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Abstract

In this work, we prove the existence and uniqueness of the solution of the
generalized Schrodinger equation in the periodic distributional space P’.
Furthermore, we prove that the solution depends continuously respect to the
initial data in P’. Introducing a family of weakly continuous operators, we
prove that this family is a semigroup of operators in P’. Then, with this
family of operators, we get a fine version of the existence and dependency
continuous theorem obtained. Finally, we provide some consequences of this
study.
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1. Introduction

We know from [1], that the generalized Schrodinger equation

u —ipgoju=0eP’ (1)

with initial data in the periodic distributional space: P', has a solution in
C(IR,P’). This also happens for a generalized Schrodinger type homogeneous
model given in [2].

Now, if we add a dissipative term to the problem (1), it is natural to set up the

model:
U, —iuoiu=pojueP’ (2)

with initial data in P’, which we will solve following the ideas of [1] and [3].
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That is, we will prove that (2) has a solution and that it is unique. Further-
more, we will demonstrate that the solution depends continuously with respect
to the initial data in P’, considering the weak convergence in P’. And we will
prove that the introduced family of operators forms a semigroup of weakly con-
tinuous operators. Thus, with this family we will rewrite our result in an elegant
version.

In [2], the conservative nature of the problem allowed to obtain a group of
weakly continuous operators, and here from (P, , ) we will generate a semigroup
of weakly continuous operators.

We also want to highlight the wealth of information from Terence [4], Kato
[5], Liu-Zheng [6], Mufloz [7] and references [8] and [9].

Our article is organized as follows. In Section 2, we indicate the methodology
used and cite the references used. In Section 3, we put the results obtained from
our study. This section is divided into three subsections. Thus, in 3.1 we prove
that the problem (P, ;) has a unique solution and also demonstrate that the so-
lution depends continuously with respect to the initial data. In Subsection 3.2,
we introduce families of weakly continuous linear operators in P’ that manage
to form a semigroup. In Subsection 3.3 we improve Theorem 3.1.

Finally, in Section 4 we give the conclusions of this study.

2. Methodology

As theoretical framework in this article we use the references [1] [3] [10] [11]
and [12] for Fourier Theory in periodic distributional space, periodic Sobolev
spaces, topological vector spaces, weakly continuous operators, semigroup of
operators and existence of solution of a distributional differential equation.

Thus, for a quick review of some definitions necessary for the development of
this work, we cite [2].

We will use this theory in the analysis of the existence and continuous depen-
dence of the solution of (R, ), carrying out a series of calculations and ap-

proximations in the process.

3. Main Results

The presentation of the results obtained has been organized in subsections and is
as follows.

3.1. Solution of the Generalized Schrédinger Equation (P, )

In this subsection we will study the existence of a solution to the problem (F, ,) and
the continuous dependence of the solution with respect to the initial datain P’.
Theorem 3.1 Let 4>0, [>0, mand q are even number not a multiple of
four, and the distributional problem
ueC([0,4+),P)

(Pog) |Bu—iudiu=polueP’
u(0)=feP.
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then (Pm‘q) has a unique solution u eC! ((0,+oo), P'). Furthermore, the solu-
tion depends continuously on the initial data. That is, given f ,f eP’ such
that f, —2— f implies u, (I)Lm(t) , Vte[0,+x), where u, is solu-
tion of (P, ,) with initial data f, and uis solution of (P, ,) with initial data £

Proof.- We have organized the proof as follows.

