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Abstract

In this paper, we will study the oscillatory properties of the second order
half-linear dynamic equations with distributed deviating arguments on time
scales. We obtain several new sufficient conditions for the oscillation of all
solutions of this equation. Our results not only unify the oscillation of second
order nonlinear differential and difference equations but also can be applied
to different types of time scales with sup T =oo. Our results improve and ex-
tend some known results in the literature. Examples which dwell upon the
importance of our results are also included.
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1. Introduction

In this paper, we are concerned with the oscillatory behavior of solutions of
second-order half-linear neutral type dynamic equation with distributed deviat-

ing arguments of the form
[ (x| st
+['q(1.8) f(x(g(r.6)))aé =0

where 7 is nonnegative integers. By a solution of (1.1), we mean a nontrivial

a-1

e rateo)' |

real-valued function xeC,,[T,,»),T, 21, which satisfies Equation (1.1) on
[Tx,oo), where C,, is the space of rd-continuous functions. A solution x(r)

of Equation (1.1) is said to be oscillatory if it is neither eventually positive nor
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eventually negative and non-oscillatory otherwise. Equation (1.1) is called oscil-
latory if all its solutions are oscillatory. Throughout this paper, we will assume
the following hypotheses:

(A1) p(t) is positive, 0< p(t)< p<+o0, where pis a constant;

(A2) 7(t)>0, y:R—(0,0);

(As) geC, ([0,00)T x[a,b],[ ,oo)) and geC, ([O’OO)T x [a,b],[O,oo)) sa-
tisfies

t>g(1,¢) for £ela,b] and lim,_,, ming(¢,&)=o0;
(As) feC(R,R) suchthat xf(x)>0 for x=0 and f(u)/u"‘ >K>0.

A time scale T is an arbitrary nonempty closed subset of the real numbers.

Forany ¢eT, we define the forward and backward jump operators by
o(t)=inf{seT:s>1}, p(t)=sup{seT:s<t},
respectively. The graininess function s :T —[z,,%) isdefinedby u:=oc ().
If f:T—R is A-differentiable at ¢t T, then fis continuous at £ Fur-

thermore, we assume that g:T — R is A-differentiable. The following formu-

las are useful:

(52) (=1 (0g()+ f(e(0)g* ()= ()" ()+ f* (2o (1))

where a,beT.If T=R, we have
o(t)=t. u(t) =0, f* (1) = (). [ > (1) Ar = [ £ (1),

and (1.1) becomes the second-order half-linear differential equation with distri-

buted deviating arguments:

+[a(s.6) 1 (x(g(s.)))ag =0.

If T=N, we have
G(t):t+1,,u(t):1,fA(t):Af(t),I:fA(t)At: (1),

and (1.1) becomes the second-order half-linear difference equation with distri-

buted deviating arguments:

A(an!//(xn) A(xn +pn)c,H)a_1 A(xn +p,x, . ))
b (1.3)
+24(ne)/ (x(z(ng))) =0
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In recent years, there has been an increasing interest in the study of the oscil-
latory behavior of solutions of dynamic equations. We refer to the papers [1]-[16]
and the references cited therein.

In [1] Bohner et al. proved several theorems provided sufficient conditions for
oscillation of all solutions of the second order Emden-Fowler dynamic equations

of the form

(p(0)2* () +a(0)¥ (o (1)) =0.

They studied both the cases

TA? :ooandT As < o0,
t(]p(s) lop(s)

In [2] Baoguo et al discussed the oscillatory behavior of second-order linear

dynamic equations:

(r(1)x* (1)) + p(1)x (1) =0.
In [3] Grace et al. discussed the oscillation criteria of second order nonlinear

dynamic equations:
(a(t)(xA(t))a) +q(1)x" (1) =0.

In [4], by a Riccati transformation technique, Tripathy, obtained some oscilla-

tion results for nonlinear neutral second-order dynamic equations of the form
A
¥
(FO((0+ pO3a=0))) | +a0lse-0) sens(-5)=0.

In [5], Chen et al studied the oscillatory and asymptotic properties of
second-order nonlinear neutral dynamic equations of the form

O[O (0 r)st0) | a0 500 -0

They studied both the cases

%)@:w Iwém "

fo

a-1

In [6] by a generalized Riccati transformation technique, Chen studied the os-

cillatory of second-order dynamic equations
A
(@ " )] +a(e)f () () =0,

when «,f are constants.

