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Abstract 
In continuation of our previous paper of the anharmonic potentials analysis 
through the Floquet representation, we performed in this work a systematic 
calculation of the diatomic vibrational energy levels as well as the corres-
ponding wave functions. The solution of Schrödinger equation according to 
Morse potential, which is a suitable model to describe the diatomic vibration-
al spectra, has been introduced; thus the explicit formulas to the second order 
have been established. As an illustration, the dissociation energies of some 
molecules species (i.e. ScN, LiH, Cl2 and NO) have been computed, as well as 
the wave functions and the corresponding probability densities, relating to 
the (ScN) molecule have been represented. Comparisons of our results with 
those of literature have been made. 
 

Keywords 
Morse Potential, Diatomic Molecule, Dissociation, Birge-Sponer 

 

1. Introduction 

In view of the importance that has the harmonic, pseudo-harmonic and anhar-
monic oscillators in various fields of physics, they have been extensively used for 
solving most of physical problems. To this end, significant efforts are devoted to 
determining the general formulas of vibration-rotation energy spectra and wave 
functions for the molecular systems. The simple harmonic oscillator is a typical 
model, and a major tool in understanding many physical phenomena. In partic-
ular, the introduction of this model in quantum mechanics theory plays a fun-
damental role in the mathematical formalism of this theory, and it is one of the 
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exactly solvable potentials of the Schrödinger equation [1] [2]. However, most 
realistic physical phenomena rely directly on deviation from the harmonic 
shape, which must be modeled by the addition of small non harmonic terms. 
The pseudo-harmonic oscillator pattern is an example of a realistic problem and 
it is considered as intermediate between harmonic and anharmonic potentials. 
The main characteristic of this potential is that it allows obtaining exact solu-
tions of the Schrodinger equation for an arbitrary rotational quantum number, 
and leads to the calculation of the molecular vibration-rotation energy spectra in 
chemical physics [3] [4] [5] [6] [7]. Nevertheless, in order to restore the agree-
ment of the theory with the experiments, the inclusion of the intrinsic anhar-
monic effects is fundamental for realistic systems. In general, it is impossible to 
find an exact solution to such systems, but one can apply conventional approx-
imate methods usually presented in most standard textbooks and research pa-
pers [1] [2] [6] [7]. In this regard, modeling the atomic potential is one of the 
most important parts of molecular dynamics. Several anharmonic functions 
have been developed and applied to solve the Schrödinger equation of these sys-
tems, among them, we cite Dunham [8] and Pöschl-Teller [9]. In particular, the 
well-known Morse potential function is a more reasonable and realistic model 
[10] for these systems. In this regard, the Morse potential model provides an ac-
curate description of the observed vibrational energy spectra of diatomic mole-
cules, and has great popularity with chemists. 

Our motivation is to continue exploring the principal formulas given in our 
previous paper of the analysis of anharmonic potentials through the Floquet re-
presentation [11], where some general results relating to the Morse potential 
have been established. The aim of this work is to perform the calculations used 
in Subsection 3.3, and to establish the explicit wave function to the second order 
of approximation [12]. These are realized for the following diatomic molecules 
(ScN, LiH, Cl2 and NO), to find the finite number of bound states and the cor-
responding dissociation energy as well as the wave functions. Besides, to clarify 
and confirm our results, we have also made the calculations, according to the 
graphical Birge-Sponer plot [13] to find again the obtained results; for the 
above-mentioned molecules. 

The organization of the present paper is as follows: In Section 2 we give the 
outline of the theoretical context and the basic equations. In Section 3 we apply 
the analytic expressions to obtain numerical results and we give comparison. 
Section 4 presents the discussion. Section 5 contains the conclusions. 

2. Theoretical Background and Basic Equations 

The anharmonic Morse potential is frequently used to describe the vibrational 
spectra of diatomic molecules. Its analytical expression is such as [10] [14], 

( ) ( )2
1 e q

eV q D ρ−= −                       (1) 

where eD  is a parameter that controls the depth of the potential well, ρ  is a 
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parameter that measures the curvature of the potential well (width of attraction), 
and q is the variation of interatomic distance with respect to the equilibrium 
distance. 