1) Suppose there exists ueC ([0, +0), P’) satisfying (R, ,); this will allow us
to obtain the explicit form of u. Then taking the Fourier transform to the equa-
tion

Ou—iudiu = poju,
we get
—pkii=p(ik) G=0,G-iu(ik)" G=0,0+iuk™d,

which for each k €Z is an ODE with initial data 0 (k, 0)= f(k) .
Thus, we propose an uncoupled system of homogeneous first-order ordinary

differential equations
a 0
(@) | adi(k,t)+iukmd(k,

Vk € Z and we get
((k,t)=e " "e " f (k),

from where we obtain the explicit expression of u, candidate for solution:

u(t)= 3 0(kd = 3 e e M (k)4 M

_|(f —ipk™t L Bkt X 2
[(f(k)e e )kd} . )
Since feP’ then fe S'(Z) . Thus, we affirm that

(f(k)e"#km‘e-ﬂk“f)k _es'(z), vtz0, (3)

Indeed, let t>0, since feS’(Z) then satisfies: 3C >0, 3IN e IN such
that ‘f(k)‘£C|k|N, vk € Z —{0}, using this we get

[F (e e | = | F ()| e < F 1o | <[ ()| < C "
<1 ~
Then,
£ —ipk™ - Bkt '
(Fk)e™e )kez es'(2).
If we define
| (F —ipk™ = Bk ) 4
u(t): [(f(k)e e )kgz] , forall t>0, (4)

we have that u(t)e P’, Vt>0, since we apply the inverse Fourier transform to
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(Fk)e™ ™) esi(2).

2) We will prove that u defined in (4) is solution of ( Pm‘q) and
ueC((0,),P’).

Evaluating (2) at t=0, we obtain

u()=[(fw),, ] =[F]=r
Also, the following statements are verified.
a) du(t)=iudfu(t)+Boju(t) in P’, Vt>0. Thatis, we will prove that it

is satisfied:

Iim<w,(o>: i,u<6;“u(t),(p>+ﬂ<6§u (t),(p>,V¢ eP

h—0

<Btu(t),¢>::

and forall t>0.
Indeed, let t>0, @¢eP and 0<|h|<t,we denote

u(t+h)—u(t
Ih,l :=<—( I: (),¢7>
Thus, we get

= {(8(t+0).0)~(u(0) 0)}
—l im L efiykm(uh)e—ﬂkq t+h
~Him (3 o)

k=-n
:%{ lim <Zn: (k)e Mg (e"”km“ A _ )@ ¢>}
n—+o0 K=—n
noo. - —iuk™h y—pkIh
:n'HIL<Z f(k)e et [—e : eh 1J¢w>
k=—n

I

3
M:

—h)>

Cm —iuk™h y-pkIh
(e (— d 1]<¢L,¢>
X
=2n¢(—k) (5)

. —iuk™h -k
f()e e [— 2 1]@(-@}

+00 . - —igk™h o~ pk%h _
_ anz f (k)e—wk te—ﬁkqt (e eh 1}(3(—'()

Il
3
N
a
=~
M:l

Let h>0, we have
@ik g=pkh _1:J.Oh|:efi‘uk s ﬂkqs:| ds

= J‘Oh (_i/.lkm — Bk )e_i“kmse‘ﬂkqsds_

(6)

Taking norm to equality (6) we obtain
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g ik hg-pkn —1‘ < f: {,U|k|m + ﬁ|k|q} g iuk"s e’flkqs ds
=1 h
={ul[" + pIK['} [ s (7)
=
= {uld"+ B[ |
That is, from (7) we get
—igk™h -k
R P LT (8)

Using the inequality (8) and that f €S'(Z) we obtain

f (k)He*“”‘
—

—iuk™h - — kY
g itk pkh _q

e 1p (k)

k=—o0 <1 h
=1
< $ |F ol + K]
- E flell"+ 8 2| )oK
<clu ool 1 5 Moy
k=—o0 =] k=—o0 =J
~c{u B ) p 5 1) <o
=—o0 J=-0
since ¢peS(Z).
If h<0 wehave
“igk™h -k
T A ©)

