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Abstract 
This article numerically investigates the 2D, steady, laminar, incompressible 
fluid flow, mass and heat transfer of a non-Newtonian fluid model induced by 
stretching surface. A Casson fluid model is considered to study the non- 
Newtonian behavior of the flowing fluid. The magnetic field and a porous 
medium are considered in the flow momentum, whereas the viscous dissipa-
tion is also taken into account in the energy transport phenomena. To see the 
fluid concentration, the concentration equation is used. Furthermore, the 
Nusselt number coefficient and skin friction are modified with the addition of 
nonlinear stretching and radiation parameters. With the similarity transfor-
mation, the nonlinear governing partial differential equations are trans-
formed into a system of ordinary differential equations and then numerically 
solved using a fourth-order Runge-Kutta scheme with the shooting method. 
The relevant parameters of interest are interpreted for graphical results. The 
results illustrate that the fluid energy increases effectively with an increase in 
the Eckert number, radiation parameter, and heat source parameter, while it 
decreases by increasing the Prandtl number and heat sink parameter. Both 
the wall skin friction and the wall Nusselt number coefficient decelerate with 
an increase in the Casson parameter. 
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1. Introduction 

Fluid dynamics is an important sub-discipline of fluid mechanics that describes 
the progression of fluids. Hydrodynamics and aerodynamics are the two major 
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areas of fluid dynamics. It has many fascinating applications, like calculating 
stresses and moments on airplanes, determining the mass flow rate of petroleum 
through pipelines, forecasting weather patterns, and modeling fission bomb ex-
plosions, among other things. The three basic axioms of fluid flow are the con-
servation laws: 1) Momentum conservation, 2) Energy conservation, and 3) 
Mass conservation. Fluid flow piques the curiosity of scientists and engineers. 
This is because the forces it generates are of considerable interest to the engi-
neering sector. A few of these fascinating applications are jet propulsion, aerofoil 
design, wind turbines, and hydraulic brakes. Fluids are mainly categorized into 
Newtonian and non-Newtonian fluid models. Newtonian fluids have a linear re-
lationship between stress and strain. On the other hand, non-Newtonian fluids 
have a nonlinear stress-strain relationship. Both of these fluid categories are of 
great importance in our daily lives. 

Non-Newtonian fluids have gained a lot of attention in the past decades be-
cause of their vast applications in various engineering fields (such as crude oil 
processing, plastic material development, and syrup medication research). In 
this work, we are using the Casson fluid model as a non-Newtonian fluid. There 
are several other non-Newtonian fluid models, but the Casson fluid is particu-
larly important due to its unique characteristics. For example, Casson fluid be-
haves like an elastic solid, and the constitutive equation includes a yield shear 
stress for this fluid. This type of transport mechanism can be found in a variety 
of chemical and mechanical engineering disciplines as well as in food processing. 
Casson’s fluid rheological model was initially given by Casson [1]. The Casson 
model establishes a plastic fluid model that exhibits shear thinning, yield stress, 
and large shear viscosity. Later on, Subba Rao et al. [2] discovered that for a very 
large wall shear stress, the Casson fluid model can be reduced to a Newtonian 
fluid. Bird et al. [3] analyzed the rheology and fluid flow behavior of visco-elastic 
materials. Mukhopadhyay studied the heat transport phenomena of Casson fluid 
over a non-linearly stretching surface [4]. Animasaun et al. [5] studied the transport 
mechanism of Casson fluid under the impact of an external heat source using an 
analytical approach. Nawaz et al. [6] and Awais et al. [7] had made significant 
contributions to the advantageous domain of Casson fluid. 

In the modern era, a magnetic field is enforced on the fluid flowing in a man-
ner to guide the flow. In the presence of a magnetic field, the study of electrically 
conducting fluid is characterized by magnetohydrodynamics (MHD). The con-
cept of electrically conducting fluid was originally proposed by Hannes Alfvén 
[8]. K. Anantha Kumar [9] studied the effect of thermal radiation on MHD Cas-
son fluid flow over an exponentially stretching curved sheet and observed how 
the temperature field improves with radiation, temperature-dependent thermal 
conductivity, and irregular heat parameters. Hayat et al. [10] and Hussain et al. 
[11] investigated MHD transport analysis along with viscous dissipation and 
Joule heating. Dero et al. [12] obtained triple solutions during the investigation 
of micropolar fluid with thermal radiation effect. 

