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Abstract

In this paper, we introduce high-order finite volume methods for the mul-
ti-term time fractional sub-diffusion equation. The time fractional derivatives
are described in Caputo’s sense. By using some operators, we obtain the
compact finite volume scheme have high order accuracy. We use a compact
operator to deal with spatial direction; then we can get the compact finite vo-
lume scheme. It is proved that the finite volume scheme is unconditionally

stable and convergent in L_ -norm. The convergence order is O(z’z_“ + h4) .

Finally, two numerical examples are given to confirm the theoretical results.
Some tables listed also can explain the stability and convergence of the
scheme.

Keywords
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1. Introduction

During the past several decades, the study of fractional partial differential equa-
tions has attracted many scholars’ attention [1] [2] [3] [4]. Fractional order par-
tial differential equations can provide mathematical tools to describe many
phenomena, such as engineering [5] [6], chemistry, physics and so on. Fraction-
al order partial differential equations are different from classical partial differen-
tial equations. The fractional integrals and derivatives satisfy the nonlocal prop-

erties. Although many important works about theoretical analysis have been car-
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ried on, the analytic solutions cannot be obtained exactly in most fractional par-
tial differential equations. Even if their solutions can be found, they are in the
form of series, which are difficult to evaluate. We can refer to some recent re-
lated works [7] [8] [9]. So the numerical investigation of the fractional partial
differential equations based on convergence and stability analyses has been an
important topic in recent years [10]-[22]. Liu et al have discussed the stability
and convergence of fractional partial differential equations by using a new ener-
gy method [10] [11] [12] [13] [14]. Yuste and Acedo found a finite difference
method that can solve the time fractional diffusion equation by using the for-
ward-Euler scheme, and they discussed the stability and convergence of the
scheme [15] [16].

For the time-fractional partial differential equations, there also have been lots
of works. Henry and Langlands presented an implicit finite difference scheme by
using the L1 scheme to approximate the time-fractional derivative, and they
analyzed the stability and convergence by Fourier analysis [17]. Sun and Wu
have derived the error estimate of the L1 formula which can approximate the
Caputo derivative and derived a fully discrete scheme for the diffusion-wave eq-
uation [18]. Gao and Sun have derived the Z1 approximation for the time-fractional
derivative, and they constructed a compact finite difference scheme for the
sub-diffusion equation [19]. Zhuang et al constructed a Crank-Nicolson-type
difference scheme for sub-diffusion equations which have a variable time, and
they proved that this scheme is stable and convergent with the discrete A1 norm
[13] [20]. Also, the maximum norm error estimate has been obtained [21]. In
addition, more researchers found other numerical schemes such as the finite
element method [22] and others. Tang has discussed convergence and super-
convergence of fully discrete finite element for time fractional optimal control
problems [23]. Wang ef al. have derived the local discontinuous Galerkin me-
thod for the Time-Fractional KdV equation [24]. It is noted that only one item
time fractional order is included in the study of time fractional sub-diffusion equa-
tion. In fractional physics, especially diffusion movement, the concept of brown
movement is extended because of the generalization of the Gauss probability func-
tion. The scope of nuclear magnetic resonance is expanding by added resolving
power, so one item time fractional order cannot explain this kind of problem.

The finite volume method is also called the control volume method. Let’s take
a brief look at the idea of this method. First, we mesh the space and there are
non-repetitive control volumes near each grid point. Second, we integrate the
equations separately on each control volume. And then, we approximate the
first-order partial derivatives with the function values of nodes. This method is
usually used to solve integer order equations, and it can also be used to solve the
fractional equation. The finite volume method has advantages of integral con-
servation [25].

Consider the following one-dimensional multi-term time fractional sub-dift-

usion equation with homogeneous source term on the interval [0, L]

DOI: 10.4236/jamp.2022.1010210

3157 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2022.1010210

B.J.Suetal.