Using the inequality (9), 0< |h| <t andthat fe S'(Z) we obtain

—jyk™m _pBkY
g itk _q

. f(k)Hefiyk’”t efﬂk”t |q3(—k)|
k=- | h
-1
< 3 |F 00fla (=)l {ulef" + Ak

<1

F ol (Rl + 8 3 [F ()6 (KK

N 2
i

yZ|J|N+"‘ J)|}<oo

Using the Weierstrass M-Test, the series 1, is absolute and uniformly con-

o(z I<)

+ﬁ Z |k|N+q

N+q | ~

|+,BJ_Z |3

since ¢peS(Z).

vergent. Then we can take limit and get
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Llﬂglh't_an;Of(k) e 7o (- k)Llﬂg{ -
——iuk™-pKAa
=(—i,u)2n+zw: 1?(k)e_i“kmte_ﬂkqt(ﬁ(—k)km (10)
K=o

_p2n S (K)e e P (—k)Ke.
k=—00

Using (10) and that <T“>,¢>> =(-1) <T,¢<’>> - <T ,¢<f>> for peP, TeP'
with ra even number, we have

lim 1, = (-i)2x 3" (K)e e (k) k™ - p2n 3" F (K)e ™ e ™ (k) ke
- S k=-o0

e
=5l =5l

k=—o0

S 3 (e e kg g 3 T (e e g

7(.k) =(ik)
iy i f(k)e’i”kmtefﬂkql <(0,ﬂ<(m)>+,3 +Zw fA(k) ikt ﬂkqt< ﬁfq >
k=-o0 — k=-o0 —
(o™ 4 o )

oy Ew‘, f(k)e e A <¢w¢(’"’>+ﬂ f f(k)e e (g,0®)
=iy lim Z f(k)etk"tg Akt <¢1( (pm)>+ﬂnll i (k)e"“km‘e’/’kqt<%,¢(q)>

. n m
7Wk leﬁkqt%1¢(m)>+ﬁ lim < Z (k —I,le teﬂkqlﬁ(’w([ﬂ> (11)

N—-+w

M:

'ﬂn'frw<
o 0"
I,u<6mu(t),(p>+ﬁ< >
Therefore,

<61u(t),¢>=iy(@fu(t),<p>+ﬂ<8‘x‘u(t),go>, VoeP, Vt>0.
That is,

ou(t)=iudfu(t)+Boju(t) inP’, Vt>0.
b) ueC ([0,+oo), P’) . That is, we will prove that
u(t+h)—"-u(t) when h—0,vt>0.

In effect,let t>0, ¢ P, we will prove that
Hyp=(u(t+h)-u(t),¢)—>0, when h—0.

We know thatif ¢ eP then ¢eS(Z). Using (5) we have

Hyy =2 30 (e e e e 1) (k).

Let 0<h<1, from (8) we get
e e —tl< "] + ko] < "+ K (12)
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Using (12) and that fe S’(Z) we obtain

+00

2

k=—0

e—ﬂkqt
&
<1

F (1o er e a5k
.

=1

< Cﬂ i |k|N+m
k=—00

=Cu |3
J=-o0

+Cp Y K
k=—o0

(K (k)

N+m

o) +cp X P
J=-o0

gﬁ(\])|<oo

since ¢peS(Z).
Let h<0, |h|<1 from (9) we get

‘e‘”‘kmhe‘ﬁkqh —l‘ <e K {u|k|m +/)’|k|q}. (13)

Using (13), O<|h|<t and that feS'(Z) we obtain

5 |7 ol [er e smre ) ()
k=-o0
=1
<cu S lolres 5 i)
k=-0 =J k=—0 =J

_ C/I Z |J |N+m
J=—x

o) +cp X P
J=-0

(ﬁ(\])|<oo

since peS(Z).
Using the Weierstrass M-Test we conclude that the series H,, converges

absolute and uniformly. Then it is possible to take limit and obtain

limH,, =2n S F (K)e e Kt (k) lim{e"e " ~1}=0.  (14)
k=-o

=0

Doing t=0 in H;, with h>0, wehave

Using (12) and that fe S'(Z) we obtain
5[ ()oK e e
k=—0

<Cu PIMp(I)+Cp X[
k=—0 k=—00

(ﬁ(\])|<oo

since ¢peS(Z).
Using the Weierstrass M-Test we conclude that the series H;, converges