Thermal radiation has a significant impact on the fluid system’s velocity and 
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temperature transport. The transport mechanism has piqued the interest of scien-
tists and engineers due to its numerous applications. C. Sumalatha and S. Banda-
ri [13] carried out research on the flow over a non-linearly stretching sheet of 
Casson fluid with the effects of radiation and heat source/sink. Rudraswamy et al. 
[14] investigated the Jeffery nanofluid flow while taking Soret and Dufour into 
account. Kumar et al. [15] designed a mathematical model for a three-dimensional 
Jeffery fluid subjected to radiation and viscous dissipation. Rudraswamy et al. 
[16] studied the effect of Joule heating on a three-dimensional fluid flow. Sheik-
holeslami et al. [17] numerically compute the effects of an externally enforced 
magnetic field induced by stretching surface. However, in order to study heat 
transfer phenomena, many researchers have included nonlinear thermal radia-
tion in their models. More interesting investigations on heat transfer on natural 
convection, MHD and porous medium can be seen [18]-[23]. 

In the current work, we numerically investigated the importance of Casson 
fluid flow and heat transfer mechanism in non-Newtonian fluid flow over a 
sheet. In order to determine the fluid momentum behavior, a magnetic field and 
a porous medium are considered in the linear momentum equation. The energy 
transfer analysis is also investigated under the impact of thermal radiation, heat 
source/sink, and viscous dissipation phenomena. Furthermore, the fluid con-
centration is observed via the concentration equation. The x-axis is extended 
non-linearly, whereas the y-axis is set normal to it. 

2. Mathematical Formulation 

Consider a 2D, steady and incompressible flow of a Casson fluid passing through 
a porous stretching surface at 0y = . The flow is limited to 0y > , whereas the 
x and y-axes are taken along and normal to the surface respectively. Figure 1 
displays the geometrical view of fluid flow with the considered coordinate sys-
tem and boundary-layer conditions. 

The rheological equation of state for anisotropic and incompressible Casson 
fluid flow is  
 

 
Figure 1. Geometrical view of the physical model. 
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where ij ije eπ = . In this work, we assume that ije  is the ( )th,i j  component of 
the deformation rate, π  is the product of the component of the deformation 
rate, yp  is the yield stress of the fluid, aπ  is the critical value of the product 
based on the non-Newtonian model and Bµ  is the plastic dynamic viscosity of 
the non-Newtonian fluid [24] [25] [26]. Furthermore, the set of partial differen-
tial equations, known as boundary layer equations or Prandtl equations, ob-
tained using the well-known boundary layer approximations may take the form  
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The above set of equations has been extensively used for various fluid flows to 
compute physical quantities like heat-transfer, skin friction coefficient, as pre-
sented [27] [28] [29]. Here u, v represent the velocity components in x and y di-
rections, respectively, while ν  represents the kinematic viscosity, ρ  is the 
density, 2B c ypβ µ π=  is the Casson fluid parameter, κ  is the thermal 
diffusivity, pc  is the specific heat, *k  is the fluid medium’s permeability, wC  
is the concentration of fluid at surface, and C∞  is the concentration in the free 
stream. The appropriate boundary conditions are also determined by  
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Here, ( )0c c >  represents the surface stretching sheet associated parameter 
and n is the power index associated with the surface stretching speed. wT  and T∞  
are the stable temperatures at the sheet and free stream temperature respectively. 
Moreover, the similarity variables introduced in Equation (6) may be written as  
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The radiative heat flux ( rq ) described by Rossland approximation takes the form  
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where *σ  designates the Stefan-Boltzman constant and *k  designates the 
Rossland mean absorption coefficient. After employing the similarity variables, 
Equation (2) is identically satisfied. The rest of the Equations (3)-(5) are trans-
formed into coupled nonlinear ordinary differential equations that take the form  
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Similarly, the boundary conditions may take the form  
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where Pr symbolize the Prandtl Number, 0Q >  and 0Q <  represent the heat 
source and the heat sink, Rd is the radiation parameter, M is the magnetic number, 
β  is the Casson fluid parameter, K is the permeability parameter, Ec is the Eckert 
number and Le is the Lewis number. These parameters may be expressed as  
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when the surface is stretched linearly (i.e. 1.0n = ), then by setting 0K M= = , 
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the exact solution of Equation (10) may take the form  
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Comparison between the exact and numerical solutions to the problem is shown 
in Figure 2. The result illustrates that there is good agreement between the exact 
and numerical solutions. 