2

gD{’u(x,t)+ngu(x,t):2Tl:+f(x,t), (xt)e(0,L)x(0.T].

u(0,t) = p(t),u(L,t)=v(t), te[0,T],
u(x,0)=g¢(x), xe[o,L],

where 0< f<a <1 and the operator DY denotes the Caputo fractional de-

(1)

rivative of order « defined by

« 1 f'(¢
‘D f(t)= ) ( )adf.
r(l-a) (t-¢)

F() is the gamma function, and ,u(t),v(t),¢(x) and f (X,t) are the known
functions, #(0)=¢(0), v(0)=¢(L).

For the numerical approximation, take two positive integers A4, Nand let
L
Ml
Q, ={x10<i<M}, Q ={t [0<i<N}, then the computational domain

,L]x

h= T=%.Deﬁne Xi:ih(OSiSM), tn:nr(OSnSN),

[0,L]x[0,T] is covered by ©Q,xQ, . Define primal partition 1, grid element

I, =[%,%.,](0<i<M —1). Define dual partition I;, I; ={O, Xl} ,

2

Ii*:{x_ X 1}(1SiSM—1), I, :{x 1,L}.Suppose
|—E HE M—E
u :{ui” [0<i<M,0<n< N} is a grid function on Q, =Q, xQ_. For every
grid function u, we define the following notations:

su" :%(u.” —ui"l).

The main goal of this paper is to construct a high-order compact finite
scheme and establish the corresponding error estimate. The remainder of the
article is arranged as follows. In Section 2, the compact finite volume scheme is
derived. In Section 3, the existence and uniqueness, stability and convergence
of the finite volume scheme are proved. In Section 4, two numerical examples
are given to demonstrate the theoretical results. Finally, we obtain a brief con-

clusion.

2. The Derivation of the Compact Finite Volume Scheme

We need to follow some lemmas in the derivation of the compact finite volume

scheme.

Lemma 1. If g(x)ng[O,L],and X :(i+%)h, 0<i<M —1. Then
i

I:E g(x)dx :%[g(xi—l)+229(xi)+ 9(x..)]+Ch’,

1 9(3)(9)
6

where C =.E 5(52 —1)d§’ 0 E(xil’ X”lJ )
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Proof. We use Lagrange interpolation to approximate ¢ (X) at the points
(%1,9(%1)):(%.9(x)) and (X, 9(X.;)). We can obtain that
9 (X) =L (X)"' R, (X)’

where

(% =% ) (X = %) (% =% ) (% = %01)
+ (x=%_)(x=%) X
(Xi+1_xi—1)(xi+l_xi)g( Hl)
and
g(3)(9)
R, (x)= 5 (X=X ) (X=% ) (X=X1), ¢9e[xi;,xI ;]
Integrating g(X) by parts, we can have
'[:i'? g(x)dx = J';H}(Lz (X)+R, (x))dx.

To obtain the approximation order, we use substitution to simplify integral

X—ih
terms. For example, let &= h so the integral terms can be simplified into

L (§)=36(6-D9(x1) (£ -9 (x)+3£(E +Dg (x.)

and
©(g)n°
R, (£)=" (6) £(21)
Such that
- Lz(x)dx:h.@Lz(ej)dg:%(g(xi_l)+229(xi)+g(XM))

and

XL L 4 1 g(3)(9) 2

J, PR(x)ax=h[% R, (¢)ds =h* [ =— =& (£* - 1)ds. 0

2

Define grid function space U, :{g 19 =(9o,9y, ", Iy )} . For every geU,,

define the integral operator as follows:
(Sg), =2—h4(gi71 +220,+0,), (I1<i<M-1).

with, (Sg),=0,> (S9),, =9 -
Lemma 2. If g(X)eCS[O,L],and X, =[i+%jh, 0<i<M -1. Then
i+

S EICH R O O

=

[9(x)-9(x)]+Ch*,
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where

_l e (5) 3
C_'fo{mlig (xi;—lh}rg xi%+/1h (1-1)

1|q® A ) A 4

-—— X ——h|+ X ,+=h[|(1-1) ;dA.