In [7] by a generalized Riccati transformation technique, Zhang et a/. obtained
some new oscillation results for second-order neutral delay dynamic equation of

the form

(r(f)(x(f) + P(t)X(T(t)))A )A +q(1)x(5(z))=0.
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In [8] under condition (1.4), Li et al considered nonlinear second order neu-

tral dynamic equations of the form
(000 pO3-0)) | +al (-5)=0.

In [9] Li et al studied the oscillatory for second-order half-linear delay

damped dynamic equations on time scales of the form
— A a—
(r(t)|xA o = (r)) so(0) (O 2 () + p( () x(8(2)) =0.

In [10] under condition (1.4) and by generalized Riccati transformation tech-

a-1

nique and the integral averaging, Zhang et a/. obtained some new oscillation cri-
teria of second-order nonlinear delay dynamic equations on time scales of the

form

(r(t)(xA (t))r )A _,_q(l‘)f(x(z-(t))) 0.

In this paper, we will consider both the case when

© -1

J(r(s)l//(x(s)));As:oo, (1.5)

fo

holds and the case when

-1

;]E(r(s)(//(x(s)))"As<oo, (1.6)

holds. For more details, see [13] [14] [15] [16]. When T = N, we refer the reader to
[17] [18] [19] [20] and the references cited therein.

The details of the proofs of results for non-oscillatory solutions will be carried
out only for eventually positive solutions, since the arguments are similar for
eventually negative solutions.

The paper is organized as follows. In Section 2, we will state and prove the
main oscillation theorems and we provide some examples to illustrate the main

results.

2. Main Results

In this section, we establish some new oscillation criteria for the Equation (1.1).
We begin with some useful lemmas, which will be used later.
Lemma 2.1, Let x(t) be a non-oscillatory solution of Equation (1.1). Then

there existsa ¢>¢, such that
()20, (1)20 and (r(t)l//(x(t))|ZA (1)

Proof. Let x(¢) is eventually positive solution of equation(1.1), we may as-
sume that x(¢)>0, x(r=7)>0, and x(g(t,f)) >0 for t>1,, £ela,b].
Set z(t)=x(t)+p(t)x(t—z’). By, assumption (A,), we have Z(l)>0, and

A

! ZA(t)) <0 for t21,.(2.1)

from Equation (1.1), we get
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g (;))A =["q(t.£) £ (x(g(r.6)))aé 0. (22)

a-1

(Ow (=) ()

Therefore, r(1)y (x(t))|zA (1)
have two possible cases for z*(r) either z*(r)<0 eventually or z*(7)>0

A . . . .
z" (1) is non-increasing function. Now we

eventually. Suppose that z*(¢)<0 for ¢>1,. Then from (2.2), there is an in-
teger £, suchthat z*(4)<0 and

r(Ow (x(0))(2 (1) <alt)w(x(4))(z* (1)) fore=4. (2.3)

Dividing by r(1)y (x(t)) and integrating the last inequality from ¢ tot, we
obtain

z(1) < z(tl)+(r(tl)l,//(x(tl )))é (1) ;IAS fort>1,.

Y(r()w (x(s)

This implies that z(#) > - as ¢—> o, by (1.5), which is a contradiction
the fact that z(¢) is positive. Then z*(7)>0. This completes the proof of
Lemma 2.1. 0

Lemma 2.2. Assume that a >1, x,,x, €[0,»). Then

—

1 a
a o
X +Xx, ZF(’G‘H%) .

Proof. The proof can be found in [11].

Lemma 2.3. Assume that 0<a <1, x,,x, €[0,»). Then
X +xg 2 (x +x,)" (2.4)

Proof. The proof can be found in [12].

Throughout this subsection we assume that there exists a double functions
{H(t,s) [t>52> O} and h(t,s) such that

1) H(t,t)=0 for t>0,

2) H(t,s)>0 for t>5>0,

3) H has a nonpositive continuous A-partial derivative H™ (1,s) with re-

spect to the second variable, and satisfies

_ H™(1s)
h(t,s)= \/m

In the following results, we shall use the following notation
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A

¥(1)=KB(0)[ a(t.6)(1-p(2(1.8))) As—(B(e)a()y (x(r) A(7))
+BORE)(r (1w (x7 (1) 47 (1)) <.
n(t)=p"(1)+ a,B(t)R(t)(l +lj(r" (t)w(x“ (t)) A° (t))i .

[

Next, we state and prove the main theorems.

Theorem 2.1. Let a >1 and (1.5) holds. Further, assume that there exists a
positive non-decreasing rd-continuous A-differentiable function f(t), such
that for any ¢, € N, there exists an integer ¢, > ¢, with

a+l

L (8)
o Gy

where Q(t, f) =min {q (t, §) , (q (t, f) - Z')} . Then every solution of Equation
(1.1) is oscillatory.

