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Abstract 
In this paper, the homotopy analysis method is applied to deduce the periodic 
solutions of a conservative nonlinear oscillator for which the elastic force 
term is proportional to u1/3. By introducing the auxiliary linear operator and 
the initial guess of solution, the homotopy analysis solving is set up. By choos-
ing the suitable convergence-control parameter, the accurate high-order ap-
proximations of solution and frequency for the whole range of initial ampli-
tudes can easily be obtained. Comparison of the results obtained using this 
method with those obtained by different methods reveals that the former is 
more accurate, effective and convenient for these types of nonlinear oscillators. 
 

Keywords 
Homotopy Analysis Method, Approximate Solutions, Fractional Power, 
Nonlinear Oscillation 

 

1. Introduction 

Classical perturbation methods including the Lindstedt-Poincaré method, the 
Krylov-Bogoliubov-Mitropolski method and the multiple scales method, as de-
scribed by Nayfeh [1] [2], Kevorkian and Cole [3] and Verhulst [4], are limited 
to the weakly nonlinear systems. Thus, to extend the classical perturbation me-
thods to the strongly nonlinear systems has been the desire of researchers for a 
long time. 

During the past few decades, based on the classical ones, many improved or 
innovative methods applicable to the strongly nonlinear systems have been de-
veloped in open literature. Such as the modified Lindstedt-Poincaré method [5], 
the hyperbolic Lindstedt-Poincaré method [6], the incremental harmonic bal-
ance method [7], the perturbation-incremental method [8], the homotopy anal-
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ysis method [9], etc. 
Among these strongly nonlinear methods, the HAM (the abbreviation for ho-

motopy analysis method) proposed by Liao in 1992 [9] is a general analytical 
method. The advantage of the HAM as compared to other perturbation methods 
is that the HAM is independent of the small/large parameters. More important-
ly, by introducing the non-zero convergence-control parameter h and the non- 
zero auxiliary function H(t), this method provides a simple way to control and to 
ensure the convergence of approximation series. Another advantage of the HAM 
is that one can construct a continuous mapping of the initial guess approxima-
tion to the exact solution of the given problem through an auxiliary linear oper-
ator. Hence, the HAM attracts a great deal of interest of more and more research-
ers and has found applications in various nonlinear problems. On the basic ideas 
and the applications of HAM, one can refer to [9] [10] [11]. 

In this paper, Liao’s HAM is applied to obtain the high-order analytical peri-
odic solutions of a conservative nonlinear oscillator for which the elastic force 
term is proportional to u1/3. This nonlinear oscillator has been recently studied 
by Beléndez [12] [13] using the HPM (the abbreviation for homotopy perturba-
tion method), and by Lim [14] and Mickens [15] using the HBM (the abbrevia-
tion for harmonic balance method). By introducing the auxiliary linear operator 
and the initial guess of solution, the homotopy analysis solving for this nonlinear 
oscillator is set up, the high-order approximations of frequency and solution can 
easily be obtained. Excellent agreement of the approximate frequency with the 
exact one has been demonstrated and discussed, and we show that the second- 
order approximation for frequency in this paper is better than the results by the 
preceding methods, the maximal relative error of the sixth-order approximate 
frequency by HAM is less than 0.0045%. As can be seen, the results presented in 
this paper reveal that the HAM is very effective and convenient for conservative 
nonlinear oscillators with non-polynomial elastic terms. 

2. Solution Procedure 

Considering the following nonlinear oscillator which was introduced as a model 
“truly nonlinear oscillator” by Mickens [15] [16] [17] 

1 3 0,u u+ =��                           (1) 

with initial conditions 

( ) ( )0 , 0 0.u A u= =�                       (2) 

where the over-dot denotes differentiation with respect to time t and A is the 
amplitude of the oscillation. System (1) is a conservative nonlinear oscillator 
with a fractional power restoring force, it is not amenable to exact treatment 
and, therefore, the HAM can be applied to solve it. In order to apply the HAM 
effectively, we rewrite (1) in the following form 

( )3 0.u u+ =��                          (3) 
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By introducing the new variables 

( ) ( ) , ,u t Ay t tτ ω= =                       (4) 

Equation (3) becomes 
2 3 0,A y y′′Ω + =                         (5) 

with initial conditions 

( ) ( )0 1, 0 0.y y′= =                        (6) 

where 6ωΩ = , prime denotes the derivative with respect τ , and ω  represents 
the angular frequency. 