48{9 [i-; 2 ] 07 X))
Especially,

3g’[xlj—Sg’{x3J+4g’(X5j—g'[X;J=%[9(X1)—g(xo)]+o(h4)'

2 2 2

Proof. Based on the Taylor expansion, we can obtain the following equations

g(x)=g|x +Eg'x +Eg”x +h—39(3)x
' =) 27 () 8 i) 48 i-2

e L (2)
(4) X 1(9) 4
+ X +— s)(x. —s) ds,
384 Y [ a—ij 24 xi%g (s)(x=s)
. h® h?
sts=o{s 5o o ()
A 1 (3)
@gw( 1]*5 0% (5) (ks s
, . . h? e
gl X 5 |=9'|x , |-hg"| x , |[+—09"| x ; |-—0 X
i-= -= -5 2 -= 6 i-=
. 3 (4)
+% L g(s)(s)(x_ s —s] ds,
i% =
, L , h® e
g'lx 4, |=0|x,|+hg"|x ; [+—07| X ; [+—0"| X ,
i+= i-= i 2 > 6 -
(5)

To obtain the approximation order, we use substitution to simplify integral re-

mainder. For example, let s =(| —%)th%h , so the integral remainder of (2)

can be simplified into

h5 1 (5) A 4
— X ,+=h|(1-4) dA.
R (1-2)

We simplify the integral remainder of (2)-(5) by using the same way, then

H )R-
:%ﬁ{g@ [xi; —AhJ+ g® [xi; +AhH(1—/1)3 da
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Define fractional index grid function space ljh = {g lg= (gl 03,00 4 ]} .

2 2

Forevery g , €U, , define compact operator as follows:
i-L
2

1

A . =
(h9).+ =24

(g' ,+229 , +0 1], (2<i<M-1).
i i-> i+

with, (Ag), =0, (Ag),, =9u-
Lemma 3. [26] If O<a <1, geC?*[0,t,]. Then,

oDig(ty)= r(;;_a@[aé’ g(t, )—nZil(aﬁikfl —ar, )9 (t)-ar.g (0)} +RY

k=1

and

< ! l+ @ max
r(2-a)|4 (1-a)(2-a) |ost=u
where a; =(k +1)17a k.

Define the L1 approximation operator as follows

R,

g”(t)|z_z—a ,

—-a

D/g = F(;_a){agg(x(i),tn)—g(afk1—affk)g(X(i),tk)—aﬁlg(x(i),o)},

0<i<M, 0<n<N,

where the definition of &, isas same as the Lemma 3.
Let us now construct a compact finite volume scheme for problem (1). On
Q, xQ_, we now define the grid functions

U'=u(x.t), f"=f(x.t), 0<i<M, 0<n<N.

Suppose U(x,t)eC?([0,L]x[0,T]), which symbols of ueC®(x) and

ueC? (t) meanwhile. We consider the Equation (1) at the point (X,tn), and

we can have

u(xt,)
ox?

Integrating (6) in intervals, we can have

sDfu(x.t, ) +5 Du(x.t,)= +f(xt,), xe(0,L), 1<n<N. (6)

X 1
-[x, k (ng“u(x,tn)+ ngﬂu(x,tn))dx
i

Xi+;[<92u(x,'[n)

X 1 ox?

i—
2

(7)

+f (x,tn)de, 1<i<M -1 1<n<N.
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We can obtain

_[:i?(th“u(x,tnﬁ SD{’u(x,tn))dx

2

(8)
aulx gt | oufx gt -
- 2 J_ 22472 f(xt,)dx, 1<i<M -1 1<n<N.

OX OX X1

2

By using Lemma 2, we can get

L
A.[Xi_f ( SDfu(x.t, )+ sDfu(x.t, ))dx
2

)
X 1
=5U", -5 U™, +A] "2 f(xt,)dx+1", 1<i<M -1 1<n<N,
i+ i-= 1
2 2 =

where 1" =Ch* and the definition of operator A is as same as Lemma 2.

Using numerical integration formula to deal with spatial integral and LI in-
terpolation to discretize the time fractional derivative, then we have from Lem-
ma 1 and Lemma 3.