Let us do the Taylor development of the exponential term in V(q) to fourth 
order around 0q = . Collecting the coefficients of the obtained series expansion 
gives, 

( ) 2 2 3 3 4 47
12e e eV q D q D q D qρ ρ ρ= − +                (2) 

The Morse oscillator Hamiltonian of a diatomic molecule of reduced mass m 
is given by, 

( )
2 2

2 2 3 3 4 47
2 2 12M e e e
p pH V q D q D q D q
m m

ρ ρ ρ= + = + − +         (3) 

Let us make the changes of the constant factors in the following notations, 

0
2 eD
m

ω ρ=                          (4a) 

3

1 2
00

eD
mm

ρ
µ

ωω
= −

                      (4b) 

4

2 2 3
0

7
12

eD
m
ρ

µ
ω

=
                        (4c) 

where 0ω  is the vibrational constant of the diatomic molecule. 
Then we find the anharmonic oscillator which Hamiltonian is such that, 

( )
2

2 2 3 4
0 1 0 2 0

1ˆ ˆ ˆ
2 2
pH q m q q q
m

ω µ ω µ ω= + + +              (5) 

where 0ˆ m
q q

ω
=



 and where 3
1 0q̂µ ω  and 4

2 0q̂µ ω  are the cubic and qua-

dric anharmonic perturbations with amplitudes 1µ  and 2µ  respectively. 

According to Equations (3) and (4), we have the similar situation given by the 
cubic and quadric anharmonic oscillators, for which the Hamiltonian is also 
given by Equation (5). 

Using Equations (24) and (35) of our paper [11], and replacing the constant 
factors of Equation (4), one can obtain the quasi-energy ( )2a

nE  up to second 
ameliorated order, such as, 

( ) ( )

( )

4 2 2 6 2
2 2 2

0 2 2 3 4
0 0

2 8 3
3 2

4 5
0

1 7 15 112 2 1
2 16 4 30

49 34 51 59 21
1152

a e e
n

e

D D
E n n n n n

m m

D
n n n

m

ρ ρ
ω

ω ω

ρ
ω

   = + + + + − + +   
   

− + + +

 





  (6) 

We emphasize that the Morse potential anharmonicity effect appears clearly 
to the second order calculation and that it affects the high vibrational energy le-
vels. 

Let us remark that, 
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2 1 12 2 1 2
2 2

n n n + + = + + 
   

2
2 11 1 7

30 2 60
n n n   + + = + +   
     

and ( )
3

3 2 1 67 134 51 59 21 34
2 2 2

n n n n n   + + + = + + +   
   

 

Then Equation (6) can be written in term of 
1
2

n + 
 

 such as, 

( )
22 2 2 2

2

33 3

2

2 3283 1 11
18432 2 2 2

833 1
2304 2 2

a e
n

e

e

D
E n n

m mD m

m n
Dm

ρ ρρ

ρ

     = − + − +     
    

 − + 
 

 





       (7) 

Since the experiments data neglected the 
31

2
n + 
 

 term, we can read Equa-

tion (7) as, 

( )
22 2 2 2

2 2 3283 1 11
18432 2 2 2

a e
n

e

D
E n n

m mD m
ρ ρρ

     = − + − +     
    

 


       (8) 

Taking the derivative with respect to n of Equation (8) gives, 
( )2 2 2 2 2d 2 3283 11
d 18432 2

a
n e

e

E D
n

n m mD m
ρ ρρ

   = − − +   
  

 


         (9) 

Equations (8) and (9) play the basic role in our analysis of the diatomic vibra-
tional energy. 

Let us note that the energies levels spacing will decrease with increasing values 

of n, therefore when 
( )2d

0
d

a
nE

n
= , the vibrational quantum number takes the  

maximum value maxn , i.e. the value for the vibrational quantum number where 
dissociation occurs, which allows us to determine the dissociation energy of the 
diatomic molecule. 

Let us also note that the function 
( )2d
d

a
nE

n
 versus 

1
2

n + 
 

 decreases as a li-

near function of the variable 
1
2

n + 
 

. 

Using the expressions of the evolution operator, to the second order given by 
Equations (3) and (4b) [12], leads to obtain the second ameliorated solutions 
terms of quantum states, then we can express the wave-functions of the system 
as follows, 

( ) ( ) ( )

2ˆ1
8242 0

8

eˆ ˆ
2 !

q
n

a n
n n j n jn j

m
q K H q

n

ω
ψ

−
+

+ +
=−

 =  π 
∑



            (10) 

where ( )ˆnH q  are the Hermite polynomials. 
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And where the different coefficients n
n jK +  are given by, 

( )
2
2

8
!