3. Physical Quantities 

The physical quantities of the interest are the coefficient of skin friction fc  and 
the local Nusselt number xNu , which are described by  
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where wτ  is the skin friction from the plate and wq  is the wall heat flux from 
the plate. In this problem, the wall skin friction and the heat flux are described as  
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Figure 2. ( )f η  and ( )f η′  for linearly stretching surface. 
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Equation (18) is the dimensionless form of the skin friction fc  and the Local 
Nusselt number xNu , where x wRe U x ν=  is the local Reynolds number. 

4. Numerical Solution 

In this work, the set of Equations (10) and (11) subject to the conditions described 
in Equation (13) has been computed using fourth-order Runge-Kutta method with 
shooting technique by the use of computational software; MATHEMATICA. 
The values of ( )0f  and ( )0f ′  are known, while we take an arbitrary value 
for ( )0f ′′ , then improve it by an iterative process till the boundary conditions 
for large values of η  satisfied completely. The iterative process to get an ap-
propriate value of ( )0f ′′  is called the shooting technique. In order to under-
stand the physical overview of the problem, an arrangement of figures has been 
displayed in the next section. 

5. Results and Discussion 

This section provides a physical overview of the emerging flow parameters on 
velocity and energy profiles. 

5.1. Velocity Profile 

Figure 3 illustrates the variation in velocity profile with an increase in values of 
β  against η , which demonstrates that for higher values of β , the fluid veloc-
ity reduces effectively. This is because, by increasing β , we are increasing the 
viscous forces, which slows down the flow speed. Similarly, Figure 4 illustrates 
the behavior of the nonlinear stretching parameter. It is observed that for larger 
stretching, the flow velocity increases significantly, and large momentum boun-
dary layer thickness is witnessed.  

The influence of the magnetic number is shown in Figure 5, which clearly 
demonstrates that the fluid velocity decreases as M increases. This occurs due to 
the strong dominance of the viscous forces over electromagnetic forces. Figure 6  
 

 
Figure 3. Variation of Casson’s parameter in velocity profile. 
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Figure 4. Variation of stretching parameter in velocity profile. 

 

 
Figure 5. Variation of magnetic number in velocity profile. 

 

 
Figure 6. Variation of permeability parameter in velocity profile. 
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shows the behavior of permeability parameter K with variation in f ′ . The re-
sults conclude that by accelerating K, the fluid velocity reduces effectively. 

5.2. Temperature Profile 

Figure 7 depicts temperature profile variation with an increasing magnitude of 
β . It’s been observed that with increased values of β , the temperature profile 
increases significantly. This is because, by increasing β , we are basically boost-
ing the viscous forces, which retards the flow velocity. Hence, an increase in flow 
temperature occurs. Figure 8 demonstrates the variation in the temperature field 
with an enhancing value of Ec. It is observed that by increasing values of Ec, the 
temperature distribution boost dramatically, whereas Figure 9 shows that by 
enlarging Pr, the flow temperature decreases effectively. Similarly, the energy and 
thermal boundary layer thickness reduce with an increase in Pr. Physically, it  
 

 
Figure 7. Variation of Casson’s parameter in temperature profile. 

 

 
Figure 8. Variation of Eckert number in temperature profile. 
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Figure 9. Variation of Prandtl number in temperature profile. 

 
explains that an increment in the Prandtl number means a boost in the fluid 
viscosity, which causes a reduction in the temperature distribution. 