}Lrgsupj[ﬂ(s) 251 LbQ(s,f)Af— ]As =, (2.5)

Proof. Assume that Equation (1.1) has a non-oscillatory solution, say x()>0,
x(t—z') >0 and x(g(t,f)) >0 for all 7>¢,. From Equation (1.1), Lemma
2.2 and condition (A,) there exists ¢, >¢# such thatfor 721, , we get

{(”(I)‘//(X(l))(zA (1))’ )A i p° {(r(t_z),/,(x(t_,))(f A )AH

(2.6)
+2{f_] [[0(.£)= (g(1.))a¢ <0,
Further, it is clear from (A3)
g(1,6)= min{g(t,a),g(t,b)} =G(t), ¢ €a,b].
Thus
[(rw(x(r))(f ) )+ {(r(t_w(x(t_,))(f (1)) )ﬂ
. (2.7)
+WJ§Q(¢,§)A§ <0.
Define
O )= ()
w(r)=p(1) - (G(t)) (2.8)
Then @(¢)>0.From (2.8), we have
o0 (v o))
S 1T e CT0)
R . (2.9)
0 O 0] (o)
2 (67(r)2" (G (1)) |
Since z*(¢)> 0, and By using the inequality
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x—y*2ay*(x-y) forx#y>0 and a>1,

we have

o® (t)Sma)"(t)+ﬁ(t)

{0 (6(0)
e (2.11)
_aﬂ(t)f(r)w(xv<r>)((z“<r)) | = (@) (60)
# (6 () (6(1)

By Lemma (2.1), since r(t)l//(x(t))|zA (z‘)rli1 2% (t)= r(t)l//(x(t))(zA (t))a is
decreasing function then

r(t)yl(x(t))(zA (t))a < r(G(t))l//(x(G(t)))(zA (G(t)))a . Then it follows that

A(60) [ i) F
=0 ‘{rw(r))w(x(c;(r)))) o

It follows from (2.11) and (2.12) that

(6(1) (2.13)

~ap()—2O_ (o (1))
(87 (1) «

Similarly, define another function v(¢) by

a(t—f)l//(x(t—z'))(zA (t—z'))a .

v(1)=p(1) (600 (2.14)
Then v(t) >0 . From (2.14), we have
20 D (]
=y A0 =) -
o r (1=2)p (¥ (0 _T))((ZG (1-7))’ ) (= (G()))’
2 (67(1)=* (G(1) '
From (2.10), (2.14), (2.15) and (2.12), we have
N (L e e A
r=r (600 T e
_QM(VJ (t))%l
(B7(1)
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From (2.13) and (2.16), we obtain

@ (1)+ p“v* (1)

From (2.7) and (2.17), we have
o" (t)+ pevt (t)

<- 2“th§A§+

B oy
p° (t) (/z"’ (t))7

Using (2.18) and the inequality

a+l aa Ba+1

BM—AM7 S—aﬂ_a’A>0’ (219)
(a+1)" 4

we have

o (t)+p*v* (1)< -

1
A
2“‘J 0(t.5) §+(a+1

L (ﬁA(t)) .
(a+1)" (B(1)R(2))"

Integrating the last inequality from ¢, to £ we obtain

a+l

| - +p? (ﬁA(s))a+1
I{ 2“IIQ $)ae (a +1)‘”‘(1 g )(ﬂ(s)R(s))“JAS
<o(t)+p ().

which yields

1°

j[ﬂ( Vo [[o(s.&)as- (1+Pa)w]As<c

a-1 a+l a
A2 (@ +1) (B(s)R(5))
where ¢, >0 is a finite constant. But, this contradicts (2.5). This completes the
proof of Theorem 2.1. O
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Corollary 2.1. If T =N, then (2.5) becomes

, S| Kp 3 1 (Apv)wl
lim su s 1+ p* ) — | = . (2.5)
e p;(?l ;Qé (05+1)a+1 ( P ) (p,R)"

Then every solution of Equation (1.2) is oscillatory.

Example 2.1. Consider the nonlinear delay dynamic equation

1
A(Lmn)+zﬂ—§xn (§+x3) =0,n>1,
n g=0 N

+1

where a, =——, y(x,)=1, p,=0, a=1, ¢(n, §):—§ If we take p, =n,

2

K =1 then we have R, :n_-i-l’
n

n K pl

$ Z (1+ P )((1+1)-1)""

P a- 1 (a )a+1(lR )a

=é(%—4,<;+1)J=g(%—4<;1))2:I%”J”

1
as n—>ow if 4 >Z Thus Corollary 2.1 asserts that every solution of (3.1) is

oscillatory when A > % .