absolute and uniformly. Then is possible to take limit and obtain

lim Hy =273 F () (—K) lim (&7 7 —1} =0, (15)
h—0* ’ K=o h—0*

=0
From (14) and (15) we can conclude that

u eC([O,oo),P').
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c) dueC(IR*,P'). That is, we will prove that

du(t+h)—"—au(t) when h—0,vte IR".
In effect, let te IR and ¢ e P, using item a) we have
(au(t+h),p)-(ou(t),¢)
=ig{(eTu(t+h),p)-(a7u(t),p)}+ B{(c%u(t+h),p)~(%u(t),0)} (16)
=igf{u(t+h),0™)=(u(0).0™ )+ B{{u(t+ )0 )= (u(t), ) >0

—0 -0

when h—>0, since item b) is valid with ¢ eP for re {m,q}.

From b) and c) we have that ueC! ( IR*, P').

3) Now, we will prove that the solution depends continuously respect to initial
data. That is, if f, —P 5§ wewil prove that:

u, (t)——>u(t), vtelR".
We know thatif f,—F 5 f then f,—>Z 5 { thatis
(f,-f.6)>0 when n—+o, VEes(2). (17)
For te IR" fixed and arbitrary, we want to prove that
(u, (t),w) > (u(t),w) when n— -+, VyeP.

Thus, let te IR™ be fixed and w € P, using the generalized Parseval identity,
we obtain the following equalities:

(un () =2((f, () ") . 5) (18)

<u(t),y/> = 2n<(f (k)e e t)kEZ ,¢/7>. (19)
From (18) and (19) we obtain:

<un (t),l/l>—<u (t),l//> = ZEKZZ:O{ f (k)- f(k)}e'i”kmte_ﬂkqty;(k) -0

when N — +wo, since &:=(4 ),

O
Corollary 3.1 Let >0, f>0, m and q are even number not a multiple of

€S(Z) and (17) holds.

z

four, then the unique solution of ( Pmyq) is

)= 5 T 00 e <[ (f e e ]
k=—o0 kez
where ¢ (x)=e", xelR.

3.2. Semigroup of Operators in P’

Let’s remember that P’ is the topological dual of 2, where Pis a complete me-
tric space.

In this subsection, we will introduce families of operators {Tﬂy s (t)}DO in P,
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with #£>0 and f>0; and we will prove that these operators are continuous

in the weak sense. That is, T, ,(t) is continuous from P’ to P’ with the

weak topology of P’, which we will call the weakly continuous operator.
Furthermore, we will prove that T, , (t) satisfies the semigroup properties.
For simplicity, we will denote this family of operators by {T (t)}
Theorem 3.2 Let t>0, >0 and >0, we define

T(t):P'—>P’

f>T(t)f:= [( f (k)e“""m‘e‘ﬂ"q*)keZ T eP’,

t20 "

then the following statements are satisfied:

1) T(0)=1.

2) T(t) is @ -linear and weakly continuous Vt>0. That is, for every t>0,
if f,—2—>f then T(t)f,—E—T(t)f.

3) T(t+r)=T(t)oT(r), Vtr>0.

4) T(t)f%f when t—>0", VfeP'.

That is, foreach f e P’ fixed, the following is satisfied

<T (t) f ,1//>—><f,«//>, when t — 0%, Vi € P.
Proof, - Let f eP’ then f e S'(Z) . Then, from (3) we have
(FR)e™ ™) es'(2);
kez
taking the inverse Fourier transform, we obtain

[( f (k)e"”km‘e’ﬂkq‘) T eP’, vt>0.
kez

=T(0)f

Thatis, T(t) iswell defined forall t>0.
1) We easily obtain:

T(0)f :[(fA(k)e*”‘k”‘)e*’fk“")keZ } -[(f) | =[f] =1 viep.