2—148(D:‘Ui”_1 + DfUi"_l)+%S(DfUi" + DfUi“)+2—l48(DfU” +D/U/,)

i+1 i+1

1 2., 1 (10)
= 5XU_n 1 —é‘XU_n 1 +£Sfi21 +£Sfin +ﬂ8fi+l + Rin, 1S n< N,
HE |—E

where R"=C, (12"’ ) +C, (h4) and C,,C, are constants which are indepen-
dent of h,7z. The definition of operator Sis as same as Lemma 3.
Notice that u (O,t) = y(t),u(L,t) = v(t) and U (X,O) = ¢(X) , S0 we can have

U =g(x), 1<isM-1, (11)
Ug =u(t,), Uy =v(t), 0<n<N. (12)
Therefore, we leave out the infinitesimal, then

2—28(Dfu{‘71+D”uT‘ )+%S(Df‘ui”+Dfui”)+2—148(D“u” +D’u’ )

T -1 T Ji+l T Ji+l
(13)
=5Xu”1—5Xu”l+i8fiﬂl+25fi”+i8fiﬂl, 1<n<N,
i+ i 24 24 24
ul =¢(x), 1<i<M-1, (14)
Ug =u(t,), uy =v(t), 0<n<N. (15)

These above equations are the compact finite volume scheme of question (1).

3. Analysis of the Compact Finite Volume Scheme

In this section, we will prove the existence and uniqueness, stability and conver-
gence.
First, we introduce the norms in the space y. Let g=(dy,0;,---,Qy )€Y -

Denote
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g = max

gi|'

Now, we introduce some important lemmas which can be used in the following
verifications.

Lemma 4. Suppose a €(0,1), and a is defined by Lemma 3, 1=0,1,--,
then

1) 1=af >a >a; >--->a"; & >0, when | >,

2) (I-a)l“ <@, <(1-a)(1-1)", 1=1.

Lemma 5. Let p :(poa Prs++y Py ) €7, 4q :(qo:qll"'aqM ) €y, then

[p+al. <[l +al.-

Theorem 1. The solution of the compact finite volume scheme (13)-(15) is
existent and unique.
Proof. Suppose U" =(u8,ul”,~-,u:,| )e 7 . The numerical solution of u’ can

be obtained by (14). If the numerical solutions of u°,u*,---,u""*

are existing
and unique, we can obtain non-homogeneous linear equations about u" from
(13) and (15). So if we prove the existence and uniqueness of U", we only need
to prove that homogeneous linear equations only have a zero solution. Define

S, =T (2-a), S,=7"T(2-p).

[s s]n(zzs ZZSJH[S an
—t—— (U, + + u'+ + TN
245, 24S, 245, " 248, 245, " 248, (16)

=5ou", —ou",, 1<i<M -1
|+—E |—E

ug =uy =0. (17)

Now, we prove that (13) and (15) only have a zero solution. Equation (16) can be

rewritten into

S S ), (228 225 2), [ s s ).,
+ U, + + +—= U+t Ui
245, " 243, 245, 245, h 245, " 243,

:%(ui”_l+ui"+1), 1<i<M-1

According to Lemma 5, equation mentioned above also can be transformed into
[ s s 2}
—+—+—||u
S, S; h

=0, and we can obtain u" =0.

oo

2
—lu
= h

n n

0

n

So

u

According to inductive principle, Equations (13)-(15) have a unique solu-
tion. O

Theorem 2. Suppose the finite volume scheme (13)-(15) has a solution. We
record it as {v,” [0<i<M,0<n< N}, then

||vk|| s"v”" +cmax|[f™ , 1<k <N, (18)
o0 0 1<m<k 0
1
where ¢=—max{T“T(1-a),T’T(1-A)}, [t"] = max |"].
2 o 1<isM -1
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Proof. Equation (13) can be written into

S a,,n < a a k a ,0 :|
—| Vi — Ay~ Ay Vil — a4 Vis
24Sa|:0 1 kZﬂ(nkl nk) 1 n-1%i-1

S s S B VWK —al \0 }
+ a VI a'n an _an, Vi,

245 I 0 Vi kZ:‘I( k-1 k) 1Vi

225 | ISy “ .