Theorem 2.2. Let 0<a <1 and (1.5) holds. Further, assume that there exists
a positive non-decreasing function /(¢), such that for any ¢, there exists an

integer ¢, >¢ , with

hmsup_[ KB(s)|0 I (s, §)A§——
(a+1)
Then Equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 2.1 and hence the details are
omitted.

Theorem 2.3. Assume that «>1 and (1.5) holds. Let ﬁ(t) be a positive
rd-continuous A-differentiable function. Furthermore, we assume that there ex-
ists a double function {H(t,s) |[t>s> 0} JIf

}Lrl;supmj[H(t,s)ﬂ(s)% [ o(s.£)ac

0 E=a

. (1+pa) H(t,s)Sa*l(t’S)JAS:oo.
(a —i—l)ng 0 (s)

Then every solution of Equation (1.1) is oscillatory.

(2.20)

Proof. Proceeding as in Theorem 2.1 we assume that Equation (1.1) has a
non-oscillatory solution, say x(t) >0, x(t —r) >0 and x(g(t,cf)) >0 for all
t >t,. From the proof of Theorem 2.1, we find that (2.18) holds for all ¢#>¢,.
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From (2.18), we have

Bl [o(s)ae
<-o" (1)- p™v* (1) + ﬁi 23 ®° (t)—a@(t)(a)" (t))%l
80, =
st -ao)( () |

Therefore, we have

b

jH(f’S)ﬂ(S)%IQ(s,g)AgAs

a

< —jH(t,s)a)A (s)As—p"‘j.H(t,s)vA (S)As

B 5]

+jH(ts ( (S)) §)As— aJH (19)0(s) (0" (5)) * As
+p ;[H ts (ﬂﬂ ((SS))) ( )As ap th ts @( )(v”(s))%lAs,

which yields after integrating by parts

[H(s) ﬂ(s)%jg(s,g)AgAs

5]

SH(t,tz)a)(tz)+jH(t,s)&(t,s)a)“(s)As
—ajH(t,s)@(s)(a)" ()« Ast pH (0)v(1,)

a+l

+ 0% [ B (1,5)8(5)v" () As—ap® [ H (1,5)0(s)(v (5)) « s
From (2.19), we have

b

JH(9)(5) 3 [0(s.£)ags

[y

H(t,s)u9°‘+1 (t,s)
; (a+1)a+l @05 (S)
t H a+l
1 (t,s)19 (t,S)As

t,[(a+1)a+1 o (S)

Then,

’ ) B(s . 1 H(t,8)9"" (1,5)
tJ; ( ﬂ( IQ (1 P )(a+1)a+l @a(s)

<H(t,t,)o( 2)+P H(t,0,)v(1,),

which implies
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H(t,s).9“+1 (t,s)

j{H(t’s)ﬂ(s)za_K_]j-Q(S,i)Ag_(1+pa) 1

) ) ((l +1)a+]
<H(8,0)|(t, )|+ p“H (t,0)|v(,)|-

Hence,

0 (s)

t

1 H(t,s)S“”(t,s)

j{H(r,s)ﬂ(s)za—’f]ig(s,g)Ag_(Hpa)

0

(a+1)a+] e (S)

< H(t,O){j: ,B(s)%iQ(s,é)Ag As+o(1)|+ 57|y (2 )|}.
Hence,
iman s 102080015 ot e)ae
. 1 H(t,5)9""(t,s)
)T e }As
si Bs) o iQ(s,é)Ag As (6, )+ p° v (1)] <o

which is contrary to (2.20). This completes the proof of Theorem 2.3.
Corollary 2.2. If T =N, then (2.20) becomes

m-1 K b 1 19a+1H
li H —_— —(1+ p”®
o, SUP o ;)( mnfn yai Z‘,QM ( P )(a +1)‘“1 Q¢

Then every solution of Equation (1.2) is oscillatory.
Corollary 2.3. If T =R, then (2.20) becomes

t

}i_{gsupmj[H(t,s)ﬁ(s)%iQ(s,(f)d;‘

0

]AS
JAS

O

m,n m»"J:w. (m)