32 8 !
n
n

nK
n

µ
− =

−
 

( )7 1 2
2 !

192 7 !
n
n

nK
n

µ µ− =
−

 

( )
2 2
1 2

6
1 11 !
2 9 6 2 6 !

n
n

nK n
n

µ µ
−

  = + −   −  
 

( )5 1 2
17 104 !
24 85 5 !

n
n

nK n
n

µ µ−
 = −  − 

 

( )( ) ( )
2 2

4 2 1 2
1 3 !2 1 2 7
4 2 4 !

n
n

nK n n n
n

µ µ µ−
  = + − + − −   −  

 

( ) ( )
21 1 2

3
!21 74 29

3 16 3 !
n
n

nK n n
n

µ µ µ
−

 = + − +  − 
 

( ) ( ) ( ) ( )
2 2

2 3 21 2
2 2

1 2 1 7 19 1 4 60 16 15 1
2 4 8

n
nK n n n n n n n nµ µ

µ−

 
= − + − + − + − + − 

 
 

( )3 2 1 2
1 1

1 3 81 834 203 274
2 48

n
nK n n n n nµ µ

µ−
 = − + + +  

 

( )( ) ( )
2

2 2 4 3 21
2

11 2 1 82 82 87 65 130 487 422 156
144 256

n
nK n n n n n n nµ

µ= + + + + + + + +  

( ) ( )3 2 1 2
1 1

1 3 1 81 591 1222 816
4 48

n
nK n n n n µ µ

µ+
 = − + + − + + +  

 

( ) ( ) ( )
2 2

2 3 21 2
2 2

1 2 3 7 33 27 4 48 142 87
8 4 8

n
nK n n n n n nµ µ

µ+

 
= − + + + + + + + + 

 
 

( )21 1 2
3

1 21 116 124
8 3 16

n
nK n nµ µ µ
+

 = − + + +  
 

( )2 2 2
4 2 1 2

1 72 2 13 13
64 2

n
nK n n nµ µ µ+

  = − + + + + +    
 

5 1 2
17 108
768 85

n
nK n µ µ+

 = + 
 

 

2 2
1 2

6
1 17

128 9 6 2
n
nK nµ µ
+

  = + +  
  

 

1 2
7 1536

n
nK µ µ
+ =  

2
2

8 8192
n
nK µ
+ =  

As illustration the first three states are given below. 
Ground state (n = 0) 
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( ) ( )
21

ˆ 842 00 2
0

0

1ˆ ˆe
23040

q
a j

j
j

m
q C q

ω
ψ

−

=

 =  
 π ∑


              (11) 

( )0 2 2
0 2 1 245 512 288 272 407C µ µ µ= + − − ,   ( )0

1 2 1720 32 27C µ µ= − +  

( )0 2 2
2 2 1 2360 48 88 129C µ µ µ= − + + ,   ( )0

3 2 1480 261 16C µ µ= −  

( )0 2 2
4 2 1 2120 48 88 81C µ µ µ= − + − ,    0

5 1 2576C µ µ=  

( )0 2 2
6 1 2160 8 39C µ µ= + ,      0

7 1 21920C µ µ=  

0 2
8 2720C µ=  

First excited state (n = 1) 

( ) ( )
21

ˆ 942 10 2
1

0

2ˆ ˆe
23040

q
a j

j
j

m
q C q

ω
ψ

−

=

 =  
 π ∑


              (12) 

( )1
0 2 1120 2065 384C µ µ= − − , ( )1 2 2

1 1 2 245 1488 3023 1440 512C µ µ µ= − + − −  

( )1
2 2 1240 833 192C µ µ= − + ,  ( )1 2 2

3 1 2 2120 568 537 240C µ µ µ= + −  

( )1
4 2 1960 207 8C µ µ= − ,    ( )1 2 2

5 1 2 2120 152 21 48C µ µ µ= − −  

1
6 1 210176C µ µ= ,     ( )1 2 2

7 1 2160 8 57C µ µ= +  

1
8 1 21920C µ µ= ,     1 2

9 2720C µ=  

Second excited state (n = 2) 

