v)Uj ; + 7T, +7,C =0, in Rx{t>0},
cT™ —K"AT" + U, +dC" =0, in Rx{t>0}, (3.5)
nC" —=MAC” +p,u;, +dT" =0, in Rx{t>0},

with the same initial-boundary conditions (3.4).
Our goal in this section is to derive the continuous dependence on the param-
eter K. If we define

W=u-u, =T-T,2=C-C",f=K-K, (3.6)

then, (W,0,%) satisfy the system

AW, — VAW, —(A+V)W, i + 7,0, +7,2, =0, in Rx{t >0},
- PAT —K'AO+ p\iy; +d2 =0, in Rx{t>0}, (3.7)
N —MAZ +p,W; +d6 =0, in Rx{t>0},
with the initial-boundary conditions
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W, =0, #=2=0 on oD x {t >0},
W =W =0, #=%=0 inRx{t=0}, (3.8)
w, =0, §=2=0 on D, x{t > 0}.

We multiply (3.7); with W, and integrate by parts to have
t .
0= fOIRZ [IJWi —VAW, —(A+V)W, ; +7,0, +7,2 JW dxdn

=§ijwiwidx+%j W, W dX +

P Wik [ odxdn  (39)
+72J;,[R Z,iWidXd?Hv.[OJD Wi,3v'vidAd77+(i+v).[;.[D w, Vi, dAd 7.

Similarly, we have

0= ” [ce BAT —K'AO+y,w,; +d3 |0dxdr

B E'[Rz QZdan * 'BIOJRZT:iQidan + K*J.(;J‘RZ Qiaidxdn (3.10)
= nfyfl, dxdn +d ['] Sedxdn+ B[ [, T.0dAdn
+K[1],, 0200Adn 1, [.], viuOdAdn.

Combining (2.20), (3.9) and (3.10), we have

@(Z,t)ﬁijZWiVVidX+%J w, W, dx+

ik 2V e KL 60,0k
+M.[;_[Rzz,iz,idan+Eij[092+2dHZ+n22]dxd77
:—vJ.;J.DZWi,awidAdn—(/1+V)_[;J.DZWJ-JV'\I3dAd77—K*J‘;J'DZQ39dAd7] (3.11)
+ VJSIDZ Wi,0dAdy -M [ [ o, ZsZ0Ad7 +7, N o, W,ZdAdy
_'BJ‘;J‘DZTﬁedAdn_ﬂ,[;JRZT,iQidXdU-

Now, we define a new function

r(z,t)=j°ccp(§,t)d<§

=L (e 2 ] (¢ W.,W.JdX+“VIRZ(§—z)vvfidx
+KH 99dxd;;+M” 2)2 .3 dxdy
+= j ~17)[c6” +2d6E +n3’ |dx.

(3.12)

From (3.11), we have

—_VH Vidxdy +(4+v) jj W, Ve — K H 9,0dxdn
+y1fj wﬁdxdry—ij ) dedn+7zjofR W,Zdxd 7 (3.13)

—ﬂjj T,0dxdn - p’jj E-2)T,0,dxd7.

Following the same procedures which have been used in Section 3 (see
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(3.6)-(3.10)), we have

F(z,t)sml(t)(—Z—I; ztj ﬁ” T, 0dxdn - ﬁ” 2)T,0,dxdn. (3.14)

By Holder and the AG mean inequalities, from (3.14) we have

F(z,t)Sml(t)(—z—l;(z,t)) ﬂ—jj T.T,dxdny

2Km

+ml(t)K I, 2ﬂKz* L, (G-2)TTadn  (3.15)

—H 2)6,0,dxdn.

In view of the definitions of the functions (D(Z,t) and ‘I’(Z,t) , we intro-

duce the functions

L

d)(z,t):gj'R vvivvidx+%J W, W, dx+ ZV.[R w’d
+K7*j;ijaiQidxdn+ M, .2 dxdy (3.16)
+%fR [062 +2d€2+n221dxd77,

and
t =j°°ci>(§,t dé&

'DI dx+j z)w, w; dx

L1h)

A+v
2

+MJI 2)X,xdxdn

[, (c-2)w, dX+—jj 2)6,6,dxdn (3.17)

+= f [06’2+2d92+n2 ]dxdn.