(1+0%) H ()9 (£,5) (220)
- a+l ( - a & dS =,
(a+l) ®1 (S)
where
J(t)G'(¢) -
(=209 )= (G (+(G(0)
(B(1))
Then every solution of Equation (1.3) is oscillatory.
Example 2.2. Consider the differential equation
4t* +2cos’ (In?) o £
t————2x'(¢ = x|t dé=0 fort>1¢, =1,
[ t* +2cos’ (In?) X )] +;[(tjx[ +élde ort=h
If we take ﬂ(t) =1 and H(t,s) = (t —s)2 , then we have
limsup ! j H(t,s)ﬂ(s) K le(s,f)dé
t—o H(t,to) " PA u
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(127

1 H(t,5)9"(,s) &
(a+1)"" e (s)
t _ 2 2
 limsup 1 2_[ (t—s) ~ s4S2 +20052 (Ins) is
oo (=11 28 s® +2cos” (Ins)

[ Ry
> limsup ! 2_[ (t S) —2s¢ds
t—w (t—l) ZS

1

. 1 7, 1, 3
= limsup Sl t——t"+ -t Int+— |=o0
e (1-1) 4 2 4

Hence, this equation is oscillatory by Corollary 2.4.
Theorem 2.4. Let 0<a <1 and (1.5) holds. Further, assume that there exists
a positive rd-continuous A-differentiable function ﬂ(t) , such that for any ¢,

there exists an integer ¢, >, , with

}ggsupmi[ﬁ(s)lf (t.5) iQ(s £)As
., 1 9 (1,s)H(1,5)
_(1+p )(a+l)a+l 0 (s) JASZOO'

Then Equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 2.3 and hence the details are
omitted.

Corollary 2.4. If T =R, then the condition of Theorem 2.4 becomes

}Lrgsupmj.[H(t,s)ﬂ(s)KiQ(s,f)dcf

) (l+pa) H(t,s)3a+l(t’s) ds = o0,
(a+1)"" o (s)

Then every solution of Equation (1.3) is oscillatory.
Example 2.3. Consider the differential Equation

1 "oly §+2
( (t)+:x j J. §+1
1

where a =1, a(t)=y(x)=1, p(t):m’

l
g(t,§)=t-¢ and f(x)=x.Ifwetake p=1, H(t,s):(t—s)2 and
ﬁ(t)sl,then

t ) b gaﬂ ,
1imsup 1 . I(t—s) [ﬁ(S)KJQ(Saf)df—(l+p“) a+l (ls) ds

t—ow (t_to) o

=limsu ;j‘(t—s)z Z—l(ijz ds =00
1= p(t_t )2 s 4\t-s ‘

o) %

Hence, by Corollary 2.4, this equation is oscillatory.
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Theorem 2.5. Let a >1 and (1.5) holds. Further, assume that there exists a
positive rd-continuous A-differentiable function A(¢), such that for any 1,

there exists an integer ¢, > 1, with
2

imsnf| 205 fot. a2 CEIED oy
— 1 .
where T = G (<)

Then every solution of Equation (1.1) oscillatory.

Proof. Assume that Equation (1.1) has a non-oscillatory solution, say x(7)>0,
x(t—r) >0 and x(g(t,ﬁ)) >0 forall ¢#>¢,. By Lemma 2.1, we have (2.1) and
from Theorem 2.1, we have (2.7). Define @(¢) and v(¢) by (2.8) and (2.14) re-
spectively. Proceeding as in the proof of Theorem 2.1, we obtain (2.9) and (2.15). By
using the inequality x“—y“ >2"“(x-y)" for x>y >0 and a>1,wehave

(=(G(r))" == (Gz;)(_GZ) (G), e (*(6(1)) " az21. @22

Substitute from (2.22) in (2.9), we have

" (1 <ﬁA(t)af’ 1)+
( )_ I (t) ( ) ﬁ(t) @ (G(t)) (223
20 v (¢ 0)((0)') (2 (60)
L2 (Ga (t))
From (2.12), we have
e g OO OF
(1)< 7 ) (1)+B(1) = (G(1)) (2.24)
_ol-« M o° ’ .
#0) (@ (1))
On the other hand, from (2.15), we have
eGP e
v (1)< B(1) =(G(1)) aON " (2.25)
_pl-a M Vo ’ .
) (v (1)
From (2.24) and (2.25), we obtain
o (t)+p“v* (1)
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+Mwﬂ (t)_zl—a ﬁ(’)r(t)(a)a (t))z

(
5 (1) (57 (1))
p° {ﬂA (f) W (t)_zl—a M(VU (t)){l

(2.26)

B (1) (57 (1)
From (2.7) and (2.26), we have
" (1)+ p™v* (t)