2) Let te IR", we will prove that T(t):P'— P’ is @ -linear. In effect, let
acC and (4y)eP’'xP’, wehave

T(t)(ag+y)= :(efi”kmte*ﬁ “lagy] (6), ]
(e s |

=|ale e g (e W) |

=a| (e e ), ] <[ e 0),,
=aT (t)p+T (t)y.

Now, for te IR™ we will prove that T(t):P’'— P’ is weakly continuous.
Thatis, if f,—"— f we will prove that T (t) f, ———>T(t)f.
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We know that if f,—2 > f then f —f,thatis,
<fn,§>—><f,g>, when n >+, VEeS(Z).
That is,
(f,-f.&)>0, whenn— s, vies(2). (20)
We want to prove that:
<T (t) fn,t//>—><T (t) f ,l//> when n =+, Vi eP.

Thus, let te IR™ fixed and € P, using the generalized Parseval identity,
we obtain the following equalities

rtw)=(((Lee) ] )

(21)
_ £ —ipk™t - Bkt =
_2n<(fn(k)e e )keZ’l//>,
(T(©) )= <[( fgenent) | "”>
kez (22)
_ £ —ipk™ - Bkt S
_2n<(f(k)e e )kéz,y/>.
From (21) and (22) we get
<T (1) fn,y/>—<T (t) f,1//>
_ £ —iuk™t - Bkt AN —ipk™ - Bkt S
_ zn{<( f()e e ) ,W> < f (ke e ) y/>}
“n 50 e M0 T () e (0]
k=—x k=—0
=2n f {fn (k)- f(k)}e‘i”kmte‘ﬂkq‘y;(k) -0
k=—o0 Py
when n — +w,since &:=(& ), _, €S(Z) and (20) holds, that is
<fn - f,<§>—>0 when n— 4.
3) Let t,reIR™, we will prove that T (t)oT (r)=T (t+r). In effect, let
peP’,
Tt )= (Bege e ) ]
kez
v (23)
) M‘B(k)e‘”kmre"kq’ -e‘”kmteﬂkth } .
-
kez
Since ¢ e P’, using (3) we have that
($(k)e™ e ™) es'(Z), Wre[o+), (24)
kez

Then, taking the inverse Fourier transform, we get:

[(&(k)e’i"kmre’ﬂqu)kEZ T eP’, Vre [0,+oo).
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Thus, we define:

g, = [(4/5 (k)e“*‘k””fe‘ﬂk“*)kEZ } eP.
That is,
=T (r)¢. (25)

Taking the Fourier transform to g, we get:

n —kam —pkAr
(¢( ) )keZ,
that is,
G, (k)=g(k)e ™ e vkez. (26)

Using (26) in (23) and from (25) we have:

T(t+r)g= [(@, (k)e""km‘e"’kqt)keZ T eP’

(
=[T(t oT(r)](¢), vi,re IR,
So we have proven,
T(t+r)=T(t)eT(r), Vt,reR". (27)

If t=0 or r=0 then equality (27) is also true, with this we conclude the
proof of

T(t+r)=T(t)eT(r), Vtre[0,+x). (28)

4) Let f eP’, we will prove that:
T(t)f—"—f whent—0"

That is, we will prove that

<T(t) f,(p>—><f,g0> whent— 0", VepeP.