Then, inequality (3.15) may be rewritten as

f(z,t)s3m1(t)(—%(z,t)j 2K m .” T,dxdn

(3.18)
T iT,dxd
2K d
Combining (2.1) and (2.2), we know
1
H TTdxdyp<— CE@ t)e ™0, (3.19)
If we set
E(zt)=["E(&1)de, (3.20)
from (2.2), we have
1

E(zt)<m (t)E(0,t)e ™. (3.21)
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From the definition of E (Z,t) and (3.20), we have

:—pI G,dx +— .[ z)u; U, 0x
+J“ZVJRZ(§ 2)uzox+ K[ [ (£-2)T T, dAdy (3.22)
+M” —zCCdAd77+j [ZT +dCT +— c}d

So, we have the following inequality

JJ., (£-2)T T dAdy <%m1( tE(0,t)e ™0, (3.23)
Inserting (3.19) and (3.23) back into (3.18), we have
or 0k
I'(zt)<m (t)[—a(z t)]+[;’2m3 (t)e ™V, (3.24)
where
E(0,t E(Ot
m,(t) = 2KK*( ) + ( *) m, (t). (3.25)
m (04 2KK
For any fixed t, >0, setting k, =3m,(t) and k, =%, from (3.24) we
obtain m, (t)
(z t)+ j D(&,t,)dE <k®(z,t)+ 7 me ™, (3.26)
where we have used the fact %%)(z, t,)<0. To get the result we want, we let
(z,t)=e"®(z,t)+h[ e “d(&1)ds (3.27)
Thus, inequality (3.26) may be rewritten as
aal;l(z t)+hI(z,t) < f2mee e, (3.28)

provided A satisfies the quadratic equation
h?> —kh-1=0. (3.29)
We make the choice of

K, ++kZ +4
h=h, :L_ (3.30)

2

For this choice of A, to integrate (3.28), we have to consider the following two
cases:
1) If hy -k, —k, =0, an integration of (3.28) leads to

T (z,t) <TI(0,t, )e™" + 5*m,ze ™", (3.31)
In light of (3.27), we have
®(z,t,)<I1(0,t,)e ™ 4 pPmye ), (3.32)

2)If h, -k —k, #0, an integration of (3.28) leads to
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2
“hoz pm, (ho-ki—k2)z 17| ooz
T(z,t)<TI(0t,)e iy [evirale™ (333)

It is easy to proof that the second term on the right of (3.33) is positive either
hy—k,—k, >0 or hy—k, —k, <0.1In view of (3.27), we have

s o,
ho_kl_kz ho_kl_kz

In order to make inequalities (3.32) and (3.34) explicit, we need bound for
I1(0,t,). From the definition of TI(z,t;) in (3.27), we may write

(0,t)=®(0,t,)+h[e™“®(&,t)ds <d(0,t,)+hT(0,t). (335

Cf)(z,ti)s{l'[(o,tl) e (3.34)

From (3.35), to bound TI(0,t;) we only need to bound ®(0,t) and
‘i’(O,ti) . From (3.11), we have

©(0,t,)=-4[ [ T,0,ddy < 2/’:* .[;jRT,i'I"idxdn+K7*I;jRaiQidxdn (3.36)

Using (3.12) and (3.16), we have

- Vig
@(0,t,)< KK E(0.t,). (3.37)

From (3.24) and using (3.37), we can get

m, B
2KK”

F(0,t)< E(0.t,). (3.38)

Combining (3.35), (3.37) and (3.38), we have

(o)< gm,, (3.39)

E(0t) hmE(0Y)
2KK” 2KK”

where m, = . Combining the above discussions, we can

conclude:
If hy—k —k, =0, wehave

®(z,t,) < pim,e 0 1 peme o, (3.40)

If hy—k —k, #0, we have

- m k)2 ’m
®(z,t)< g2 m,——2— e M e, (3.41)
h, —k, -k, h, —k, —k,
Inequalities (3.40) and (3.41) exhibit not only exponential decay in z but also
show that the amplitude terms in (3.40) and (3.41) become small as K — K.

4. Conclusion

In view of the Equations (1.2) and (1.3), we may also obtain the continuous de-
pendence on the coefficient M by employing the methods which have been used
in Section 3. Our method is also valid to study other equations. In the future, we
will use the method proposed in this paper to study the structural stability for

the fluid flow in porous media. We think we will get some interesting results.
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