S—ﬂ(t)za (,E)AE+ P (’)wf’(x) 2]'“m(a)"(t))2 (2.27)

(1) (5 (0)

B°
pm; (-2 —(ﬂ ( )t()% (r))zl-

Using the inequality Bu — Au’ < f—A, A>0 in (2.27), we have

a

K ° (8 (1))
= {Q(f ) (1+p )—ﬁ(z)r(z)'

Integrating (2.28) from ¢, to £ we obtain

j(ﬁ(S) = T (s, 1+ )MJM%(Q)W“V(%

o (t)+ p*v* (1) <-B(t)

2 B(s)L(s)

which yields

j[ﬂ(s) 25. b (5.5)A¢ - (l;[j) :(BIZS)(;)()S)JAS <e,

53

where ¢, >0 is a finite constant. Taking lim sup in the above inequality, we
obtain a contradiction with (2.21). This completes the proof of Theorem 2.5. [J
Corollary 2.5. If T =N, then (2.21) becomes

m-1 b 1+ a A 2 o
},EEOSUPZ[ aﬂf;Qz,g—( 23,]1 )%sz. (221)

I=ny

Then every solution of Equation (1.2) oscillatory.
Example 2.4. Consider the nonlinear neutral dynamic equation

1 Ag s
A[n3 (A(Xﬁpx,,_.)) j+Z X, =0, n>1,

1 AS
where a4, = w(x,)=1, p,=p>0, a=3, q(n,f)zn—3. If we take
B,=n’, K=1,then, wehave J, =1,
(1+r7) (88)
11m nsup [0) — !
Z[ Z Ay
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B 3
= lim supi[%_M] =

if 1>0. By Corollary 2.8 every solution of this equation is oscillatory when
A>0.

Theorem 2.6. Let 0<a <1 and (1.5) holds. Further, assume that there exists
a positive rd-continuous A-differentiable function f(7), such that for any ¢,

there exists an integer ¢, >¢,, with

o ? 27 pr()

fo

1imsupj.{ﬂ(l)KiQ(l,§)A§(1+pa) (ﬂA (1) JAZ .

Then Equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 2.5 and hence the details are
omitted.

Theorem 2.7. Assume that ¢ >1 and (1.5) holds. Let B(¢) be a positive
rd-continuous A-differentiable function. Furthermore, we assume that there ex-
ists a double function {H (t,5)|t>s>0}.If

t b

i 10900055 fots 210

e & (1,5)H(1,5) —w
_(1 p >—4¢)(s) JAS— .

Then every solution of Equation (1.1) is oscillatory.

(2.29)

Proof. Proceeding as in Theorem 2.5 we assume that Equation (1.1) has a
non-oscillatory solution, say x(t) >0, x(t - r) >0 and x(g(t,f)) >0 for all
t 2 t,. From the proof of Theorem 2.5, we find that (2.27) holds for all 72>¢,.
From (2.27), we have

K
20!71

A (1)
B (1)

o (1)~ o(1) (" (1))

(2.30)

B(1) }Q(r,f)Ags-ﬁ (1)=p“v* (1) +

Therefore, we have
b

jH(t,s)ﬁ(s)%:[Q(s,f)AéAs
S—jH(t,s)wA (s)As—p“jH(t,s)vA (5)As

f B (s ! 2
+tJ;H(t,s)(ﬂg%)))+a)‘7 (S)As—tJ;H(t,s)go(s)(a)g (s)) As
+p“jH(t,s)Mva (s)As—p“jH(t,s)(p(s)(vg (s))2 As,

5] ﬁa (S) 5]

which yields after summing by parts
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[ H(9)8(5) 255 [0(5.2)aens
< H(06)o(t)+ [ H(6,5)8(t.5)a" (s)As

5]

[ (es)pls) (o () A o7 (1) o(e)

t t 2
+p“JH(t,s)3(t,s)v" (s)As —p“JH(t,s)go(s)(v" (s)) As.
t 5}
BZ
Using the inequality Bu — Au’ < Yk A >0, we have

jH(%S)ﬂ(S)%EQ(s,é)AgAs

153

9 (t,s)H(t,s)

<H(t,t)o(t )+ As+ p“H (t,t, ) v(t 2.31
(t.6)o(s) 2[ 40 (s) P H(L5)v(5) (2.31)
ol 9 (t,s)H (t,s
L
3
The rest of the proof is similar that of Theorem 2.3 and hence the details are
omitted. This completes the proof of Theorem 2.7. d
Corollary 2.6. If T =N, then (2.29) becomes
m-1 K & 9* H
lim su H — —(1+ p* )22 | =00, 2.29
frony p o ’;)[ m,npn 20!,1 ;Qn,é ( p ) 4¢n ( )