The effect of radiation parameter on energy profile is plotted in Figure 10. 
The plots conclude that the acceleration in radiation parameter leads to a boost 
in the fluid energy level as well as the thickness of the thermal boundary layer. 
Moreover, Figure 11 and Figure 12 illustrate the impact of the heat source pa-
rameter on ( )θ η . In the case of Figure 11, it is acknowledged that by increase 
in magnitude 0Q > , the fluid temperature increases significantly. Besides this, 
in the case of Figure 12, it is examined that by reducing the magnitude of 

0Q < , the temperature profile decreases effectively. Basically, in the first case, 
the heat source can provide additional heat to the sheet which correspondingly 
enhances the fluid energy, whereas in the second one, the heat sink reduces the 
heat generation from the stretching surface, which consequently reduces the 
flow temperature. 

5.3. Concentration Profile 

The variation of Casson parameter on the fluid concentration is shown in Figure 
13 and it is observed that the flow concentration accelerates well with an incre-
ment in the Casson parameter. The influence of non-dimensional Lewis para-
meter is plotted in Figure 14 and acknowledges that Lewis number retards the 
fluid concentration effectively. In the same manner, the distribution of magnetic 
parameter on fluid concentration is displayed in Figure 15, which depicts that 
the concentration of fluid increases effectively due to an increase in magnetic ef-
fects. 

5.4. Wall Skin Friction and Nusselt Number 

Table 1 shows the numerical computation of the wall skin friction and Nusselt 
number variation. The magnitude of the wall skin friction coefficient and the 
local Nusselt number decreases as the Casson parameter increases. Furthermore,  
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Figure 10. Variation of radiation parameter in temperature profile. 

 

 
Figure 11. Variation of heat source parameter in temperature profile. 

 

 
Figure 12. Variation of heat sink parameter in temperature profile. 
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Figure 13. Variation of Casson parameter in concentration profile. 

 

 
Figure 14. Variation of Lewis parameter in concentration profile. 

 

 
Figure 15. Variation of magnetic number in concentration profile. 
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Table 1. Variations of skin friction coefficient ( )0f ′′−  and ( )0θ′−  for various values 

of dimensionless governing parameters. 

β  M K n Q Rd Pr Ec ( )0f ′′−  ( )0θ′−  

0.1 0.5 0.5 2.0 0.3 0.1 6.2 0.5 2.92568 1.07127 

0.5 -- -- -- -- -- -- -- 2.70282 0.85123 

1.0 -- -- -- -- -- -- -- 2.45380 0.68488 

0.5 1.0 -- -- -- -- -- -- 3.11091 1.00157 

-- 5.0 -- -- -- -- -- -- 2.55136 0.85123 

-- 9.0 -- -- -- -- -- -- 2.36889 0.69605 

-- 0.5 0.0 -- -- -- -- -- 2.49683 0.99336 

-- -- 1.0 -- -- -- -- -- 2.70282 0.85123 

-- -- 4.0 -- -- -- -- -- 3.21406 0.50748 

 
as the magnetic parameter is increased, the magnitude of the wall skin friction 
coefficient and the local Nusselt number decrease. However, the magnitude of 
the wall skin friction coefficient grows as permeability increases, but the local 
Nusselt number decreases as the magnetic parameter increases. 

6. Conclusion 

In this work, we transform the governing equations into coupled nonlinear or-
dinary differential equations and perform the numerical computation using the 
fourth order Runge-Kutta method. We examined the influence of several physical 
parameters, such as the Casson parameter, nonlinear stretching, heat source/sink 
parameter, radiation parameter, magnetic parameter, permeability parameter, 
Prandtl number, Eckert number, Lewis number on the flow field, concentration 
distribution, temperature, and represented them graphically. From the above 
description, the main conclusions of our work are summarized as follows: 
● The flow velocity is a decreasing function of Casson and magnetic parameter.  
● The temperature field is an increasing function of Eckert number and ther-

mal radiation.  
● The heat source parameter is directly proportional to the temperature field, 

whereas the heat sink parameter is proportional inversely.  
● The magnitude of the wall skin friction coefficient grows as the permeability 

increases, but the local Nusselt number decreases as the magnetic parameter 
increases.  

● The magnitude of the wall skin friction coefficient and local Nusselt number 
reduces with variation in Casson parameter.  

● The fluid concentration increases for large values of Casson and magnetic 
parameters and decreases for Lewis number.  
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