( ) ( )
21

ˆ 1042 20 2
2

0

1ˆ ˆe
46080

q
a j

j
j

m
q C q

ω
ψ

−

=

 =  
 π ∑


             (13) 

( )2 2 2
0 1 2 245 2480 5041 1440 512C µ µ µ= − + + + , ( )2

1 2 1240 9349 1632C µ µ= − −  

( )2 2 2
2 1 2 290 3632 7139 3936 512C µ µ µ= − + − − ,  ( )2

3 2 1960 1823 136C µ µ= − +  

( )2 2 2
4 1 2 2120 1528 75 624C µ µ µ= + − ,    ( )2

5 2 1768 663 20C µ µ= −  

( )2 2 2
6 1 2 280 632 141 144C µ µ µ= − − ,     2

7 1 237632C µ µ=  

( )2 2 2
8 1 280 32 29C µ µ= + ,       2

9 1 23840C µ µ=  

2 2
10 21440C µ=  

3. Calculation Results 

In attempt to illustrate the established Equations (8) and (9), we performed the 
numerical computation using the Maple software to obtain the values of the pa-
rameters, corresponding to the previously mentioned diatomic molecules. 

Solving the following equation: 
( )2d

0
d

a
nE

n
= , round down to the nearest in-

teger, leads to find the maximum vibrational quantum number maxn  associated 
with the highest bound state energy level such as, 
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max

2 3283 2 1
18432 2

e

e

D m
n

D m
ρ

ρ
= − −





               (14) 

Therefore, substituting the obtaiend value maxn  in Equation (8), gives the 
theoretical dissociation energy th

eD  connected to the equilibrium position 
(i.e.the depth of the Morse potential well) of the molecule. 

We have chosen the molecules (ScN, LiH, Cl2 and NO) whose parameters are 
given in Table 1. 

The calculated values of the maximum quantum numbers, the theoretical dis-
sociation energy and the dissociation energy with respect to the zero point level 
corresponding to (ScN, LiH, Cl2 and NO) molecules are given in Table 2. 

Next, from Equation (9) we can compute the differences between any two suc-
cessive energies levels: ( ) ( )2 2

1
a a

n nE E E −∆ = − , which can be written as follows, 

( )2 2 2 2 2 2 2 2 2d 2 3283 11
d 2 18432 2 2

a
n e

e

E D
E n

n m m mD m m
ρ ρ ρ ρρ

   ∆ = + = − + − +   
  

   


 (15) 

Thence the graphics of the Birge-Sponer plots, corresponding to ScN, LiH, 
and Cl2 and NO molecules are given respectively in Figure 1. 

In Figure 2 and Figure 3, we present the plots of the wave functions 
( ) ( )2 ˆa

n qψ  versus q̂ , corresponding to the first six (n = 0, 1, 2, 3, 4, 5) levels,  

and the probability densities of the wave-packet ( ) ( )
22 ˆa

n qψ 
 
 

 in the cases 

where the number states are n = 0 and n = 5 respectively, for the (ScN) molecule. 

4. Discussion 

Table 1. The molecules parameters. 

Molecule ( )10 110 mρ −

 
m(amu) ( )eVeD  

ScN [3] 1.50680 10.682771 4.56 

LiH [4] 1.128 0.8801221 2.515287 

Cl2 [5] 2.0087 17.608328 2.513926 

NO [5] 2.7534 7.521478 6.613502 

 
Table 2. The maximum quantum numbers, theoretical dissociation energy and comparison. 

Molecule 
This work Literature 

maxn  ( )eVth
eD  ( )0 eVthD  maxn  ( )eVeD  

ScN 101 4.5596 4.5147 --- 4.56 [3] 

LiH 28 2.5128 2.426 29 [4] [15] 2.515287 [4] [15] 

     2.515267 [3] 

Cl2 72 2.5136 2.4790 72 [6] 2.513926 [5] 

NO 55 6.6115 6.4940 55 [6] 6.613502 [5] 
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Figure 1. The variation of E∆  vs. 1
2

n + 
 

, of the (ScN, LiH, Cl2 and NO) molecules. For all 

graphics, the vertical axis is the energy between, two successif levels and the horizontal axis is 
1
2

n + 
 

. 
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Figure 2. Plots of the wave functions relating to the ScN molecule. For all graphics (n = 1 to n = 5), the 

vertical axis is the wave function ( ) ( )
1
4

2

0

ˆa
n q

m
ψ

ω
 
 
 

π  and the horizontal axis is the q̂ . 