+ 245 aOV kzﬂ(an—k—l —a )Vik _anlvio:|

22 B n-1
2ot -t

B L k=1
S B . n-1
+ Vi = (ar,  —ar —a; V.
24Sa _aO i+1 k:l( n—k-1 n—k) i+1 n-1 |+1j|
S [pn (o B\ _ab
+—ajV. , — a —a V.., —a V

245,3 | 0 Vi+l k:l( n—k-1 n—k) i+1 n-1"i+1

= 5xv.n 1 _5xv Sf n _Sfin Sflil’
i+= |——
2 2

1<i<M -1, 1<n<N.

Equation mentioned above also can be written into

« i
Sa0 ao v+ 2283, +228a0 N 2 v+ Sa0 a0 v,
24S, 24S 245, 245, h 24S, 24S

S nfar‘fkfl ankv +a, v
24S =)
S [n-1
e IR URE TN
228 [ a a k a ,0
+ 245, _kZ:;(an—k—l _an—k)vi Ta,Y }
228 [/, 5Nk L B w0
— al, —al v +alv
24Sﬁ _kZ:;( n-k-1 n—k) i n-1%i
S [n-1 "
+24Sa _k:l(an—k—l an k)V|+l+a V|+l
S [& s ] sy
+E _k:l(an—k—l —a, )VI+1 +a, |+1

i+1!

1 n 22 n
h(v +v,+1) SfH+£Sf +—Sf
1<isM -1, 1snsN.

And then, we add absolute values to both sides of the equation. By using Lemma

a B
S&+Sa—°+E i
S, S, h

l n-1
<so| 2lana-anv], van|v]
a

k=1

5, we can obtain

n

0
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+Si[2(aﬁkl a’ ||v

2 n n
> } 2l +slel.

“zl{s_(a -, )+ssi " }"v L
a s

1 (19)
n -1 n -1 n ﬂ.s_a fn
|sErsgaljel o2 s S ye]
af_ S
+ SS_;'T:;& "Il -
By using Lemma 4, we can obtain
S, “T(2-a) tT(1-a)
23, = 2h(l-a)n™™ T 20
S, . 7'T(2-p) _HTr(-p) 1)
28, " 2h(1-p)n? 2h
Bring (20) and (21) into (19), then
(25 .
<ni S—(a“ -a’ )+Si(aﬁ -a’ ) ||vk|| (22)
hS “ Sa n—k-1 n—k Sﬂ n—k-1 n—k o
+{Sasi:+sasiﬂ1]("v°"w+c||f"||w), 1<n<n,
where ¢ :%max {TT(1-a),T’T(1- B)}.
Next, we use mathematical induction to prove (18).
According to (22), we can obtain when n=1,
[s8sE el <[sEsE o), oelr])
It also can be written as
L =] el
Therefore when k =1, Equation (18) satisfies conditions.
Suppose Equation (22) also satisfies conditions when k=1,2,---,n—-1. Ac-

cording to (22), we can obtain

25
S, Sy N
§§|:Si(agk1_a:k)+8i(anﬂkl an :|(||V " =
k Sﬂ

=1 Sa 1<m<k

)

[sEes el ell)
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(a:—k—l —ay, )+ S si(anﬂ—k—l —ay, )}
B

+ Sa:*1+ ” ("u || +C max )

Sa S 1<ms<n o

It also can be written as

IN
—
= =3
LLYIL
—

wn
(9]
D |'—‘

fm

Vn

So when k =n, Equation (18) satisfies conditions.
According to the inductive principle, theorem 2 holds. U
Theorem 3. The solution of the compact finite volume scheme (13)-(15) is
convergent. Suppose {U 110<i<M,0<n< N} is the solution of equation (1),
{ui" |[0<i<M,0<n< N} is the solution of the compact finite volume scheme
(13)-(17). Define

then

n

e

wgc(rz’“+h4), 1<n<N. (23)