According to [12], the periodic solution of (5) does exist, the solution ( )y τ  
can be expressed by such a set of base functions 

( ){ }cos 2 1 | 1, 2,3, ,m mτ− = �                   (7) 

that 

( ) ( )
1

cos 2 1 .m
m

y mτ α τ
∞

=

= −∑                    (8) 

where mα  are coefficients that should be determined. Considering the initial 
conditions (6) and the rule of solution expression described by (8), a good initial 
guess of ( )y τ  can be determined as 

( ) ( )0 cos ,y τ τ=                         (9) 

According to Liao [9], the auxiliary linear operator can be given easily 

( ) .L Y Y Y′′= +                         (10) 

Now, combining (5) with (10), we can construct the zeroth-order deformation 
equation 

( ) ( ) ( ) ( ) ( ) ( )01 , , ,p L Y y hH pN Y p pτ τ τ τ− − = Λ              (11) 

with the initial conditions 

( ) ( )0, 1, 0, 0.Y p Y p′= =                    (12) 

where the non-zero constant h is called the convergence-control parameter,  
[ ]0,1p∈  is called the homotopy parameter, ( )H τ  is called the non-zero aux-

iliary function, and 

( ) ( ) ( ) ( ) ( )32, , , , ,N Y p p A p Y p Y pτ τ τ′′Λ = Λ +                (13) 

is the nonlinear operator. 
When 0p = , we have ( ) ( )0Y yτ τ= . When 1p = , the system (11) becomes 

(5). Thus, by ranging p from 0p =  to 1p = , it turns out that the initial guess 
of solution (9) deforms continuously to the exact solution of system (5) provided 
the following series 

( ) ( ) ( )0
1

, ,i
i

i
Y p y p yτ τ τ

∞

=

= +∑                   (14) 
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( ) 0
1

.i
i

i
p p

∞

=

Λ = Ω + Ω∑                      (15) 

converge when 1p = . The series in (14), (15) are called the homotopy series, in 
which, ( )0y τ  is defined in (9). By selecting the convergence-control parameter 
h suitably, in general, the convergence of the series (14), (15) can be guaranteed. 
If the series (14), (15) are convergent at 1p = , then the exact solution of system 
(5) turn out to be 

( ) ( ) ( )0
1

,1 ,i
i

Y y yτ τ τ
∞

=

= +∑                    (16) 

( ) 0
1

1 .i
i

∞

=

Λ = Ω + Ω∑                       (17) 

Then, the solution of (1) can be expressed as ( ) ( ),1u t AY τ=  and  
( ) 1 6
1ω = Ω = Λ   . 

With the homotopy series (14), (15), according to Liao [9], we get the high-
er-order deformation equation 

( ) ( ) ( ) ( )1 ,n n nL y y hH Rτ χ τ τ τ−− =                 (18) 

which satisfies the initial conditions 

( ) ( )0 0, 0 0.n ny y′= =                      (19) 

in which 
0, 1,
1, 1,n

n
n

χ
≤

=  >
                        (20) 

and 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1

1

1 11 1
2

0 0 0 0

d , ,1
1 ! d

.

n

n

n j n j kn n

i j k n i j k i
i j k i

N Y p p
R

n p

A y y y y

τ
τ

τ τ τ τ

−

−

− − − − −− −

− − −
= = = =

Λ  =
−

′′ ′′ ′′= Ω +∑ ∑ ∑ ∑
     (21) 