In effect, for t>0 and ¢ P, we have
Hl:=<T(t)f,(p>—(f,go>
= I|m{ > f(k)e“ﬂkm‘e‘ﬂkqt@,¢>—<i f(k)qﬁk.¢’>}
=n|Lrpm<i f(k)(e*"‘kmt e )@ <0>
k:ni (k)( kMg A _ )(@ ¢>

~ lim 2n:i f () (e e 1) (k)

(29)

= lim

-n
n

ol e
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Since t>0, from (7) we get
e et~ < {ufu + K[ . (30)
From (30) we obtain
‘e*‘*’km‘e*/’k“t —1‘ < {/J|k|m +ﬂ|k|q}t, vt [0, +m). (31)
From (31) with O0<t<1, we have
e e~ < i+ K[ (32)
Then using (32) and that f € P’, we obtain

S ol e o)
<C {/I i |k N+m
k=—

-C {ﬂJi |‘:| |N+m

since ¢peS(Z).

(k)

FB Y
k=—o0

}

@(J>I}<w

(k)

¢3(J)|+ﬁJ;w|J|N+q

Using the Weierstrass M-Test we conclude that the H, series converges ab-

solute and uniformly. So,

lim 74, =2 3" (K)(~k) lim fe e " 1} =0,
k=—o0

t—>0" 0"

=0

Thus, we have proved
lim (T (t) f,0)=(f,p).

t—>0"

U
Theorem 3.3 For each f eP' fixed and the family of operators {T (t)}

from Theorem 3.2, then the application
¢ :[0,+00) — P’
toT(t)f

t>0

is continuous in [0,+00). That is,

T(t+h)f —>T(t)f when h—0,Vte[0,+x»). (33)

(is the continuity at 7).
That is, (33) tell us that for each te (O, +oo) fixed, the following is satisfied

(T(t+h) f,y) > (T (t) f,y), when h—0,vy P,

and if t=0, we have the continuity of ¢ at 0 on the right, which is item 4) of
Theorem 3.2.
Proof.- Let t>0, arbitrary fixed and f eP’, then g:=T(t)f eP’, using
item 4) of Theorem 3.2 we have that T (h) g—">g when h—0". Thatis,
T(h)(T(t)f)—>T(t)f whenh—0",

[

=T(h+t)f
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where we use item 3) of Theorem 3.2. With this we have proved that

T(t+h)f —=>T(t)f when h—0",Vte(0,+o). (34)

Now, we will prove that T (t+v) f T (t) f when v —» 0. That is, we

will demonstrate
(T(t=h)f,p)>(T(t)f.¢) when h—0", VpeP. (35)

In effect, for t>h>0 and ¢ eP, we have
Ly =(T(t=h) f.0)=(T(t) f.0)
_lim (3 F (k)e g Ay >
(270 oo

n—+o0

{5 i e o))

¢

= lim Zn: f(k)e k"tg At (e"“‘m“e‘*kqh —1)@,¢>

= lim Zn: f(k)e‘”"‘m‘e"qut (e“"‘mhe”kqh —1)(¢K,¢>)

- lim 2n:i (K)e"te e (70 1) 5 (k) (36)

(k)e g (e"‘km“eﬁkqh —1)(/3(—k).
In the series (36), we need to delimit the expression e kMM _1  So, we

have
e g | h[e(‘ﬂk“ﬂkq)s} ds
° (37)
=(iuk’“+ﬂk“)fh e

Kk

(pK?)s (k%)
Taking norm to equality (37) and using: .[ e dS <e h for h>0, we

obtain

gluk"hg skt —1‘ < |i,ukrn +ﬂkq|jhe(ﬂkq)5ds

A (38)

<{ul"+ pIK }
s{y|k|m+ﬂ|k|q}eﬁk r

whenever 0<h<1.
Using inequality (38) and e ™M <1 for O<h<t with h<1,we have

F (il e e (k)

F(0[e ™ L™ + Ik | (k)|

+00

2

k=-o0
40

Z
< 2 [F0flp (ol + BKT)

— BKY
oAk
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IA

AUC LS NI L
C{ﬂki|k|'“m (k)| + /:’k:Z:o|k|“*q ;a(_k)|} (39)
°

uS o 5(2) )<=

J=

IA

IA

p)+5 3 "

since ¢peS(Z).

Using the Weierstrass M-Test we obtain that the series L, is absolute and
uniformly convergent.