Proof. We subtract (18)-(22) from (13)-(15), then we can obtain error equa-

tions.
1 asn = a k
SS_ e (an—k—l &, k)el 846
« k=1
L) pon _S(ar B \eak _af
+S—age -(al . —al e —al el (24)
B k=1

e’ =0, 1<i<M -1, (25)
g =0, e, =0, 0<n<N. (26)

By using Theorem 2, we can obtain

n

r || 1<k <N,

e

s"eO" +cm

1<k<n
where ¢ = %max{T“F(l—a),TﬂF(l—,B)} .
According to Lemma 5, it’s easy to obtain
I, e (e +h).

Such that, the result

n

e

gc(r“’+h4), 1<n<N,

0

is proved.
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4. Numerical Experiments

In this section, we report on some numerical results to show the convergence
orders and effectiveness of our finite volume scheme.
Example 1. Let L =1, T =1. In order to obtain the order of convergence of

the finite volume scheme, we refer to the exact solution of the problem (1) is
u(x,t) =t?sin(nx).

We can obtain the corresponding source term f(x,t) and the initial and

boundary conditions with « =0.5, £ =0.2, which are respectively

_I(3)sin(nx) ,, T'(3)sin(mnx)
F) =5 r(3-p)

27 + 7% sin (Tcx)

and
u(t)=0, v(t)=0, #(x)=0.
Denote the maximum errors

E, (h,7)=max |UiN -u |

1<isM

Table 1 and Table 2 show the maximum errors and the convergence order of

the finite volume scheme. Suppose
E,(h7)= O(hp +rq).

If 7 issmall enough, then E, (h,7)~ O(h P ) Consequently,

E, (Zh,r) ~2". log2 E, (2h,r) ~p

Ew(h,r) E, (h,r)

Table 1. Error behavior with Dirichlet boundary condition for h=

1000
T E.(h,7) Orderl~
273 2.4782e-003 -
2 7.9090e-004 1.6461
27 2.6505e—-004 1.5773
276 9.1099e-005 1.5407
27 3.1935e-005 1.5123
Table 2. Error behavior with Dirichlet boundary condition for 7= 1000
h E.(h7) Mass, Order2 ~
273 4.8386e—004 6.3470e—001 -
27 3.0735e-005 6.3614e—001 3.9767
27 1.9317e-006 6.3646e—001 3.9920
276 1.2167e-007 6.3649e—001 3.9892
27 7.8016e-009 6.3655e—001 3.9626
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So pis the convergence order with respect to the spatial step-size. Similarly, we

can obtain

o 2Ew(h,21)
=9 ho)

for small enough A. Denote

E, (h2 E (2h
OrderlﬂogzM Orderzzg_

Ew(h,z’) ' Ew(h,z')

In order to verify the integral conservation of the scheme, we define

M
Mass, => uh. Under different meshes, Mass, keep about the same size,
i—0

which we can explain the integral conservation.
In Table 1 and Table 2, we compare the exact solution and the numerical so-

lution. In order to test the convergence order of our scheme in temporal direction,

we fix sufficiently small spatial step size h= and vary the temporal step

sizes. Table 1 list the numerical results for different temporal step sizes. In order

to test the convergence order of our finite volume scheme in spatial direction, we

fix sufficiently small temporal step sizes 7 =

and vary the spatial step sizes.

Table 2 list the numerical results for different spatial step sizes. Figure 1 show

the effect of the numerical solution and exact solution at fixed h= and

1
T= v Figure 2 show the effect of the numerical solution and exact solution at

1.4 T T T T
*  Numerical solution

Exact solution
1.2F .

L L 1 1

0 0.2 0.4 0.6 0.8 1
Figure 1. The effect of numerical solution and exact solution at fixed h= 0160 and
1
T=—.
64
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T
*  Numerical solution
Exact solution

| 1 | | | | |

0 \ |
0 0.1 0.2

Figure 2. The effect of numerical solution and exact solution at fixed 7 =

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fixed 7=

! and h= £l . In Figure 3, the red line represents temporal
000 64
error order and the blue line represents spatial error order.