By balancing the like power of p in (18) and choosing ( ) 1H τ =  for conven-
ience, it turns out that, when 1n =  

( ) 2 3
1 1 0 0 0 01 ,y y h y y A hy′′ ′′ ′′+ = + + + Ω                (22) 

when 2n =  

( ) 2 3 2 2
2 2 1 0 1 0 0 0 11 3 ,y y h y y A hy A h y y′′ ′′ ′′ ′′ ′′+ = + + + Ω + Ω          (23) 

when 3n =  

( )
( ) ( )

2 3 2 2
3 3 2 2 2 0 1 0 1

222 2
0 0 1 0 0 2

1 3

3 3 .

y y h y y A hy A h y y

A h y y A h y y

′′ ′′ ′′ ′′ ′′+ = + + + Ω + Ω

′′ ′′ ′′ ′′+ Ω + Ω
         (24) 

Substituting (9) into (22) gives 

( ) ( )
2 2

0 0
1 1

4 3
cos cos 3 .

4 4
h A h A h

y y τ τ
− Ω Ω′′+ = −           (25) 

The elimination of the secular term in (25) requires 
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2
04 3

0,
4

h A h− Ω
=                       (26) 

yields 

0 2

4 .
3A

Ω =                          (27) 

According to (19) and (25), we can obtain 

( ) ( ) ( )
1

cos 3 cos
.

24
h h

y
τ τ

τ
−

=                   (28) 

Substituting (9), (27) and (28) into (23) gives 

( ) ( )

( )

2 2 2 2
1 1

2 2

2

7 18 8 16 6
cos cos 3

24 24
3 cos 5 ,
8

h A h h h A hy y

h

τ τ

τ

− − Ω + + Ω′′ + = −

−
    (29) 

No secular term in (29) requires 
2 2

17 18
0,

24
h A h− − Ω

=                      (30) 

yields 

1 2

7 ,
18

h
A

Ω = −                         (31) 

Solving (29) gives 

( ) ( ) ( )
2 2 2

2
12 25 24 41cos cos 3 cos 5 .

288 576 64
h h h h hy τ τ τ+ +

= − + +      (32) 

Substituting the known terms into (24) gives 

( )

( )

( ) ( )

2 3 2
2

3 3

2 3 2
2

2 3 3

84 187 216
cos

288
96 356 359 72

cos 3
288

216 405 17cos 5 cos 7 ,
288 32

h h A hy y

h h h A h

h h h

τ

τ

τ τ

+ + Ω′′ + = −

+ + + Ω
−

+
− −

         (33) 

Elimination of the secular term of (33) yields 
2

2 2

84 187 .
216
h h

A
+

Ω = −                      (34) 

With the perturbation procedure described above going on, the higher-order 
approximations for 1n−Ω  and ( )ny τ  ( 2n > ) can be derived step by step. Hence, 
the series (14), (15) are derived. 

By taking the transformations (4) into account, the approximations of fre-
quency and solution of system (1) can be written in the following form 

( ) ( ) ( ) ( )0
1

,1 ,i
i

u t AY Ay t Ay tτ ω ω
∞

=

= = +∑              (35) 

( )
1 6

1 6
0

1
1 .i

i
ω

∞

=

 = Λ = Ω + Ω     
∑                  (36) 

https://doi.org/10.4236/jamp.2021.91004


H. X. Chen, Y. Y. Wang 
 

 

DOI: 10.4236/jamp.2021.91004 36 Journal of Applied Mathematics and Physics 
 

3. Results and Discussion 

In this section, the HAM is applied to obtain the frequency and periodic solution 
of a conservative nonlinear oscillator for which the elastic force term is propor-
tional to 1 3u  and its accuracy and efficiency are illustrated by comparing the 
approximate frequency obtained by HAM with the exact one exω  and other 
results in the literature. 