 

 
Figure 3. Plots of the probability densities relating to the ScN molecule. For all graphics (n 

= 0 and n = 5), the vertical axis is the probability densities ( ) ( )
1
2 22

0

ˆa
n q

m
ψ

ω

 
  
    
 

π
 and the 

horizontal axis is the q̂ . 
 

The main goal of our paper is to give an alternative way, to solve the quantum 
anharmonic oscillator problem [11] [12]. This non-perturbative processing is 
applied to determine the analytical expressions of the energy eigenvalues and ei-
genfunctions of the Morse potential. 

The second order calculation of vibrational energy levels according to the 
Morse oscillator where performed in Equations (6) and (7). Therefore, Equation 
(7) is used for the numerical calculation, based on the parameter values of the 
molecules selected from Table 1. 

Table 2 shows the numerical results and some comparisons. 

Note that the graphs of E∆  versus 
1
2

n + 
 

 of Equation (15) are lines with 

negative slopes. Therefore the spacing E∆  between adjacent vibrational energy 

levels is a decreasing linear function of the variable 
1
2

n + 
 

. Thus the plots of 

Figure 1 allowed us to find again the results cited in Table 2. 

The value of max
1
2

n + 
 

 is the intersection of the curve with the abscissa 

axis, as well as integral of E∆  over 
1
2

n + 
 

 from ( 0n =  to maxn n= ) to ob-
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tain the area under the curve, gives the dissociation energy 0D . Then we can 

compute ( )2
0 0

ath
eD D E= + . 

Figure 2 and Figure 3 show that all the pictures profile of the wave functions 
and the corresponding probability densities, present the regular nodal character. 
The first excited state has one node and the second excited state has two nodes 
and so on. But their peaks are not symmetrical, therefore, the harmonic vibra-
tions of the molecule are degraded, this is due to the anharmonic effect of the 
Morse potential well. 

5. Conclusions 

In this work, we performed the calculations of the vibrational energy levels as 
well as the wave functions of the diatomic molecules, according to a systematic 
approach. Our computations were carried out using the parameters of the Morse 
potential of some molecules, namely (ScN, LiH, Cl2 and NO). Then, with the 
help of the Maple software, we have determined the value of the maximum vi-
brational quantum number ( maxn ) and the theoretical dissociation energy th

eD  
corresponding to the previous mentioned molecules. 

Moreover, we also represented in Figure 1, the so-called Birge-Sponer plot, 
deduced from the established general formula (8), which shows that the differ-
ence E∆  between two successive vibrational energy levels decreases as a linear  

function of the variable 
1
2

n + 
 

. This method allowed us as well to find again  

the values: maxn  and th
eD  of these molecules. From Table 1 and Table 2, it can 

be seen that the two procedures based on the general formula (8) agree well, 
when applying them to the previous diatomic molecules. In addition, the estab-
lished fundamental expression of the wave functions, has been positively illu-
strated in Figure 2 with the six levels (n = 0, 1, 2, 3, 4, 5) as well as the probabil-
ity densities with (n = 0 and n = 5) representation for the (ScN) diatomic mole-
cule. Comparison of our results with those established by other authors reveals a 
good agreement and shows the accuracy of our approach. Moreover, it can be 
applied to all forms of potential. 

We project in futures works to improve the calculations, where V(q) will be 
developed with more higher power terms, and we will study the ro-vibrational 
energy of diatomic molecules, according to the Deng-Fan potential. 

Finally, we would like to point out that our study could be a useful tool for future 
research students to understand the quantum dynamics of anharmonic systems. 
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Nomenclatures 

( )V q : Morse potential 

eD : Dissociation energy 
ρ : Parameter that controls the width of attraction 

MH : Morse oscillator Hamiltonian 
m: Reduced mass of the diatomic system 

0ω : Unperturbed oscillator frequency 
p: Impulsion operator 
q: Position operator 
 : Reduced Planck's constant 
( )2a

nE : Quasi-energy to second order 
n: Quantum number 

maxn : Maximum quantum number 
( ) ( )2 ˆa

n qψ : Wave-functions to second order 

( )ˆnH q : Hermite polynomials 
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