Then every solution of Equation (1.2) is oscillatory.
Theorem 2.8. Let 0<a <1 and (1.5) holds. Further, assume that there exists
a positive rd-continuous A-differentiable function ﬂ(t) , such that for any ¢,

there exists an integer ¢, >¢,, with

t b 2
lim sup H(lt’o).([(KH(t,s)ﬂ(s);fQ(s,f)Af—(1+p“ )%g)(w)]m = o0,
Then Equation (1.1) is oscillatory.
Proof. The proof is similar to that of Theorem 2.7 and hence the details are
omitted.
Theorem 2.9. Let (1.5) holds. Assume that there exists a positive non-decreasing
rd-continuous A-differentiable function S(¢) such that for any ¢, there exists

an integer ¢, >¢,, with

}Lr{clsupH(lt’o)j;(H(t,s)‘{’(s)—gb(s))As=oo, (2.32)

Then every solution of Equation (1.1) is oscillatory.

Proof. Assume that Equation (1.1) has a non-oscillatory solution, say x(7)>0,
x(t—r) >0 and x(g(t,f)) >0 forall ¢>¢,. From Equation (1.1), From (2.1)
and the fact that x(t) < Z(t) , we see that
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x(g(té)-1)<z(g(t.&)-7)<z(g(t.€)). 121, £ ela,b]  (233)
Further, it is clear form (A;) that
g(t.&)2min{g(t,a).g(1,b)} = G(t), & €[a,b].
which in view of (2.1) leads to
z(g(t.£))22(G(1)), fort2t;>1,, & e[a,b].

Using the above inequality together with (2.1), (2.33), (As) and (A4) in Equation
(1.1) for t>t,, we get

02 (O ()= () ) 5 (GO 9 &)1~ (e ) 22 (30
Define the function (r) by the generalized Riccati substitution

o(t)= ﬂ(z)r(t)w(x(t)){ij(gzz)) + A(t)}, = (2.35)

It follows that

wA<r>:(mr)a(r)w(x(t))A(of+a6(t)w(x%r))((f(r)f)a[ ot }

A0l ()= (1))
2 (6(1) '
From (2.34) = and (2.35), we have
o (1)< =K A (0] 0(1.£)(1- p(2(10))) A +(B ()l (x(1) A1)
@ (O (v ) ) ) ((60) @39
(67 (1))="(G(1)) '

First: we consider the case when o >1. By using the inequality

+

A

£() o (-
e ARONE0

+

x—y*2ay(x-y) forx=y>0 and a>1,

+(B(e)a(r)w (x(1))4(e)) + ;”i 8 o’ (1) (2.37)
gt O O 0 (602 (610
(6 () u (6 (1)
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From (2.12) and (2.37), we find
o (1) <-KB(1)[ q(.)(1-p(g(s. g)))" A¢
+(ﬂ(f)a(f)W(X(f))A(f))A

o’ (1) (2.38)

a’ l// x” (t))

—-ap(t)R(1)

Second: we consider the case when 0 <« <1. By using the inequality

x—y*2ax* (x—y) forx#y>0 and O<a<l,

We may write

() 2T D= (60) =G O) 4 o
(z (G( ))) = y“(G(t)) 2 ﬂa—l(G(t)) z (G( )), O<a<l.

Substituting in (2.36), we have

o (1) <-KB(1) ], a(1.6)(1- p(2(1.)))" A

(B (x0) ) + 5o (0

(e (v (0)(( (0)') = (67 ()= (6 (1)
e (G” (t)) (6(1)) '

From (2.12) and by Lemma (2.1), since r(¢ )x//( )(zA (¢) ) is decreasing

function, we have

—ap(1)

~ahll) 2 (67 (1))
o] (“9’
ra(t)l//(xa(t)) z7(t
<—apf(t)R(1) (6" (0) .