The exact frequency for system (1) is given by the following expression [12] 

( )
( ) ( ) 1 31 3

2 5 4 1.070451.
6 3 4 1 2ex AA

ω
πΓ

= =
Γ Γ

             (37) 

Figure 1 illustrates the effect of convergence-control parameter h on the 2A Ω  
for different order approximation of HAM solutions. It is obvious that with the 
increases of the order of approximation, the 2A Ω  becomes independent of h 
and remains fixed. 

From Figure 1, according to Liao [9], the derivative of 2A Ω  with respect to 
h is 0. So, we can choose 0.449198h = − . Under this condition, the second-order 
approximations of frequency and solution of system (1) are 

( ) ( ) ( ) ( )
( )

2
2 2

2

1.01992 cos 0.0230704 cos 3

0.00315279 cos 5 ,

u t A t A t

A t

ω ω

ω

= −

+
        (38) 

2 1 3

1.07086 ,
A

ω =                         (39) 

therefore, it can be easily obtained that the relative error of frequency is 0.039%, 
that is, the second-order approximations give the frequency with the highest ac-
curacy. This indicates that the convergence-control parameter h plays an impor-
tant role in the HAM. 

Figures 2-4 show the displacement ( )u t  of system (1) obtained by (38) and 
(39) for amplitudes 0.001,1A =  and 100. It can be seen from these figures that 

 

 
Figure 1. The effect of convergence-control parameter h on 2A Ω ; … 2nd-order approx-
imation, --- 4th-order approximation, ___ 6th-order approximation. 
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Figure 2. Displacement u(t) versus time t for A = 0.001; ••• exact solution, ___ 2nd-order 
approximation of HAM. 

 

 

Figure 3. Displacement u(t) versus time t for A = 1; ••• exact solution, ___ 2nd-order ap-
proximation of HAM. 

 

 

Figure 4. Displacement u(t) versus time t for A = 100; ••• exact solution, ___ 2nd-order ap-
proximation of HAM. 
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Table 1. Comparison of the exact and approximate frequencies (2nd-order) obtained using different me-
thods. 

 HAM (this paper) HPM [12] HPM [13] HBM [14] HBM [15] 

1 3
2A ω  (% error) 1.07086 (0.039%) 1.06861 (0.17%) 1.06991 (0.050%) 1.06928 (0.11%) 1.06341 (0.66%) 

 
the HAM provides excellent approximations to the exact periodic solution for 
the wide range of initial amplitudes for this case study. 

In Table 1, we present the comparison between the approximate and exact 
frequency for the second-order approximation using different methods. It is 
clear that for the second-order approximation, the result obtained by HAM is 
better than those obtained previously by other authors. 

In order to make the solutions more accurate, we get the higher-order ap-
proximations easily by the perturbation procedure described in section 2. Here, 
the sixth-order approximations of frequency and solution can be expressed in 
the following 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( )

6
6 6

6 6

6 6

6

1.02054 cos 0.0242185 cos 3

0.00467294 cos 5 0.00159212 cos 7

0.000784884 cos 9 0.000320245 cos 11

0.000131784 cos 13 ,

u t A t A t

A t A t

A t A t

A t

ω ω

ω ω

ω ω

ω

= −

+ −

+ −

+

    (40) 

6 1 3

1.070499 .
A

ω =                        (41) 

the relative error of frequency is 0.00448%, that is, the sixth-order approxima-
tions are more accurate than the second-order ones. 

4. Conclusions 

1) The homotopy analysis method is applied to deduce the periodic solutions 
of a conservative nonlinear oscillator for which the elastic force term is propor-
tional to u1/3. The noteworthy feature of this method is its high accuracy for the 
whole range of values of oscillation amplitude. Moreover, the HAM solution can 
be quickly convergent by choosing the suitable convergence-control parameter 
and its calculation is very simple. Also, compared to other results by different 
methods, it can be shown that the HAM is very accurate, effective and conve-
nient and has a great potential to be applied to other strongly nonlinear oscilla-
tors. 

2) By using computer algebraic system: MATHEMATICA, the symbol deduc-
tions can be implemented easily. 
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