Then, we can take limit and get:

lim £, = 2nk§ f(k)e ™™g P im {e“‘kmheﬂkqh —1}(3(—k) =0,

h—0*

=0
with this (35) is proved.
From (34) and (35) we conclude that
T(t+h) f—2>T(t)f when h—0,Vte(0,+»). (40)

O

Remark 3.1 The results obtain in Theorems 3.2 and 3.3 are also valid for the
family of operators {S (t)}t>0 , defined as

S(t):P'> P’
f>S(t)f:= [(e”‘kmte’ﬁkqt f (k))kez T :
for te[0,+m). Its proof is similar.
3.3. Version of Theorem 3.1 Using the Family {T (t)}tZO

We improve the statement of theorem 3.1, using a family of weakly continuous
Operators {T (t)}tzo'

Theorem 3.4 Let f eP' and the family of operators {T (t)}tZO from Theo-
rem 3.2, defining u(t):=T (t)f eP’, Vte[0,+x), then ueC ([0,+oo), P') is
the unique solution of (P, ). Furthermore, u continuously depends on t. That
is, given f,feP’ with f—2 >t implies u, (t)—P'—>u(t), Vte[0,+0),
where u, (t):=T(t)f,, Vte[0,+0) (that is, u
initial data f).

. o 1s a solution of (R, ) with

Proof.- It is analogous to the proof of Theorem 3.1.

U
Corollary 3.2 Let f €P' be fixed and the family of operators {T (t)}t>o from
Theorem 3.4, then 30T (t) f, Vte(0,+w) and the mapping

7:(0,40) —> P’
t—>o,T(t) f =iwd}T(t) f+ BT (1) f

is continuous at (0,+c0) . That is,
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8T (t+h)f ——oT(t)f whenh—0, Vte(0,+x). (41)
(41) tells us that for each t e (0,+) fixed, it holds:

(0,T (t+h)f,0) > (3T (t)f,p) whenh >0, VeeP.
Proof.- Indeed,
(0T (t+h) f.0)- (3T (1) f.p)
=ip{(O7T (t+h) £,0) (T (1) f.0)}+ B{(B3T (t+) fL0)~ (BT (1) £, 0)}
=ig{(T (t+h) £0™ ) =(T (0 F.0™ )+ B{(T (t+0) £,0@) (T (1) 1,09}

—0 -0

-0
when h— 0, due to Theorem 3.3 with y=¢” €P for re{mq}.

O

Corollary 3.3 Let f € P’ be fixed and the family of operators {T (t)}IZO from
Theorem 3.4, then the solution of (B, ,): u (t)=T(t)f, Vte[0,+x), satisfies
ueC'((0,+x),P).

Proof.- It comes out as a consequence of Corollary 3.2.

O

4. Conclusions

In our study of the generalized Schrodinger equation in the periodic distribu-
tional space P’, that is, the problem (P, ,) with m and g even numbers not
multiple of four, we have obtained the following results:

1) We prove the existence, uniqueness of the solution of the problem (P, ) in

P’ . Thus we also prove the continuous dependence of the solution respect to the
initial data in P'.Remember that P’ is not a Banach Space.

2) We introduce families of operators in P': {T (t)}tzo and we prove that
they are linear and weakly continuous in P’. Furthermore, we proved that they
form a semigroup of weakly continuous operatorsin P'.

3) With the family of operators {T (t)}tzo we improve Theorem 3.1.

4) Also, note that this is mathematically enriched with the families of the gen-
erated operators and their properties.

5) In contrast to what was obtain in [2]: a group of weakly continuous opera-
tors, here we obtain a semigroup of weakly continuous operators.

6) Remark that the results obtained will allow us to apply computational me-
thods to determine the solution with a degree of approximation that is required
and with a lower error rate.

7) Finally, we must indicate that this technique can be applied to other evolu-

tion equations in P’.
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