Thus, we again obtain (2.38). However, from (2.35) we see that

a+l
@ 1

vl @)= )| En
(67 (1)) RVEO

a

—r° (t)l//(x“ (t)) A° (t)] . (2.40)

Then, by using the inequality

1 VLA TR 1 1
(v—u) a>y 44—y “—(1+ )u v, a—%>l
a a 0

we may write Equation (2.40) as follows
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Substituting back in (2.38), we have

0 (1)< KB 9(.£)(1- p(2(.2)" A2

Thus,

Therefore, we have

tj;H(t,s)‘P(s)As < —tj;H(t,s) §)As+ j%af (s)As
) j(aH(r,sw(z)lR(r)}(wa s
L)
which yields after summing by parts
jH(r,s)‘P(s)As
< H(t,tz)a)(tz)—;[HA‘ (t.5) o (S)Asz ”(Sﬂ)fzi;’s)wa (s)As
_j‘{H(t )0613( ) 1( 1)](605 (t))”i As.
: (57 (0) =
Hence
jH(l,s)‘I’(s)As
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From (2.19), A= H(t,s)m and B= (M—h(t,s),lH(t,s)] ,
(1)) =

we obtain
j(H(t,s)‘P(s)—¢(s))As < H(0)o(t) < H(1.0)[(s,)),

which implies

t

[(H(t.5)¥ (s)—¢(s))As < H(t,O){I‘P(s)As+|co(t2 )|} <o,

0 0

which is contrary to (2.32). This completes the proof of Theorem 2.9. O
Theorem 2.10. Let (1.6) and (2.5) hold. Assume that S(¢) be as defined as

Theorem 2.1. If

o b a
t{ m};{q(s,f)(l—p(g(s,f))) AfAs] Au=ow,  (2.42)
then every solution of Equation (1.1) either oscillates or tends to zero.

Proof. Assume that Equation (1.1) has a non-oscillatory solution. Without loss
of generality, we may assume that x(¢)>0, x(r(t))>0 and x(g(t,§))>0
for all ¢2>¢,. Proceeding as in the proof of Lemma 2.1, we have (2.2) holds.
Therefore, r(t)l//(x(t))|zA (t) o z* (t) is non-increasing function. Now we
have two possible cases for z*(r) either z°(7)<0 eventually or z*(7)>0

eventually. If z*(¢)> 0, The proof is similar to that of Theorem 2.1 and hence
is omitted. Suppose that z* (1) <0 for ¢>1,.Since z(t) isa positive decreasing
solution of Equation (1.1), then lim z(t) =b>0.Now we claim that »=0.

t—w©

If >0 then z“ (G(t)) >p* for t>t, >t,. Therefore from (A,) and (1.1), we

have
(rw () 0)) ) Kb [ a0.6)(1-ple(0.2))) A2 <0, 121,
Integrating the above inequality from ¢, tot, we obtain
(0w (x(0))(=* (1)
<o (6o (x(0)) (2 () 4] Ja(s.£) (1= p(e(s.8))) Aas

tha

< —Aj}q(s,§)(1—p(g(s,§)))a A&As,

ha

a

where 4= Kb >0. Dividing by r(t)l//(x(t)) and integrating the last inequa-
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lity from ¢, tot, we obtain

11 1 ub o a
z(t)Lz(t) - A% || ———— | | g9(s, &) 1—-plg(s,& AéAs | Au.
Condition (2.42) implies that z(1) —>— as t— o which is contradiction with
the fact that z(¢)>0. Then »=0. ie lim,_, z(¢)=0. Since 0<x(r)<z(¢)
then lim,,, x(¢)=0. The proof is complete. O

3. Conclusion

We established some new sufficient conditions for the oscillation of all solutions
of this equation. Our results not only unify the oscillation of second order non-
linear differential and difference equations but also can be applied to different
types of time scales with supT = o . Our results improved and expanded some
known results, see e.g. the following results:

Remark 3.1. If l//(x(t)) =1, p(t) =0, a=1, g(t,é‘) = g(t) , q(t,é’) = q(t) ,
f(x(g(t))) =x" (g(t)) , then we extended and improved Theorems in [1].

Remark 3.2.If v (x(¢))=1, p(1)=0, g(t.&)=1, q(t.&)=q(1),
f (u) =u”?, then we generalized the results in [3].

Remark 3.3.1f v (x(¢))=1, g(1.&)=g(t), q(1.£)=q(1),
f(u)= |y(u—5)|y sgn y(u—3)K , then we extended and improved Theorems
in [4].

Remark 3.4. If !//(x(t)) =1, q(t,f) = q(l) , f(u) = |u(t)|'3_1 u(t) , then we
reduced to Theorems in [5].

Remark 3.5. If w(x(t)) =1, p(t)=0, g(t.&)=g(1), q(t.£)=4q(?),
fu)= |u (t)|ﬂ7l u(r), then we reduced to a special case in [6].

Remark 3.6. If y/(x(t)) =1, a=1, g(t.&)=t, q(t,&)=q(t), f(u)=u,
then we reduced to a special case in [7].
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