In order to observe error orders more intuitively, we plot a figure about error
orders which the slope represents the error order. We can observe that the tem-
poral error order is about 2—q and the spatial error order is about h*.

Example 2. Let L =1, T =1. As before, we refer to the exact solution of the
problem (1) is

u(x,t)=t*x(1-x).

It is also not difficult to obtain the corresponding source term f (X,t) and the

initial and boundary conditions with @ =0.9, f=0.1, which are respectively

F(?’)X(l_x) 2-a F(3)X(l_x) 2-8 2
f(x,t):wt +Wt +2t

and
u(t)=0, v(t)=0, #(x)=0.

In order to test the order of convergence of the finite volume scheme, we
compute the maximum norm errors of the numerical solution, which is defined

as same as Example 1. Denote

Orderl = log 2M Order? = E, (2h,z’)

Ew(h,z') ' Ew(h,r) '

In Table 3, we compute the problem for a longer time by fixing
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10° T T

107k .

10 "¢ 3

-5

10 'k 3

10 F 3

error orders

107} .

10k .

10_9 -3 I—2 I—1 0
10 10 10 10

Figure 3. The red line represents temporal error order, the blue line represents spatial
error order.

Table 3. Error behavior with Dirichlet boundary condition for h= 1

1000
z E.(h.7) Orderl~
27 9.5335e—003 -
2 4.1078e—003 1.2148
2 1.8437e—003 1.1560
27 8.4351e—004 1.1277
27 3.8995e—004 1.1132

1
N =8,16,32,64,128, and still choosing h =m. In Table 4, we compute the

problem for a longer space by fixing M =8,16,32,64,128, and still choosing

1
7 =—— . Figure 4 shows the effect of the numerical solution and exact solution

1000

1 1
at fixed h=—— and 7=—. Figure 5 shows the effect of the numerical solu-
1000 64

tion and exact solution at fixed 7 = L and h= i In Figure 6, the red line
1000 64

represents temporal error order and the blue line represents spatial error order.
In Example 1, we plot a figure about error orders which slope represents the
error order. We can observe that the temporal error order is about 2—« and
the spatial error order is about h*.
According to these tables, we can obtain that the compact finite volume

scheme is convergent with different spatial step sizes and time step sizes. Under
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Table 4. Error behavior with Dirichlet boundary condition for 7=

1000

h E.(h7) Mass, Order2 »~
273 4.7018e—004 1.6404e—-001 -
2™ 3.3230e-005 1.6509e-001 3.8227
275 2.2894e-006 1.6646e—-001 3.8596
276 1.4756e-007 1.6660e—-001 3.9557
27 9.2892e-009 1.6662e-001 3.9893

0.35 T T T

*  Numerical solution

Exact solution
0.3F E

0.25

0.2

0.15

0.1

0.05

O H 1 1 1 1 i
0 0.2 0.4 0.6 0.8 1

0.35 T T T T
*  Numerical solution

Exact solution
0.3 b

0.25- b

0.15- b

0.05- b

0 L n n n
0 0.2 0.4 0.6 0.8 1

Figure 5. The effect of numerical solution and exact solution at fixed 7= and

1
1000
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10 T

-3

10 " E

107 F E

10°F 1

error orders

107k .

10_8 -3 l—2 1—1 0
10 10 10 10

Figure 6. The red line represents temporal error order, the blue line represents spatial
error order.

different space steps, Mass, keep about the same size, which we can get a con-

clusion that the scheme is conserved.

5. Conclusion

In this article, we constructed a compact finite volume scheme for the mul-
ti-term time fractional sub-diffusion equation. Indeed, we use some important
operators to deal with the multi-term time fractional sub-diffusion equation. By
using a compact operator, we obtain a high order accuracy scheme. We proved
the existence and uniqueness, stability and L, convergence of our scheme.
Two numerical results show that the scheme is conserved and convergent with
the order O(Tz’“ +h* ) Some tables and figures also can prove the compact fi-

nite volume scheme is stable and convergent.
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